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Problems and Concerns: Agenda 

• Stack Application runs out of stack and aborts 

• Application creating temporary copies of actual arguments 
before procedure call.   

• Application creating temporary copies of arrays because of 
Fortran 95 statements or array syntax 

• OpenMP Considerations 
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General Stack Exhaustion and Increasing 
Stack Space 
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Intel Fortran Compiler Stack Usage 

•  Driven by array temporaries 

•  OpenMP puts a heavy demand on stack  
(all thread PRIVATE data is put on stack) 

•  -heap-arrays option added, v9.1 Aug 06 
–  Linux:  9.1.037 and later 
–  Windows:  9.1.029 and later 
–  Mac OS* X:  present in all ifort versions 
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Symptoms and Solutions to 
Stack Exhaustion 

•  Symptoms: 
–  Linux:  process aborts with SEGV (sigsegv), segmentation fault 
–  Mac OS X:  process aborts with “illegal instruction” 

•  Solutions/Workarounds 
–  Use 9.1 or greater compiler option –heap-arrays 
–  Linux:  unlimit stack via C system call 
–  Linux, Windows, Mac OS X:  Use loader options to increase stack size and 

possibly stack starting address  
–  System:  Increase system wide user shell stack limit 

•  Via default system /etc/login /etc/csh.cshrc 
•  Via kernel params and custom kernel builds 

–  User:  Increase stack size in user shell 
•  User login scripts 
•  Setting stack size just before running (wrapper scripts) 
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-heap-arrays 

•  -heap-arrays[:size] 

•  Default is no -heap-arrays 

•  Optional [:size] – arrays of size or smaller are stack allocated, 
larger arrays are heap allocated 

•  From Release_Notes:  “May have slight performance penalty” 
–  Varies by application 
–  Stack memory management is fast and simple (allocate/deallocate 

straightforward, fast) 
–  Heap management:  large amounts of allocations/frees of differing sizes 

can frag heap, impact performance.    
–  Use [:size] to restrict to large allocations and avoiding fragmentation 
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-heap-arrays 

•  -heap-arrays affects automatic arrays and temporaries only.  
For example: 

RECURSIVE SUBROUTINE F( N )


INTEGER :: N


REAL :: X ( N )                         ! an automatic array


REAL :: Y ( 1000 )                    ! an explicit-shape 
local array on the stack


Array X in the example above is affected by the heap-array 
option.  Array Y is not. 
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Linux:  unlimiting stack via C system call 
#include <stdio.h>         // perror


#include <stdlib.h>        // exit


#include <sys/time.h>      // setrlimit


#include <sys/resource.h>  // setrlimit


#include <unistd.h>        // setrlimit


void unlimit_stack_(void) {


    struct rlimit rlim = { RLIM_INFINITY, RLIM_INFINITY };


    if ( setrlimit(RLIMIT_STACK, &rlim) == -1 ) {


        perror("setrlimit error");


        exit(1);


    }


}
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Linker/Loader Option for Stack Size 

•  Adds stack size change to executable image 

•  Loader will ignore shell limits and give process the requested, 
non-default, stack size 

Example: Increase to 256MB on Mac OS X: 

ld –stacksize 0x10000000 –o foo foo.o 

ifort: 

ifort –o foo –Wl,-stack_size,0x10000000,-stack_addr,0xc0000000 foo.f 
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Temporary Creation on Procedure Call 
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Case: Local Variables 

subroutine sub( a )


real(8) :: a(1000,1000)


real(8) :: temp(1000,1000), work(1000,1000)


•  Local arrays temp and work allocated on stack (assuming default 
options) 

•  Work arounds: 
–  SAVE atttribute will cause allocation in heap 
–  -save compiler option (same effect) but affects entire source file(s) 

•  Default:  default of –auto (same as –automatic) default compiler option 
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Case: Array Temporaries in Fortran 
Automatic Arrays 
subroutine sub( f, x, y, z )


integer :: x, y, z


real(8) :: f(x,y,z)  !...argument


real(8) :: temp(x,y,z) !stack alloc’ed automatic array


•  Replace with allocatable array – allocation occurs in heap 

Subroutine sub( f, x, y, z )


...


real(8), allocatable :: temp(:,:,:)


allocate ( temp(x,y,z) )
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Case: Array Temporaries in Fortran 
Passing Non-contiguous Array Sections 

• If passing a noncontiguous array section to another routine, 
have the called routine accept it as a deferred-shape array 

•  an explict INTERFACE is required 

•  Example:  BEFORE (using explicit-shape dummy ) 

real(8) :: f(1800,3600,1)


external sub


call sub( f(1:900,:,:)


subroutine sub( f )


real(8) :: f(900,3600,1)


Sub is expecting a contiguous array 900x3600x1 
a temp is created on entry (gather) and copied 
back on exit (scatter) 
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Continued: Array Temporaries in Fortran 
Passing Non-contiguous Array Sections 

