! Copyright 2011 Max-Planck-Institut fuer Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Duesseldorf Advanced Material Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !############################################################## !* $Id$ !******************************************************************** ! Material subroutine for BVP solution using spectral method ! ! written by P. Eisenlohr, ! F. Roters, ! L. Hantcherli, ! W.A. Counts, ! D.D. Tjahjanto, ! C. Kords, ! M. Diehl, ! R. Lebensohn ! ! MPI fuer Eisenforschung, Duesseldorf ! !******************************************************************** ! Usage: ! - start program with DAMASK_spectral ! -g (--geom, --geometry) PathToGeomFile/NameOfGeom.geom ! -l (--load, --loadcase) PathToLoadFile/NameOfLoadFile.load ! - PathToGeomFile will be the working directory ! - make sure the file "material.config" exists in the working ! directory. For further configuration use "numerics.config" and ! "numerics.config" !******************************************************************** program DAMASK_spectral !******************************************************************** use DAMASK_interface use prec, only: pInt, pReal use IO use debug, only: debug_verbosity, spectral_debug_verbosity use math use mesh, only: mesh_ipCenterOfGravity use CPFEM, only: CPFEM_general, CPFEM_initAll use FEsolving, only: restartWrite, restartReadSpectral, restartReadStep use numerics, only: err_div_tol, err_stress_tol, err_stress_tolrel , rotation_tol,& itmax, memory_efficient, DAMASK_NumThreadsInt, divergence_correction, & fftw_planner_flag, fftw_timelimit use homogenization, only: materialpoint_sizeResults, materialpoint_results !$ use OMP_LIB ! the openMP function library implicit none ! variables to read from loadcase and geom file real(pReal), dimension(9) :: temp_valueVector ! stores information temporarily from loadcase file logical, dimension(9) :: temp_maskVector integer(pInt), parameter :: maxNchunksLoadcase = & (1_pInt + 9_pInt)*3_pInt + & ! deformation, rotation, and stress (1_pInt + 1_pInt)*5_pInt + & ! time, (log)incs, temp, restartfrequency, and outputfrequency 1_pInt ! dropguessing integer(pInt), dimension (1 + maxNchunksLoadcase*2) :: posLoadcase integer(pInt), parameter :: maxNchunksGeom = 7_pInt ! 4 identifiers, 3 values integer(pInt), dimension (1 + maxNchunksGeom*2) :: posGeom integer(pInt) :: headerLength, N_l=0_pInt, N_t=0_pInt, N_n=0_pInt, N_Fdot=0_pInt integer(pInt), parameter :: myUnit = 234_pInt character(len=1024) :: path, line, keyword logical :: gotResolution =.false., gotDimension =.false., gotHomogenization = .false. type bc_type real(pReal), dimension (3,3) :: deformation, & ! applied velocity gradient or time derivative of deformation gradient stress, & ! stress BC (if applicable) rotation ! rotation of BC (if applicable) real(pReal) :: timeIncrement, & ! length of increment temperature ! isothermal starting conditions integer(pInt) :: steps, & ! number of steps outputfrequency, & ! frequency of result writes restartfrequency, & ! frequency of result writes logscale ! linear/logaritmic time step flag logical :: followFormerTrajectory,& ! follow trajectory of former loadcase velGradApplied ! decide wether velocity gradient or fdot is given logical, dimension(3,3) :: maskDeformation, & ! mask of boundary conditions maskStress logical, dimension(9) :: maskStressVector ! linear mask of boundary conditions end type type(bc_type), allocatable, dimension(:) :: bc character(len=3) :: loadcase_string ! variables storing information from geom file real(pReal) :: wgt real(pReal), dimension(3) :: geomdimension = 0.0_pReal ! physical dimension of volume element in each direction integer(pInt) :: homog ! homogenization scheme used integer(pInt), dimension(3) :: resolution = 1_pInt ! resolution (number of Fourier points) in each direction logical :: spectralPictureMode = .false. ! indicating 1 to 1 mapping of FP to microstructure ! stress, stiffness and compliance average etc. real(pReal), dimension(3,3) :: pstress, pstress_av, defgrad_av, & defgradAim = math_I3, defgradAimOld= math_I3, defgradAimCorr= math_I3,& mask_stress, mask_defgrad, fDot, & pstress_av_load, defgradAim_lab ! quantities rotated to other coordinate system real(pReal), dimension(3,3,3,3) :: dPdF, c0_reference, c_current = 0.0_pReal, s_prev, c_prev ! stiffness and compliance real(pReal), dimension(6) :: cstress ! cauchy stress real(pReal), dimension(6,6) :: dsde ! small strain stiffness real(pReal), dimension(9,9) :: s_prev99, c_prev99 ! compliance and stiffness in matrix notation real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC) integer(pInt) :: size_reduced = 0.0_pReal ! number of stress BCs ! pointwise data real(pReal), dimension(:,:,:,:,:), allocatable :: workfft, defgrad, defgradold real(pReal), dimension(:,:,:,:), allocatable :: coordinates real(pReal), dimension(:,:,:), allocatable :: temperature ! variables storing information for spectral method and FFTW real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field integer(pInt), dimension(3) :: k_s integer*8, dimension(3) :: fftw_plan ! plans for fftw (forward and backward) integer*8 :: fftw_flag ! planner flag for fftw ! loop variables, convergence etc. real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc ! elapsed time, begin of interval, time interval real(pReal) :: guessmode, err_div, err_stress, p_hat_avg complex(pReal), parameter :: img = cmplx(0.0_pReal,1.0_pReal) real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal complex(pReal), dimension(3,3) :: temp33_Complex real(pReal), dimension(3,3) :: temp33_Real integer(pInt) :: i, j, k, l, m, n, p integer(pInt) :: N_Loadcases, loadcase, step, iter, ielem, CPFEM_mode, stepZero=1_pInt, & ierr, notConvergedCounter = 0_pInt, totalStepsCounter = 0_pInt logical :: errmatinv, regrid = .false. real(pReal) :: defgradDet, defgradDetMax, defgradDetMin real(pReal) :: correctionFactor ! debuging variables real(pReal), dimension(:,:,:,:), allocatable :: divergence real(pReal) :: p_real_avg, err_div_max, err_real_div_avg, err_real_div_max logical :: debugGeneral = .false., debugDivergence = .false., debugRestart = .false. !Initializing !