
Software
Solutions &

group

Fortran Compiler
Use of Temporaries

Improving
Performance,

Reducing Stack
Utilization

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

Problems and Concerns: Agenda

• Stack Application runs out of stack and aborts

• Application creating temporary copies of actual arguments
before procedure call.

• Application creating temporary copies of arrays because of
Fortran 95 statements or array syntax

• OpenMP Considerations

2

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

General Stack Exhaustion and Increasing
Stack Space

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

4

Intel Fortran Compiler Stack Usage

•  Driven by array temporaries

•  OpenMP puts a heavy demand on stack
(all thread PRIVATE data is put on stack)

•  -heap-arrays option added, v9.1 Aug 06
–  Linux: 9.1.037 and later
–  Windows: 9.1.029 and later
–  Mac OS* X: present in all ifort versions

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

5

Symptoms and Solutions to
Stack Exhaustion

•  Symptoms:
–  Linux: process aborts with SEGV (sigsegv), segmentation fault
–  Mac OS X: process aborts with “illegal instruction”

•  Solutions/Workarounds
–  Use 9.1 or greater compiler option –heap-arrays
–  Linux: unlimit stack via C system call
–  Linux, Windows, Mac OS X: Use loader options to increase stack size and

possibly stack starting address
–  System: Increase system wide user shell stack limit

•  Via default system /etc/login /etc/csh.cshrc
•  Via kernel params and custom kernel builds

–  User: Increase stack size in user shell
•  User login scripts
•  Setting stack size just before running (wrapper scripts)

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

6

-heap-arrays

•  -heap-arrays[:size]

•  Default is no -heap-arrays

•  Optional [:size] – arrays of size or smaller are stack allocated,
larger arrays are heap allocated

•  From Release_Notes: “May have slight performance penalty”
–  Varies by application
–  Stack memory management is fast and simple (allocate/deallocate

straightforward, fast)
–  Heap management: large amounts of allocations/frees of differing sizes

can frag heap, impact performance.
–  Use [:size] to restrict to large allocations and avoiding fragmentation

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

-heap-arrays

•  -heap-arrays affects automatic arrays and temporaries only.
For example:

RECURSIVE SUBROUTINE F(N)

INTEGER :: N

REAL :: X (N) ! an automatic array

REAL :: Y (1000) ! an explicit-shape
local array on the stack

Array X in the example above is affected by the heap-array
option. Array Y is not.

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

8

Linux: unlimiting stack via C system call
#include <stdio.h> // perror

#include <stdlib.h> // exit

#include <sys/time.h> // setrlimit

#include <sys/resource.h> // setrlimit

#include <unistd.h> // setrlimit

void unlimit_stack_(void) {

 struct rlimit rlim = { RLIM_INFINITY, RLIM_INFINITY };

 if (setrlimit(RLIMIT_STACK, &rlim) == -1) {

 perror("setrlimit error");

 exit(1);

 }

}

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

9

Linker/Loader Option for Stack Size

•  Adds stack size change to executable image

•  Loader will ignore shell limits and give process the requested,
non-default, stack size

Example: Increase to 256MB on Mac OS X:

ld –stacksize 0x10000000 –o foo foo.o

ifort:

ifort –o foo –Wl,-stack_size,0x10000000,-stack_addr,0xc0000000 foo.f

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

Temporary Creation on Procedure Call

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

11

Case: Local Variables

subroutine sub(a)

real(8) :: a(1000,1000)

real(8) :: temp(1000,1000), work(1000,1000)

•  Local arrays temp and work allocated on stack (assuming default
options)

•  Work arounds:
–  SAVE atttribute will cause allocation in heap
–  -save compiler option (same effect) but affects entire source file(s)

•  Default: default of –auto (same as –automatic) default compiler option

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

12

Case: Array Temporaries in Fortran
Automatic Arrays
subroutine sub(f, x, y, z)

integer :: x, y, z

real(8) :: f(x,y,z) !...argument

real(8) :: temp(x,y,z) !stack alloc’ed automatic array

•  Replace with allocatable array – allocation occurs in heap

Subroutine sub(f, x, y, z)

...

real(8), allocatable :: temp(:,:,:)

allocate (temp(x,y,z))

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

13

Case: Array Temporaries in Fortran
Passing Non-contiguous Array Sections

• If passing a noncontiguous array section to another routine,
have the called routine accept it as a deferred-shape array

•  an explict INTERFACE is required

•  Example: BEFORE (using explicit-shape dummy)

real(8) :: f(1800,3600,1)

external sub

call sub(f(1:900,:,:)

subroutine sub(f)

real(8) :: f(900,3600,1)

Sub is expecting a contiguous array 900x3600x1
a temp is created on entry (gather) and copied
back on exit (scatter)

