import numpy as np def Cauchy(F,P): """ Calculate Cauchy stress from 1st Piola-Kirchhoff stress and deformation gradient. Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric. Parameters ---------- F : numpy.array of shape (x,3,3) or (3,3) Deformation gradient. P : numpy.array of shape (x,3,3) or (3,3) 1st Piola-Kirchhoff. """ if np.shape(F) == np.shape(P) == (3,3): sigma = 1.0/np.linalg.det(F) * np.dot(F,P) return (sigma+sigma.T)*0.5 else: sigma = np.einsum('i,ijk,ilk->ijl',1.0/np.linalg.det(F),P,F) return (sigma + np.transpose(sigma,(0,2,1)))*0.5 def deviatoric_part(x): """ Calculate deviatoric part of a tensor. Parameters ---------- x : numpy.array of shape (x,3,3) or (3,3) Tensor. """ if np.shape(x) == (3,3): return x - np.eye(3)*np.trace(x)/3.0 else: return x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),np.trace(x,axis1=1,axis2=2)/3.0) def spherical_part(x): """ Calculate spherical(hydrostatic) part of a tensor. A single scalar is returned, i.e. the hydrostatic part is not mapped on the 3rd order identity matrix. Parameters ---------- x : numpy.array of shape (x,3,3) or (3,3) Tensor. """ if np.shape(x) == (3,3): return np.trace(x)/3.0 else: return np.trace(x,axis1=1,axis2=2)/3.0 def Mises_stress(sigma): """ Calculate the Mises equivalent of a stress tensor. Parameters ---------- sigma : numpy.array of shape (x,3,3) or (3,3) Symmetric stress tensor. """ s = deviatoric_part(sigma) if np.shape(sigma) == (3,3): return np.sqrt(3.0/2.0*np.trace(s)) else: return np.sqrt(np.einsum('ijk->i',s)*3.0/2.0) def Mises_strain(epsilon): """ Calculate the Mises equivalent of a strain tensor. Parameters ---------- sigma : numpy.array of shape (x,3,3) or (3,3) Symmetric strain tensor. """ s = deviatoric_part(epsilon) if np.shape(epsilon) == (3,3): return np.sqrt(2.0/3.0*np.trace(s)) else: return np.sqrt(2.0/3.0*np.einsum('ijk->i',s))