$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS if (.not.(command_argument_count()==4 .or. command_argument_count()==6)) call IO_error(error_ID=102_pInt) ! check for correct number of given arguments call DAMASK_interface_init() if (iand(spectral_debug_verbosity,1_pInt)==1_pInt) debugGeneral = .true. if (iand(spectral_debug_verbosity,2_pInt)==2_pInt) debugDivergence = .true. if (iand(spectral_debug_verbosity,4_pInt)==4_pInt) debugRestart = .true. !$OMP CRITICAL (write2out) print '(a)', '' print '(a,a)', ' <<<+- DAMASK_spectral init -+>>>' print '(a,a)', ' $Id$' print '(a)', '' print '(a,a)', ' Working Directory: ',trim(getSolverWorkingDirectoryName()) print '(a,a)', ' Solver Job Name: ',trim(getSolverJobName()) print '(a)', '' !$OMP END CRITICAL (write2out) ! Reading the loadcase file and allocate variables path = getLoadcaseName() if (.not. IO_open_file(myUnit,path)) call IO_error(error_ID=30_pInt,ext_msg = trim(path)) rewind(myUnit) do read(myUnit,'(a1024)',END = 100) line if (IO_isBlank(line)) cycle ! skip empty lines posLoadcase = IO_stringPos(line,maxNchunksLoadcase) do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase select case (IO_lc(IO_stringValue(line,posLoadcase,i))) case('l', 'velocitygrad', 'velgrad','velocitygradient') N_l = N_l + 1_pInt case('fdot') N_Fdot = N_Fdot + 1_pInt case('t', 'time', 'delta') N_t = N_t + 1_pInt case('n', 'incs', 'increments', 'steps', 'logincs', 'logsteps') N_n = N_n + 1_pInt end select enddo ! count all identifiers to allocate memory and do sanity check enddo 100 N_Loadcases = N_n if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check call IO_error(error_ID=37_pInt,ext_msg = trim(path)) ! error message for incomplete loadcase allocate (bc(N_Loadcases)) rewind(myUnit) loadcase = 0_pInt do read(myUnit,'(a1024)',END = 101) line if (IO_isBlank(line)) cycle ! skip empty lines loadcase = loadcase + 1_pInt bc(loadcase)%deformation = zeroes; bc(loadcase)%stress = zeroes; bc(loadcase)%rotation = zeroes bc(loadcase)%timeIncrement = 0.0_pReal; bc(loadcase)%temperature = 300.0_pReal bc(loadcase)%steps = 0_pInt; bc(loadcase)%logscale = 0_pInt bc(loadcase)%outputfrequency = 1_pInt; bc(loadcase)%restartfrequency = 1_pInt bc(loadcase)%maskDeformation = .false.; bc(loadcase)%maskStress = .false. bc(loadcase)%maskStressVector = .false.; bc(loadcase)%velGradApplied = .false. bc(loadcase)%followFormerTrajectory = .true. bc(loadcase)%rotation = math_I3 ! assume no rotation, overwrite later in case rotation of loadcase is given posLoadcase = IO_stringPos(line,maxNchunksLoadcase) do j = 1_pInt,maxNchunksLoadcase select case (IO_lc(IO_stringValue(line,posLoadcase,j))) case('fdot','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix bc(loadcase)%velGradApplied = (IO_lc(IO_stringValue(line,posLoadcase,j)) == 'l' .or. & ! in case of given L, set flag to true IO_lc(IO_stringValue(line,posLoadcase,j)) == 'velocitygrad' .or. & IO_lc(IO_stringValue(line,posLoadcase,j)) == 'velgrad' .or. & IO_lc(IO_stringValue(line,posLoadcase,j)) == 'velocitygradient') temp_valueVector = 0.0_pReal temp_maskVector = .false. forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,posLoadcase,j+k) /= '*' do k = 1_pInt,9_pInt if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,posLoadcase,j+k) enddo bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,(/3,3/))) bc(loadcase)%deformation = math_plain9to33(temp_valueVector) case('p', 'pk1', 'piolakirchhoff', 'stress') temp_valueVector = 0.0_pReal forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) = IO_stringValue(line,posLoadcase,j+k) /= '*' do k = 1_pInt,9_pInt if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) = IO_floatValue(line,posLoadcase,j+k) ! assign values for the bc(loadcase)%stress matrix enddo bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,(/3,3/))) bc(loadcase)%stress = math_plain9to33(temp_valueVector) case('t','time','delta') ! increment time bc(loadcase)%timeIncrement = IO_floatValue(line,posLoadcase,j+1_pInt) case('temp','temperature') ! starting temperature bc(loadcase)%temperature = IO_floatValue(line,posLoadcase,j+1_pInt) case('n','incs','increments','steps') ! steps bc(loadcase)%steps = IO_intValue(line,posLoadcase,j+1_pInt) case('logincs','logsteps') ! true, if log scale bc(loadcase)%steps = IO_intValue(line,posLoadcase,j+1_pInt) bc(loadcase)%logscale = 1_pInt case('f','freq','frequency','outputfreq') ! frequency of result writings bc(loadcase)%outputfrequency = IO_intValue(line,posLoadcase,j+1_pInt) case('r','restart','restartwrite') ! frequency of writing restart information bc(loadcase)%restartfrequency = IO_intValue(line,posLoadcase,j+1_pInt) case('guessreset','dropguessing') bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory case('euler') ! rotation of loadcase given in euler angles p = 0_pInt ! assuming values given in radians l = 1_pInt ! assuming keyword indicating degree/radians select case (IO_lc(IO_stringValue(line,posLoadcase,j+1_pInt))) case('deg','degree') p = 1_pInt ! for conversion from degree to radian case('rad','radian') case default l = 0_pInt ! imediately reading in angles, assuming radians end select forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = IO_floatValue(line,posLoadcase,j+l+k) * real(p,pReal) * inRad bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1)) case('rotation','rot') ! assign values for the rotation of loadcase matrix temp_valueVector = 0.0_pReal forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,posLoadcase,j+k) bc(loadcase)%rotation = math_plain9to33(temp_valueVector) end select enddo; enddo 101 close(myUnit) !read header of geom file to get the information needed before the complete geom file is intepretated by mesh.f90 path = getModelName() if (.not. IO_open_file(myUnit,trim(path)//InputFileExtension))& call IO_error(error_ID=101_pInt,ext_msg = trim(path)//InputFileExtension) rewind(myUnit) read(myUnit,'(a1024)') line posGeom = IO_stringPos(line,2_pInt) keyword = IO_lc(IO_StringValue(line,posGeom,2_pInt)) if (keyword(1:4) == 'head') then headerLength = IO_intValue(line,posGeom,1_pInt) + 1_pInt else call IO_error(error_ID=42_pInt) endif rewind(myUnit) do i = 1_pInt, headerLength read(myUnit,'(a1024)') line posGeom = IO_stringPos(line,maxNchunksGeom) select case ( IO_lc(IO_StringValue(line,posGeom,1)) ) case ('dimension') gotDimension = .true. do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,posGeom,j))) case('x') geomdimension(1) = IO_floatValue(line,posGeom,j+1_pInt) case('y') geomdimension(2) = IO_floatValue(line,posGeom,j+1_pInt) case('z') geomdimension(3) = IO_floatValue(line,posGeom,j+1_pInt) end select enddo case ('homogenization') gotHomogenization = .true. homog = IO_intValue(line,posGeom,2_pInt) case ('resolution') gotResolution = .true. do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,posGeom,j))) case('a') resolution(1) = IO_intValue(line,posGeom,j+1_pInt) case('b') resolution(2) = IO_intValue(line,posGeom,j+1_pInt) case('c') resolution(3) = IO_intValue(line,posGeom,j+1_pInt) end select enddo case ('picture') spectralPictureMode = .true. end select enddo close(myUnit) if (.not.(gotDimension .and. gotHomogenization .and. gotResolution)) call IO_error(error_ID=45_pInt) if(mod(resolution(1),2_pInt)/=0_pInt .or.& mod(resolution(2),2_pInt)/=0_pInt .or.& (mod(resolution(3),2_pInt)/=0_pInt .and. resolution(3)/= 1_pInt)) call IO_error(error_ID=103_pInt) ! Initialization of CPFEM_general (= constitutive law) and of deformation gradient field call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt) !Output of geom file !$OMP CRITICAL (write2out) print '(a)', '' print '(a)', '#############################################################' print '(a)', 'DAMASK spectral:' print '(a)', 'The spectral method boundary value problem solver for' print '(a)', 'the Duesseldorf Advanced Material Simulation Kit' print '(a)', '#############################################################' print '(a,a)', 'Geom File Name: ',trim(path)//'.geom' print '(a)', '=============================================================' print '(a,i12,i12,i12)','resolution a b c:', resolution print '(a,f12.5,f12.5,f12.5)','dimension x y z:', geomdimension print '(a,i5)','homogenization: ',homog print '(a,L)','spectralPictureMode: ',spectralPictureMode print '(a)', '#############################################################' print '(a,a)','Loadcase File Name: ',trim(getLoadcaseName()) !$OMP END CRITICAL (write2out) if (bc(1)%followFormerTrajectory) then call IO_warning(warning_ID=33_pInt) ! cannot guess along trajectory for first step of first loadcase bc(1)%followFormerTrajectory = .false. endif ! consistency checks and output of loadcase do loadcase = 1_pInt, N_Loadcases !$OMP CRITICAL (write2out) print '(a)', '=============================================================' print '(a,i5)', 'Loadcase: ', loadcase write (loadcase_string, '(i3)' ) loadcase if (.not. bc(loadcase)%followFormerTrajectory) & print '(a)', 'Drop Guessing Along Trajectory' !$OMP END CRITICAL (write2out) if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation))& ! exclusive or masking only call IO_error(error_ID=31_pInt,ext_msg=loadcase_string) if (any(bc(loadcase)%maskStress.and.transpose(bc(loadcase)%maskStress).and.& !checking if no rotation is allowed by stress BC reshape((/.false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false./),(/3,3/))))& call IO_error(error_ID=38_pInt,ext_msg=loadcase_string) if (bc(loadcase)%velGradApplied) then do j = 1_pInt, 3_pInt if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and.& any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) call IO_error(error_ID=32_pInt,ext_msg=loadcase_string) ! each line should be either fully or not at all defined enddo !$OMP CRITICAL (write2out) print '(a)','Velocity Gradient:' !$OMP END CRITICAL (write2out) else !$OMP CRITICAL (write2out) print '(a)','Change of Deformation Gradient:' !$OMP END CRITICAL (write2out) endif !