! ################################################################### ! Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University ! Modified 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH ! All rights reserved. ! ! Redistribution and use in source and binary forms, with or without modification, are ! permitted provided that the following conditions are met: ! ! - Redistributions of source code must retain the above copyright notice, this list ! of conditions and the following disclaimer. ! - Redistributions in binary form must reproduce the above copyright notice, this ! list of conditions and the following disclaimer in the documentation and/or ! other materials provided with the distribution. ! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names ! of its contributors may be used to endorse or promote products derived from ! this software without specific prior written permission. ! ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" ! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE ! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE ! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL ! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR ! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER ! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, ! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE ! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ! ################################################################### !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief rotation storage and conversion !> @details: rotation is internally stored as quaternion. It can be inialized from different !> representations and also returns itself in different representations. ! ! All methods and naming conventions based on Rowenhorst et al. 2015 ! Convention 1: coordinate frames are right-handed ! Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation ! when viewing from the end point of the rotation axis towards the origin ! Convention 3: rotations will be interpreted in the passive sense ! Convention 4: Euler angle triplets are implemented using the Bunge convention, ! with the angular ranges as [0, 2π],[0, π],[0, 2π] ! Convention 5: the rotation angle ω is limited to the interval [0, π] ! Convention 6: the real part of a quaternion is positive, Re(q) > 0 ! Convention 7: P = -1 !-------------------------------------------------------------------------------------------------- module rotations use IO use math implicit none(type,external) private real(pREAL), parameter :: P = -1.0_pREAL !< parameter for orientation conversion. type, public :: tRotation real(pREAL), dimension(4) :: q contains procedure, public :: asQuaternion procedure, public :: asEulers procedure, public :: asAxisAngle procedure, public :: asMatrix !------------------------------------------ procedure, public :: fromQuaternion procedure, public :: fromEulers procedure, public :: fromAxisAngle procedure, public :: fromMatrix !------------------------------------------ procedure, private :: rotRot__ generic, public :: operator(*) => rotRot__ generic, public :: rotate => rotVector,rotTensor2,rotTensor4 procedure, public :: rotVector procedure, public :: rotTensor2 procedure, public :: rotTensor4 procedure, public :: rotStiffness procedure, public :: misorientation procedure, public :: standardize end type tRotation real(pREAL), parameter :: & PREF = sqrt(6.0_pREAL/PI), & A = PI**(5.0_pREAL/6.0_pREAL)/6.0_pREAL**(1.0_pREAL/6.0_pREAL), & AP = PI**(2.0_pREAL/3.0_pREAL), & SC = A/AP, & BETA = A/2.0_pREAL, & R1 = (3.0_pREAL*PI/4.0_pREAL)**(1.0_pREAL/3.0_pREAL), & R2 = sqrt(2.0_pREAL), & PI12 = PI/12.0_pREAL, & PREK = R1 * 2.0_pREAL**(1.0_pREAL/4.0_pREAL)/BETA public :: & rotations_init, & rotations_selfTest, & eu2om contains !-------------------------------------------------------------------------------------------------- !> @brief Do self test. !-------------------------------------------------------------------------------------------------- subroutine rotations_init() print'(/,1x,a)', '<<<+- rotations init -+>>>'; flush(IO_STDOUT) print'(/,1x,a)', 'D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015' print'( 1x,a)', 'https://doi.org/10.1088/0965-0393/23/8/083501' call rotations_selfTest() end subroutine rotations_init !-------------------------------------------------------------------------------------------------- ! Return rotation in different representations. !-------------------------------------------------------------------------------------------------- pure function asQuaternion(self) class(tRotation), intent(in) :: self real(pREAL), dimension(4) :: asQuaternion asQuaternion = self%q end function asQuaternion !-------------------------------------------------------------------------------------------------- pure function asEulers(self) class(tRotation), intent(in) :: self real(pREAL), dimension(3) :: asEulers asEulers = qu2eu(self%q) end function asEulers !-------------------------------------------------------------------------------------------------- pure function asAxisAngle(self) class(tRotation), intent(in) :: self real(pREAL), dimension(4) :: asAxisAngle asAxisAngle = qu2ax(self%q) end function asAxisAngle !-------------------------------------------------------------------------------------------------- pure function asMatrix(self) class(tRotation), intent(in) :: self real(pREAL), dimension(3,3) :: asMatrix asMatrix = qu2om(self%q) end function asMatrix !-------------------------------------------------------------------------------------------------- ! Initialize rotation from different representations. !-------------------------------------------------------------------------------------------------- subroutine fromQuaternion(self,qu) class(tRotation), intent(out) :: self real(pREAL), dimension(4), intent(in) :: qu if (dNeq(norm2(qu),1.0_pREAL,1.0e-8_pREAL)) call IO_error(402,ext_msg='fromQuaternion') self%q = qu end subroutine fromQuaternion !