•  Explicit interface and assumed shape arrays avoid the 
temporary 

real(8) :: f(1800,3600,1)


interface


  subroutine sub(f)


  real(8) :: f(:,:,:)


  end subroutine sub


end interface


call sub( f(1:900,:,:)


subroutine sub( f )


real(8) :: f(:,:,:)


...


end subroutine sub


Downside:  within ‘sub’, 
the optimizer must assume 
that ‘f’ might be non-
contiguous 
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Continued: Array Temporaries in Fortran 
Passing Non-contiguous Array Sections 

  -gen-interfaces option can be used to generate INTERFACE 
blocks for SUBROUTINES and FUNCTIONS in your source 

•  Creates 2 source files for each: 
–  A <subroutine>_mod.f90 file with the INTERFACE inside a MODULE  
–  A <subroutine>_mod.mod file (the MOD file for the above) 
–  Placed in –module <dir>, or –I <dir>, or in current directory 

•  CHECK YOUR WORK:   -check arg_temp_created 
–  Runtime check to print warnings when temporaries are created at 

procedure calls. 
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Temporaries Creation By Fortran 
Statements and Intrinsics 
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Case: Array Temporaries in Fortran 
WHERE statement 

•  WHERE statement will always create an array temporary for 
the array expression: 
real(8) :: f(1800,3600)


!...requires 8x1800x3600 = 51,840,000 byte temp array


where ( f .gt. 0 )


 f = log10(f)


else where


 f = -1.0


end where


•  Only workaround is to avoid WHERE (explicitly write 
DO loop with conditional) – not advised 
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Case:  Array Temporaries Caused by Cray 
Pointers 

•  Cases vary: in general, anytime the compiler cannot determine if 
there is overlap in the RHS and LHS expressions 

•  Cray pointers – compiler errs on the side of safety 
pointer (pb, b)

pb = getstorage()

do i = 1, n

b(i) = a(i) + 1   !...assumes b may overlap with a, makes 
temporary of ‘a’


enddo


•   –safe-cray-pointers JUDICIOUSLY  
pointer (pb, b)

pb = loc(a(2)) 

do i=1, n

b(i) = a(i) +1     !... –safe-cray-pointers will avoid temp. 
but give wrong results


enddo 
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Case:  Array Temporaries Created by 
Fortran Pointers 

real, pointer, dimension (:,:) :: xptr, yptr   

real, target :: z(100,100) 

allocate ( xptr(100,100) ) 

allocate ( yptr(100,100) ) 

… 

xptr = yptr*2    !...the compiler must assume overlap 

z = xptr * yptr  !...X or Y or both could point to Z 
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Continued:  Array Temporaries Created by 
Fortran Pointers 

When a pointer-based array appears in an assignment statement on 
the LHS of the assignment, and a TARGET or another POINTER 
appears on the RHS, the compiler will assume a possible overlap 
condition and will create array temporaries.   

Similarly, when a TARGET appears on the LHS and a POINTER appears 
on the RHS expression, a temporary is created.  Again, any time 
there is a possible overlap in the LHS and RHS expression, the 
compiler will choose the safest path and create an array temporary. 

In general ONLY use POINTER-based arrays where absolutely 
necessary.  If you can use ALLOCATABLE arrays instead, do so 
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Array Temporaries in Fortran 
Others (work in progress) 

•  Array-valued function procedures return values on the stack 
–   Only work around is to convert to subroutine procedures and pass the 

array as an argument ( INTENT OUT or INOUT ) 

• Intrinsics often use array temporaries 

• RESHAPE 

• MERGE 

•  SUM 

• (others (tbd)) 
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Array Syntax and Temporaries   

•  Does array syntax create temporaries?   

•  If the compiler is doing it’s job, NO.  (caveat: we have been 
finding and fixing such cases over the years)  

•  If you find such a case, please open a bug report 
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OpenMP Stack Considerations 
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-openmp Interaction with –heap-arrays 

•  -openmp will cause the compiler use slightly different 
behavior for –heap-arrays 

•  Procedure local data with –heap-arrays and –openmp are 
STACK allocated (therefore, thread-safe) – must explicitly 
override with SAVE attribute to get on heap 

•  Automatic arrays:  descriptor allocated on stack, data 
allocated in heap (thus, also thread-safe).  

•  OpenMP puts a heavy load on stack, threadprivate variables 
need stack allocation  

•  Use stack-increasing methods – you will need much more 
stack than an non-OpenMP application 
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Summary Recommendations  

•  Code to avoid temporaries on procedure calls, use –check 
arg_temp_created to verify 

• -heap-array:<size> may be used for codes needing large array 
temporaries 

•      Requires 9.1.x or greater compilers since August 2006 

•       9.0 and older compilers:  Use either loader options and/or 
setrlimit() to bypass shell stack size limitations 

•  When passing array sections, use assumed shape arrays and 
explicit INTERFACE  