$OMP CRITICAL (write2out) print '(3(3(f12.6,x)/)\)', merge(math_transpose3x3(bc(loadcase)%deformation),& reshape(spread(DAMASK_NaN,1,9),(/3,3/)),transpose(bc(loadcase)%maskDeformation)) print '(a,/,3(3(f12.6,x)/)\)','Stress Boundary Condition/MPa:',merge(math_transpose3x3(bc(loadcase)%stress),& reshape(spread(DAMASK_NaN,1,9),(/3,3/)),& transpose(bc(loadcase)%maskStress))*1e-6 !$OMP END CRITICAL (write2out) if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose3x3(bc(loadcase)%rotation))-math_I3)& ! given rotation matrix contains strain >reshape(spread(rotation_tol,1,9),(/3,3/)))& .or. abs(math_det3x3(bc(loadcase)%rotation))>1.0_pReal + rotation_tol) call IO_error(error_ID=46_pInt,ext_msg=loadcase_string) !$OMP CRITICAL (write2out) if (any(bc(loadcase)%rotation/=math_I3)) & print '(a,3(3(f12.6,x)/)\)','Rotation of BCs:',math_transpose3x3(bc(loadcase)%rotation) !$OMP END CRITICAL (write2out) if (bc(loadcase)%timeIncrement < 0.0_pReal) call IO_error(error_ID=34_pInt,ext_msg=loadcase_string) ! negative time increment !$OMP CRITICAL (write2out) print '(a,f12.6)','Temperature:',bc(loadcase)%temperature print '(a,f12.6)','Time: ',bc(loadcase)%timeIncrement !$OMP END CRITICAL (write2out) if (bc(loadcase)%steps < 1_pInt) call IO_error(error_ID=35_pInt,ext_msg=loadcase_string) ! non-positive increment count !$OMP CRITICAL (write2out) print '(a,i5)','Steps: ',bc(loadcase)%steps !$OMP END CRITICAL (write2out) if (bc(loadcase)%outputfrequency < 1_pInt) call IO_error(error_ID=36_pInt,ext_msg=loadcase_string) ! non-positive result frequency !$OMP CRITICAL (write2out) print '(a,i5)','Freq. of Results Output: ',bc(loadcase)%outputfrequency !$OMP END CRITICAL (write2out) if (bc(loadcase)%restartfrequency < 1_pInt) call IO_error(error_ID=39_pInt,ext_msg=loadcase_string) ! non-positive restart frequency !$OMP CRITICAL (write2out) print '(a,i5)','Freq. of Restart Information Output: ',bc(loadcase)%restartfrequency !$OMP END CRITICAL (write2out) enddo ! Initialization of fftw (see manual on fftw.org for more details) #ifdef _OPENMP if(DAMASK_NumThreadsInt>0_pInt) then call dfftw_init_threads(ierr) if(ierr == 0_pInt) call IO_error(error_ID=104_pInt) call dfftw_plan_with_nthreads(DAMASK_NumThreadsInt) endif #endif !call dfftw_timelimit(fftw_timelimit) !is not working, have to fix it in FFTW source file select case(IO_lc(fftw_planner_flag)) ! setting parameters for the plan creation of FFTW. Basically a translation from fftw3.f case('estimate','fftw_estimate') ! ordered from slow execution (but fast plan creation) to fast execution fftw_flag = 64 case('measure','fftw_measure') fftw_flag = 0 case('patient','fftw_patient') fftw_flag= 32 case('exhaustive','fftw_exhaustive') fftw_flag = 8 case default call IO_warning(warning_ID=47_pInt,ext_msg=trim(IO_lc(fftw_planner_flag))) fftw_flag = 32 end select if (.not. restartReadSpectral) then ! start at first step of first loadcase loadcase = 1_pInt step = 1_pInt else ! going forwarnd and use old values do i = 1_pInt, N_Loadcases ! looping over ALL loadcases time0 = time ! loadcase start time timeinc = bc(i)%timeIncrement/bc(i)%steps ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used do j = 1_pInt, bc(i)%steps ! looping over ALL steps in current loadcase if (totalStepsCounter < restartReadStep) then ! forwarding to restart step totalStepsCounter = totalStepsCounter + 1_pInt if (bc(i)%logscale == 1_pInt) then ! loglinear scale if (i == 1_pInt) then ! 1st loadcase of loglinear scale if (j == 1_pInt) then ! 1st step of 1st loadcase of loglinear scale timeinc = bc(1)%timeIncrement*(2.0_pReal**real( 1_pInt-bc(1)%steps ,pReal)) ! assume 1st step is equal to 2nd else ! not-1st step of 1st loadcase of loglinear scale timeinc = bc(1)%timeIncrement*(2.0_pReal**real(j-1_pInt-bc(1)%steps ,pReal)) endif else ! not-1st loadcase of loglinear scale timeinc = time0 *( (1.0_pReal + bc(i)%timeIncrement/time0 )**real( j/bc(i)%steps ,pReal) & -(1.0_pReal + bc(i)%timeIncrement/time0 )**real( (j-1_pInt)/bc(i)%steps ,pReal) ) !ToDo: correct? how should the float casting be done endif endif time = time + timeinc endif enddo enddo do i = 1_pInt, N_Loadcases ! looping over ALL loadcases do j = 1_pInt, bc(i)%steps ! looping over ALL steps in current loadcase if (totalStepsCounter -1_pInt < restartReadStep) then ! forwarding to restart step step = j loadcase = i endif enddo enddo endif print*, totalStepsCounter print*, loadcase print*, step pause !************************************************************* ! Loop over loadcases defined in the loadcase file do loadcase = loadcase, N_Loadcases !************************************************************* time0 = time ! loadcase start time if (bc(loadcase)%followFormerTrajectory) then ! continue to guess along former trajectory where applicable guessmode = 1.0_pReal else guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first step endif mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation) mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress) size_reduced = count(bc(loadcase)%maskStressVector) allocate (c_reduced(size_reduced,size_reduced)); c_reduced = 0.0_pReal allocate (s_reduced(size_reduced,size_reduced)); s_reduced = 0.0_pReal timeinc = bc(loadcase)%timeIncrement/bc(loadcase)%steps ! only valid for given linear time scale. will be overwritten later in case loglinear scale is used fDot = bc(loadcase)%deformation ! only valid for given fDot. will be overwritten later in case L is given !