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

14

Continued: Array Temporaries in Fortran
Passing Non-contiguous Array Sections

•  Explicit interface and assumed shape arrays avoid the
temporary

real(8) :: f(1800,3600,1)

interface

 subroutine sub(f)

 real(8) :: f(:,:,:)

 end subroutine sub

end interface

call sub(f(1:900,:,:)

subroutine sub(f)

real(8) :: f(:,:,:)

...

end subroutine sub

Downside: within ‘sub’,
the optimizer must assume
that ‘f’ might be non-
contiguous

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

Continued: Array Temporaries in Fortran
Passing Non-contiguous Array Sections

 -gen-interfaces option can be used to generate INTERFACE
blocks for SUBROUTINES and FUNCTIONS in your source

•  Creates 2 source files for each:
–  A <subroutine>_mod.f90 file with the INTERFACE inside a MODULE
–  A <subroutine>_mod.mod file (the MOD file for the above)
–  Placed in –module <dir>, or –I <dir>, or in current directory

•  CHECK YOUR WORK: -check arg_temp_created
–  Runtime check to print warnings when temporaries are created at

procedure calls.

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

Temporaries Creation By Fortran
Statements and Intrinsics

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

17

Case: Array Temporaries in Fortran
WHERE statement

•  WHERE statement will always create an array temporary for
the array expression:
real(8) :: f(1800,3600)

!...requires 8x1800x3600 = 51,840,000 byte temp array

where (f .gt. 0)

 f = log10(f)

else where

 f = -1.0

end where

•  Only workaround is to avoid WHERE (explicitly write
DO loop with conditional) – not advised

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

Case: Array Temporaries Caused by Cray
Pointers

•  Cases vary: in general, anytime the compiler cannot determine if
there is overlap in the RHS and LHS expressions

•  Cray pointers – compiler errs on the side of safety
pointer (pb, b)

pb = getstorage()

do i = 1, n

b(i) = a(i) + 1 !...assumes b may overlap with a, makes
temporary of ‘a’

enddo

•  –safe-cray-pointers JUDICIOUSLY
pointer (pb, b)

pb = loc(a(2))

do i=1, n

b(i) = a(i) +1 !... –safe-cray-pointers will avoid temp.
but give wrong results

enddo

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

Case: Array Temporaries Created by
Fortran Pointers

real, pointer, dimension (:,:) :: xptr, yptr

real, target :: z(100,100)

allocate (xptr(100,100))

allocate (yptr(100,100))

…

xptr = yptr*2 !...the compiler must assume overlap

z = xptr * yptr !...X or Y or both could point to Z

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

Continued: Array Temporaries Created by
Fortran Pointers

When a pointer-based array appears in an assignment statement on
the LHS of the assignment, and a TARGET or another POINTER
appears on the RHS, the compiler will assume a possible overlap
condition and will create array temporaries.

Similarly, when a TARGET appears on the LHS and a POINTER appears
on the RHS expression, a temporary is created. Again, any time
there is a possible overlap in the LHS and RHS expression, the
compiler will choose the safest path and create an array temporary.

In general ONLY use POINTER-based arrays where absolutely
necessary. If you can use ALLOCATABLE arrays instead, do so

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

21

Array Temporaries in Fortran
Others (work in progress)

•  Array-valued function procedures return values on the stack
–  Only work around is to convert to subroutine procedures and pass the

array as an argument (INTENT OUT or INOUT)

• Intrinsics often use array temporaries

• RESHAPE

• MERGE

•  SUM

• (others (tbd))

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

Array Syntax and Temporaries

•  Does array syntax create temporaries?

•  If the compiler is doing it’s job, NO. (caveat: we have been
finding and fixing such cases over the years)

•  If you find such a case, please open a bug report

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

OpenMP Stack Considerations

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

-openmp Interaction with –heap-arrays

•  -openmp will cause the compiler use slightly different
behavior for –heap-arrays

•  Procedure local data with –heap-arrays and –openmp are
STACK allocated (therefore, thread-safe) – must explicitly
override with SAVE attribute to get on heap

•  Automatic arrays: descriptor allocated on stack, data
allocated in heap (thus, also thread-safe).

•  OpenMP puts a heavy load on stack, threadprivate variables
need stack allocation

•  Use stack-increasing methods – you will need much more
stack than an non-OpenMP application

Copyright © 2006, Intel Corporation. All rights reserved.
*Intel and the Intel logo are registered trademarks of Intel Corporation. Other brands and names are the property of their respective owners

25

Summary Recommendations

•  Code to avoid temporaries on procedure calls, use –check
arg_temp_created to verify

• -heap-array:<size> may be used for codes needing large array
temporaries

•  Requires 9.1.x or greater compilers since August 2006

•  9.0 and older compilers: Use either loader options and/or
setrlimit() to bypass shell stack size limitations

•  When passing array sections, use assumed shape arrays and
explicit INTERFACE