************************************************************* ! loop oper steps defined in input file for current loadcase do step = step, bc(loadcase)%steps !************************************************************* !************************************************************* ! Initialization Start !************************************************************* if(stepZero==1_pInt) then ! we start stepZero = 0_pInt if (regrid==.true. ) then ! 'real' start vs. regrid start call dfftw_destroy_plan(fftw_plan(1)); call dfftw_destroy_plan(fftw_plan(2)) if(debugDivergence) call dfftw_destroy_plan(fftw_plan(3)) deallocate (defgrad) deallocate (defgradold) deallocate (coordinates) deallocate (temperature) deallocate (xi) deallocate (workfft) ! here we have to create the new geometry and assign the values from the previous step endif allocate (defgrad ( resolution(1),resolution(2),resolution(3),3,3)); defgrad = 0.0_pReal allocate (defgradold ( resolution(1),resolution(2),resolution(3),3,3)); defgradold = 0.0_pReal allocate (coordinates(3,resolution(1),resolution(2),resolution(3))); coordinates = 0.0_pReal allocate (temperature( resolution(1),resolution(2),resolution(3))); temperature = bc(1)%temperature ! start out isothermally allocate (xi (3,resolution(1)/2+1,resolution(2),resolution(3))); xi =0.0_pReal allocate (workfft(resolution(1)+2,resolution(2),resolution(3),3,3)); workfft = 0.0_pReal if (debugDivergence) allocate (divergence(resolution(1)+2,resolution(2),resolution(3),3)); divergence = 0.0_pReal wgt = 1.0_pReal/real(resolution(1)*resolution(2)*resolution(3), pReal) call dfftw_plan_many_dft_r2c(fftw_plan(1),3,(/resolution(1),resolution(2),resolution(3)/),9,& workfft,(/resolution(1) +2_pInt,resolution(2),resolution(3)/),1,(resolution(1) +2_pInt)*resolution(2)*resolution(3),& workfft,(/resolution(1)/2_pInt+1_pInt,resolution(2),resolution(3)/),1,(resolution(1)/2_pInt+1_pInt)*resolution(2)*resolution(3),fftw_flag) call dfftw_plan_many_dft_c2r(fftw_plan(2),3,(/resolution(1),resolution(2),resolution(3)/),9,& workfft,(/resolution(1)/2_pInt+1_pInt,resolution(2),resolution(3)/),1,(resolution(1)/2_pInt+1_pInt)*resolution(2)*resolution(3),& workfft,(/resolution(1) +2_pInt,resolution(2),resolution(3)/),1,(resolution(1) +2_pInt)*resolution(2)*resolution(3),fftw_flag) if (debugDivergence ) & call dfftw_plan_many_dft_c2r(fftw_plan(3),3,(/resolution(1),resolution(2),resolution(3)/),3,& divergence,(/resolution(1)/2_pInt+1_pInt,resolution(2),resolution(3)/),1,(resolution(1)/2_pInt+1_pInt)*resolution(2)*resolution(3),& divergence,(/resolution(1) +2_pInt,resolution(2),resolution(3)/),1,(resolution(1) +2_pInt)*resolution(2)*resolution(3),fftw_flag) if (debugGeneral) then !$OMP CRITICAL (write2out) write (6,*) 'FFTW initialized' !$OMP END CRITICAL (write2out) endif if (.not. restartReadSpectral) then ! no deformation at the beginning do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1) defgrad(i,j,k,1:3,1:3) = math_I3 defgradold(i,j,k,1:3,1:3) = math_I3 enddo; enddo; enddo else ! using old values if (IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',trim(getModelName()),size(defgrad))) then read (777,rec=1) defgrad close (777) endif defgradold = defgrad defgradAim = 0.0_pReal do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1) defgradAim = defgradAim + defgrad(i,j,k,1:3,1:3) ! calculating old average deformation enddo; enddo; enddo defgradAim = defgradAim * wgt defgradAimOld = defgradAim endif ielem = 0_pInt do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1) ielem = ielem + 1_pInt coordinates(1:3,i,j,k) = mesh_ipCenterOfGravity(1:3,1,ielem) ! set to initial coordinates ToDo: SHOULD BE UPDATED TO CURRENT POSITION IN FUTURE REVISIONS!!! But do we know them? I don't think so. Otherwise we don't need geometry reconstruction call CPFEM_general(2_pInt,coordinates(1:3,i,j,k),math_I3,math_I3,temperature(i,j,k),0.0_pReal,ielem,1_pInt,cstress,dsde,pstress,dPdF) c_current = c_current + dPdF enddo; enddo; enddo c0_reference = c_current * wgt ! linear reference material stiffness c_prev = math_rotate_forward3x3x3x3(c0_reference,bc(loadcase)%rotation) ! rotate_forward: lab -> load system if (debugGeneral) then !$OMP CRITICAL (write2out) write (6,*) 'First Call to CPFEM_general finished' !$OMP END CRITICAL (write2out) endif do k = 1_pInt, resolution(3) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) k_s(3) = k - 1_pInt if(k > resolution(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - resolution(3) do j = 1_pInt, resolution(2) k_s(2) = j - 1_pInt if(j > resolution(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - resolution(2) do i = 1, resolution(1)/2_pInt + 1_pInt k_s(1) = i - 1_pInt xi(3,i,j,k) = 0.0_pReal ! 2D case if(resolution(3) > 1_pInt) xi(3,i,j,k) = real(k_s(3), pReal)/geomdimension(3) ! 3D case xi(2,i,j,k) = real(k_s(2), pReal)/geomdimension(2) xi(1,i,j,k) = real(k_s(1), pReal)/geomdimension(1) enddo; enddo; enddo ! remove highest frequencies for calculation of divergence (CAREFULL, they will be used for pre calculatet gamma operator!) do k = 1_pInt ,resolution(3); do j = 1_pInt ,resolution(2); do i = 1_pInt,resolution(1)/2_pInt + 1_pInt if(k==resolution(3)/2_pInt+1_pInt) xi(3,i,j,k)= 0.0_pReal if(j==resolution(2)/2_pInt+1_pInt) xi(2,i,j,k)= 0.0_pReal if(i==resolution(1)/2_pInt+1_pInt) xi(1,i,j,k)= 0.0_pReal enddo; enddo; enddo if(memory_efficient) then ! allocate just single fourth order tensor allocate (gamma_hat(1,1,1,3,3,3,3)); gamma_hat = 0.0_pReal else ! precalculation of gamma_hat field allocate (gamma_hat(resolution(1)/2_pInt + 1_pInt ,resolution(2),resolution(3),3,3,3,3)); gamma_hat = 0.0_pReal do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1)/2_pInt + 1_pInt if (any(xi(:,i,j,k) /= 0.0_pReal)) then do l = 1_pInt ,3_pInt; do m = 1_pInt,3_pInt xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k) enddo; enddo temp33_Real = math_inv3x3(math_mul3333xx33(c0_reference, xiDyad)) else xiDyad = 0.0_pReal temp33_Real = 0.0_pReal endif do l=1_pInt,3_pInt; do m=1_pInt,3_pInt; do n=1_pInt,3_pInt; do p=1_pInt,3_pInt gamma_hat(i,j,k, l,m,n,p) = - 0.25*(temp33_Real(l,n)+temp33_Real(n,l)) *& (xiDyad(m,p)+xiDyad(p,m)) enddo; enddo; enddo; enddo enddo; enddo; enddo endif ! write header of output file !$OMP CRITICAL (write2out) open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())& //'.spectralOut',form='UNFORMATTED',status='REPLACE') write(538), 'load', trim(getLoadcaseName()) write(538), 'workingdir', trim(getSolverWorkingDirectoryName()) write(538), 'geometry', trim(getSolverJobName())//InputFileExtension write(538), 'resolution', resolution write(538), 'dimension', geomdimension write(538), 'materialpoint_sizeResults', materialpoint_sizeResults write(538), 'loadcases', N_Loadcases write(538), 'logscale', bc(loadcase)%logscale ! one entry per loadcase (0: linear, 1: log) write(538), 'frequencies', bc(loadcase)%outputfrequency ! one entry per loadcase write(538), 'times', bc(loadcase)%timeIncrement ! one entry per loadcase bc(1)%steps= bc(1)%steps + 1_pInt write(538), 'increments', bc(loadcase)%steps ! one entry per loadcase ToDo: rename keyword to steps bc(1)%steps= bc(1)%steps - 1_pInt write(538), 'startingIncrement', totalStepsCounter write(538), 'eoh' ! end of header write(538), materialpoint_results(:,1,:) ! initial (non-deformed) results !ToDo: define array size !$OMP END CRITICAL (write2out) endif !************************************************************* ! Initialization End !************************************************************* totalStepsCounter = totalStepsCounter + 1_pInt if (mod(step - 1_pInt,bc(loadcase)%restartFrequency)==0_pInt) then ! at frequency of writing restart information restartWrite = .true. ! setting restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?) if(IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(defgrad))) then ! and writing deformation gradient field to file write (777,rec=1) defgrad close (777) endif else restartWrite = .false. endif if (bc(loadcase)%logscale == 1_pInt) then ! loglinear scale if (loadcase == 1_pInt) then ! 1st loadcase of loglinear scale if (step == 1_pInt) then ! 1st step of 1st loadcase of loglinear scale timeinc = bc(1)%timeIncrement*(2.0_pReal**real( 1_pInt-bc(1)%steps ,pReal)) ! assume 1st step is equal to 2nd else ! not-1st step of 1st loadcase of loglinear scale timeinc = bc(1)%timeIncrement*(2.0_pReal**real(step-1_pInt-bc(1)%steps ,pReal)) endif else ! not-1st loadcase of loglinear scale timeinc = time0 *( (1.0_pReal + bc(loadcase)%timeIncrement/time0 )**real( step/bc(loadcase)%steps ,pReal) & -(1.0_pReal + bc(loadcase)%timeIncrement/time0 )**real( (step-1_pInt)/bc(loadcase)%steps ,pReal) ) endif endif time = time + timeinc if (bc(loadcase)%velGradApplied) & ! calculate fDot from given L and current F fDot = math_mul33x33(bc(loadcase)%deformation, defgradAim) !winding forward of deformation aim in loadcase system temp33_Real = defgradAim defgradAim = defgradAim & + guessmode * mask_stress * (defgradAim - defgradAimOld) & + mask_defgrad * fDot * timeinc defgradAimOld = temp33_Real ! update local deformation gradient if (any(bc(loadcase)%rotation/=math_I3)) then ! lab and loadcase coordinate system are NOT the same do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1) temp33_Real = defgrad(i,j,k,1:3,1:3) if (bc(loadcase)%velGradApplied) & ! use velocity gradient to calculate new deformation gradient (if not guessing) fDot = math_mul33x33(bc(loadcase)%deformation,& math_rotate_forward3x3(defgradold(i,j,k,1:3,1:3),bc(loadcase)%rotation)) defgrad(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon + guessmode * (defgrad(i,j,k,1:3,1:3) - defgradold(i,j,k,1:3,1:3))& ! guessing... + math_rotate_backward3x3((1.0_pReal-guessmode) * mask_defgrad * fDot,& bc(loadcase)%rotation) *timeinc ! apply the prescribed value where deformation is given if not guessing defgradold(i,j,k,1:3,1:3) = temp33_Real enddo; enddo; enddo else ! one coordinate system for lab and loadcase, save some multiplications do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1) temp33_Real = defgrad(i,j,k,1:3,1:3) if (bc(loadcase)%velGradApplied) & ! use velocity gradient to calculate new deformation gradient (if not guessing) fDot = math_mul33x33(bc(loadcase)%deformation,defgradold(i,j,k,1:3,1:3)) defgrad(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon + guessmode * (defgrad(i,j,k,1:3,1:3) - defgradold(i,j,k,1:3,1:3))& ! guessing... + (1.0_pReal-guessmode) * mask_defgrad * fDot * timeinc ! apply the prescribed value where deformation is given if not guessing defgradold(i,j,k,1:3,1:3) = temp33_Real enddo; enddo; enddo endif guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase CPFEM_mode = 1_pInt ! winding forward iter = 0_pInt err_div = 2.0_pReal * err_div_tol ! go into loop if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied c_prev99 = math_Plain3333to99(c_prev) k = 0_pInt ! build reduced stiffness do n = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(m)) then j = j + 1_pInt c_reduced(k,j) = c_prev99(n,m) endif; enddo; endif; enddo call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness if(errmatinv) call IO_error(error_ID=800) s_prev99 = 0.0_pReal ! build full compliance k = 0_pInt do n = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(bc(loadcase)%maskStressVector(m)) then j = j + 1_pInt s_prev99(n,m) = s_reduced(k,j) endif; enddo; endif; enddo s_prev = (math_Plain99to3333(s_prev99)) endif !$OMP CRITICAL (write2out) print '(a)', '#############################################################' print '(A,I5.5,A,es12.6)', 'Increment ', totalStepsCounter, ' Time ',time if (restartWrite .eq. .true. ) print '(A)', 'Writing converged Results of previous Step for Restart' !$OMP END CRITICAL (write2out) !************************************************************* ! convergence loop do while(iter < itmax .and. & (err_div > err_div_tol .or. & err_stress > err_stress_tol)) iter = iter + 1_pInt !************************************************************* print '(a)', '=============================================================' print '(5(A,I5.5))', 'Loadcase ',loadcase,' Step ',step,'/',bc(loadcase)%steps,'@Iteration ',iter,'/',itmax do n = 1_pInt,3_pInt; do m = 1_pInt,3_pInt defgrad_av(m,n) = sum(defgrad(1:resolution(1),1:resolution(2),1:resolution(3),m,n)) * wgt enddo; enddo !$OMP CRITICAL (write2out) print '(a,/,3(3(f12.7,x)/)\)', 'Deformation Gradient:',math_transpose3x3(defgrad_av) print '(A)', '... Update Stress Field (Constitutive Evaluation P(F)) ......' !$OMP END CRITICAL (write2out) ielem = 0_pInt defgradDetMax = -999.0_pReal defgradDetMin = 999.0_pReal do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1) defgradDet = math_det3x3(defgrad(i,j,k,1:3,1:3)) defgradDetMax = max(defgradDetMax,defgradDet) defgradDetMin = min(defgradDetMin,defgradDet) ielem = ielem + 1_pInt call CPFEM_general(3_pInt,& ! collect cycle coordinates(1:3,i,j,k), defgradold(i,j,k,1:3,1:3), defgrad(i,j,k,1:3,1:3),& temperature(i,j,k),timeinc,ielem,1_pInt,& cstress,dsde, pstress, dPdF) enddo; enddo; enddo print '(a,x,es10.4)' , 'Maximum Determinant of Deformation:', defgradDetMax print '(a,x,es10.4)' , 'Minimum Determinant of Deformation:', defgradDetMin workfft = 0.0_pReal ! needed because of the padding for FFTW c_current = 0.0_pReal ielem = 0_pInt do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1) ielem = ielem + 1_pInt call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1, coordinates(1:3,i,j,k),& defgradold(i,j,k,1:3,1:3), defgrad(i,j,k,1:3,1:3),& ! others get 2 (saves winding forward effort) temperature(i,j,k),timeinc,ielem,1_pInt,& cstress,dsde, pstress,dPdF) CPFEM_mode = 2_pInt workfft(i,j,k,1:3,1:3) = pstress ! build up average P-K stress c_current = c_current + dPdF enddo; enddo; enddo restartWrite = .false. ! ToDo: don't know if we need it. Depends on how CPFEM_general is writing results do n = 1_pInt,3_pInt; do m = 1_pInt,3_pInt pstress_av(m,n) = sum(workfft(1:resolution(1),1:resolution(2),1:resolution(3),m,n)) * wgt enddo; enddo !$OMP CRITICAL (write2out) print '(a,/,3(3(f12.7,x)/)\)', 'Piola-Kirchhoff Stress / MPa: ',math_transpose3x3(pstress_av)/1.e6 err_stress_tol = 0.0_pReal pstress_av_load = math_rotate_forward3x3(pstress_av,bc(loadcase)%rotation) if(size_reduced > 0_pInt) then ! calculate stress BC if applied err_stress = maxval(abs(mask_stress * (pstress_av_load - bc(loadcase)%stress))) ! maximum deviaton (tensor norm not applicable) err_stress_tol = maxval(abs(mask_defgrad * pstress_av_load)) * err_stress_tolrel ! don't use any tensor norm because the comparison should be coherent print '(A)', '... Correcting Deformation Gradient to Fullfill BCs .........' print '(2(a,es10.4))', 'Error Stress = ',err_stress, ', Tol. = ', err_stress_tol defgradAimCorr = - math_mul3333xx33(s_prev, ((pstress_av_load - bc(loadcase)%stress))) ! residual on given stress components defgradAim = defgradAim + defgradAimCorr print '(a,/,3(3(f12.7,x)/)\)', 'New Deformation Aim: ',math_transpose3x3(math_rotate_backward3x3(& defgradAim,bc(loadcase)%rotation)) print '(a,x,es10.4)' , 'Determinant of New Deformation Aim:', math_det3x3(defgradAim) endif print '(A)', '... Calculating Equilibrium Using Spectral Method ...........' !$OMP END CRITICAL (write2out) call dfftw_execute_dft_r2c(fftw_plan(1),workfft,workfft) ! FFT of pstress p_hat_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(workfft(1,1,1,1:3,1:3),& ! L_2 norm of average stress in fourier space, math_transpose3x3(workfft(1,1,1,1:3,1:3)))))) ! ignore imaginary part as it is always zero for real only input)) err_div = 0.0_pReal err_div_max = 0.0_pReal do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1)/2_pInt+1_pInt err_div = err_div + sqrt(sum((& ! avg of L_2 norm of div(stress) in fourier space (Suquet small strain) math_mul33x3_complex(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3) + & workfft(i*2_pInt ,j,k,1:3,1:3)*img,& xi(1:3,i,j,k))& )**2.0_pReal)) if(debugDivergence) & err_div_max = max(err_div_max,abs(sqrt(sum((& ! maximum of L two norm of div(stress) in fourier space (Suquet large strain) math_mul33x3_complex(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3)+& workfft(i*2_pInt ,j,k,1:3,1:3)*img,& xi(1:3,i,j,k))& )**2.0_pReal)))) enddo; enddo; enddo correctionFactor = minval(geomdimension)*wgt**(-1.0_pReal/4.0_pReal) ! multiplying by minimum dimension to get rid of dimension dependency and phenomenologigal factor wgt**(-1/4) to get rid of resolution dependency if (resolution(3)==1_pInt) correctionFactor = minval(geomdimension(1:2))*wgt**(-1.0_pReal/4.0_pReal) ! 2D case, ToDo: correct? if (.not. divergence_correction) correctionFactor = 1.0_pReal err_div = err_div*wgt/p_hat_avg*correctionFactor ! weighting by points and average stress and multiplying with correction factor err_div_max = err_div_max/p_hat_avg*correctionFactor ! weighting by average stress and multiplying with correction factor if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2) ;do i = 1_pInt, resolution(1)/2_pInt+1_pInt if (any(xi(:,i,j,k) /= 0.0_pReal)) then do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k) enddo; enddo temp33_Real = math_inv3x3(math_mul3333xx33(c0_reference, xiDyad)) else xiDyad = 0.0_pReal temp33_Real = 0.0_pReal endif do l=1_pInt,3_pInt; do m=1_pInt,3_pInt; do n=1_pInt,3_pInt; do p=1_pInt,3_pInt gamma_hat(1,1,1, l,m,n,p) = - 0.25_pReal*(temp33_Real(l,n)+temp33_Real(n,l))*& (xiDyad(m,p) +xiDyad(p,m)) enddo; enddo; enddo; enddo do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt temp33_Complex(m,n) = sum(gamma_hat(1,1,1,m,n,1:3,1:3) *(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3)& +workfft(i*2_pInt ,j,k,1:3,1:3)*img)) enddo; enddo workfft(i*2_pInt-1_pInt,j,k,1:3,1:3) = real (temp33_Complex) workfft(i*2_pInt ,j,k,1:3,1:3) = aimag(temp33_Complex) enddo; enddo; enddo else ! use precalculated gamma-operator do k = 1_pInt, resolution(3); do j = 1_pInt, resolution(2); do i = 1_pInt, resolution(1)/2_pInt+1_pInt do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n,1:3,1:3) *(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3)& + workfft(i*2_pInt ,j,k,1:3,1:3)*img)) enddo; enddo workfft(i*2_pInt-1_pInt,j,k,1:3,1:3) = real (temp33_Complex) workfft(i*2_pInt ,j,k,1:3,1:3) = aimag(temp33_Complex) enddo; enddo; enddo endif if(debugDivergence) then divergence=0.0 do k = 1, resolution(3); do j = 1, resolution(2); do i = 1, resolution(1)/2+1 divergence(i,j,k,1) = (workfft(i*2-1,j,k,1,1)+ workfft(i*2,j,k,1,1)*img)*xi(1,i,j,k)*img*pi*2.0& + (workfft(i*2-1,j,k,2,1)+ workfft(i*2,j,k,2,1)*img)*xi(2,i,j,k)*img*pi*2.0& + (workfft(i*2-1,j,k,3,1)+ workfft(i*2,j,k,3,1)*img)*xi(3,i,j,k)*img*pi*2.0 divergence(i,j,k,2) = (workfft(i*2-1,j,k,1,2)+ workfft(i*2,j,k,1,2)*img)*xi(1,i,j,k)*img*pi*2.0& + (workfft(i*2-1,j,k,2,2)+ workfft(i*2,j,k,2,2)*img)*xi(2,i,j,k)*img*pi*2.0& + (workfft(i*2-1,j,k,3,2)+ workfft(i*2,j,k,3,2)*img)*xi(3,i,j,k)*img*pi*2.0 divergence(i,j,k,3) = (workfft(i*2-1,j,k,1,3)+ workfft(i*2,j,k,1,3)*img)*xi(1,i,j,k)*img*pi*2.0& + (workfft(i*2-1,j,k,2,3)+ workfft(i*2,j,k,2,3)*img)*xi(2,i,j,k)*img*pi*2.0& + (workfft(i*2-1,j,k,3,3)+ workfft(i*2,j,k,3,3)*img)*xi(3,i,j,k)*img*pi*2.0 enddo; enddo; enddo call dfftw_execute_dft_c2r(fftw_plan(3),divergence,divergence) endif ! average strain workfft(1,1,1,1:3,1:3) = defgrad_av - math_I3 ! zero frequency (real part) workfft(2,1,1,1:3,1:3) = 0.0_pReal ! zero frequency (imaginary part) call dfftw_execute_dft_c2r(fftw_plan(2),workfft,workfft) defgrad = defgrad + workfft(1:resolution(1),:,:,:,:)*wgt do m = 1,3; do n = 1,3 defgrad_av(m,n) = sum(defgrad(:,:,:,m,n))*wgt enddo; enddo defgradAim_lab = math_rotate_backward3x3(defgradAim,bc(loadcase)%rotation) do m = 1,3; do n = 1,3 defgrad(:,:,:,m,n) = defgrad(:,:,:,m,n) + (defgradAim_lab(m,n) - defgrad_av(m,n)) ! anticipated target minus current state enddo; enddo !$OMP CRITICAL (write2out) print '(2(a,es10.4))', 'Error Divergence = ',err_div, ', Tol. = ', err_div_tol !$OMP END CRITICAL (write2out) enddo ! end looping when convergency is achieved c_prev = math_rotate_forward3x3x3x3(c_current*wgt,bc(loadcase)%rotation) ! calculate stiffness for next step !ToDo: Incfluence for next loadcase !$OMP CRITICAL (write2out) print '(a)', '=============================================================' if(err_div<=err_div_tol .and. err_stress<=err_stress_tol) then print '(A,I5.5,A)', 'Increment ', totalStepsCounter, ' Converged' else print '(A,I5.5,A)', 'Increment ', totalStepsCounter, ' NOT Converged' notConvergedCounter = notConvergedCounter + 1 endif if (mod(totalStepsCounter -1_pInt,bc(loadcase)%outputfrequency) == 0_pInt) then ! at output frequency print '(A)', '... Writing Results to File .................................' write(538), materialpoint_results(:,1,:) ! write result to file endif !$OMP END CRITICAL (write2out) enddo ! end looping over steps in current loadcase deallocate(c_reduced) deallocate(s_reduced) step = 1_pInt ! Reset Step Counter enddo ! end looping over loadcases !$OMP CRITICAL (write2out) print '(a)', '#############################################################' print '(a,i5.5,a,i5.5,a)', 'Of ', totalStepsCounter -restartReadStep, ' Calculated Steps, ', notConvergedCounter, ' Steps did not Converge!' !$OMP END CRITICAL (write2out) close(538) call dfftw_destroy_plan(fftw_plan(1)); call dfftw_destroy_plan(fftw_plan(2)) if(debugDivergence) call dfftw_destroy_plan(fftw_plan(3)) end program DAMASK_spectral !******************************************************************** ! quit subroutine to satisfy IO_error ! !******************************************************************** subroutine quit(id) use prec implicit none integer(pInt) id stop end subroutine