-------------------------------------------------------------------------------------------------- subroutine fromEulers(self,eu,degrees) class(tRotation), intent(out) :: self real(pREAL), dimension(3), intent(in) :: eu logical, intent(in), optional :: degrees real(pREAL), dimension(3) :: Eulers Eulers = merge(eu*INRAD,eu,misc_optional(degrees,.false.)) if (any(Eulers<0.0_pREAL) .or. any(Eulers>TAU) .or. Eulers(2) > PI) & call IO_error(402,ext_msg='fromEulers') self%q = eu2qu(Eulers) end subroutine fromEulers !-------------------------------------------------------------------------------------------------- subroutine fromAxisAngle(self,ax,degrees,P) class(tRotation), intent(out) :: self real(pREAL), dimension(4), intent(in) :: ax logical, intent(in), optional :: degrees integer, intent(in), optional :: P real(pREAL) :: angle real(pREAL),dimension(3) :: axis angle = merge(ax(4)*INRAD,ax(4),misc_optional(degrees,.false.)) axis = ax(1:3) * merge(-1.0_pREAL,1.0_pREAL,misc_optional(P,-1) == 1) if (abs(misc_optional(P,-1)) /= 1) call IO_error(402,ext_msg='fromAxisAngle (P)') if (dNeq(norm2(axis),1.0_pREAL) .or. angle < 0.0_pREAL .or. angle > PI) & call IO_error(402,ext_msg='fromAxisAngle') self%q = ax2qu([axis,angle]) end subroutine fromAxisAngle !-------------------------------------------------------------------------------------------------- subroutine fromMatrix(self,om) class(tRotation), intent(out) :: self real(pREAL), dimension(3,3), intent(in) :: om if (dNeq(math_det33(om),1.0_pREAL,tol=1.0e-5_pREAL)) & call IO_error(402,ext_msg='fromMatrix') self%q = om2qu(om) end subroutine fromMatrix !-------------------------------------------------------------------------------------------------- !-------------------------------------------------------------------------------------------------- !> @brief: Compose rotations. !-------------------------------------------------------------------------------------------------- pure elemental function rotRot__(self,R) result(rRot) type(tRotation) :: rRot class(tRotation), intent(in) :: self,R rRot = tRotation(multiplyQuaternion(self%q,R%q)) call rRot%standardize() end function rotRot__ !-------------------------------------------------------------------------------------------------- !> @brief Convert to quaternion representation with positive q(1). !-------------------------------------------------------------------------------------------------- pure elemental subroutine standardize(self) class(tRotation), intent(inout) :: self if (sign(1.0_pREAL,self%q(1)) < 0.0_pREAL) self%q = - self%q end subroutine standardize !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Rotate a vector passively (default) or actively. !-------------------------------------------------------------------------------------------------- pure function rotVector(self,v,active) result(vRot) real(pREAL), dimension(3) :: vRot class(tRotation), intent(in) :: self real(pREAL), intent(in), dimension(3) :: v logical, intent(in), optional :: active real(pREAL), dimension(4) :: v_normed, q if (dEq0(norm2(v))) then vRot = v else v_normed = [0.0_pREAL,v]/norm2(v) q = merge(multiplyQuaternion(conjugateQuaternion(self%q), multiplyQuaternion(v_normed, self%q)), & multiplyQuaternion(self%q, multiplyQuaternion(v_normed, conjugateQuaternion(self%q))), & misc_optional(active,.false.)) vRot = q(2:4)*norm2(v) end if end function rotVector !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Rotate a rank-2 tensor passively (default) or actively. !> @details: Rotation is based on rotation matrix !-------------------------------------------------------------------------------------------------- pure function rotTensor2(self,T,active) result(tRot) real(pREAL), dimension(3,3) :: tRot class(tRotation), intent(in) :: self real(pREAL), intent(in), dimension(3,3) :: T logical, intent(in), optional :: active tRot = merge(matmul(matmul(transpose(self%asMatrix()),T),self%asMatrix()), & matmul(matmul(self%asMatrix(),T),transpose(self%asMatrix())), & misc_optional(active,.false.)) end function rotTensor2 !-------------------------------------------------------------------------------------------------- !> @brief Rotate a rank-4 tensor passively (default) or actively. !> @details: rotation is based on rotation matrix !! ToDo: Need to check active/passive !!! !-------------------------------------------------------------------------------------------------- pure function rotTensor4(self,T,active) result(tRot) real(pREAL), dimension(3,3,3,3) :: tRot class(tRotation), intent(in) :: self real(pREAL), intent(in), dimension(3,3,3,3) :: T logical, intent(in), optional :: active real(pREAL), dimension(3,3) :: R integer :: i,j,k,l,m,n,o,p R = merge(transpose(self%asMatrix()),self%asMatrix(),misc_optional(active,.false.)) tRot = 0.0_pREAL do i = 1,3;do j = 1,3;do k = 1,3;do l = 1,3 do m = 1,3;do n = 1,3;do o = 1,3;do p = 1,3 tRot(i,j,k,l) = tRot(i,j,k,l) & + R(i,m) * R(j,n) * R(k,o) * R(l,p) * T(m,n,o,p) end do; end do; end do; end do; end do; end do; end do; end do end function rotTensor4 !-------------------------------------------------------------------------------------------------- !> @brief Rotate a rank-4 stiffness tensor in Voigt 6x6 notation passively (default) or actively. !> @details: https://scicomp.stackexchange.com/questions/35600 !! ToDo: Need to check active/passive !!! !-------------------------------------------------------------------------------------------------- pure function rotStiffness(self,C,active) result(cRot) real(pREAL), dimension(6,6) :: cRot class(tRotation), intent(in) :: self real(pREAL), intent(in), dimension(6,6) :: C logical, intent(in), optional :: active real(pREAL), dimension(3,3) :: R real(pREAL), dimension(6,6) :: M R = merge(transpose(self%asMatrix()),self%asMatrix(),misc_optional(active,.false.)) M = reshape([R(1,1)**2, R(2,1)**2, R(3,1)**2, & R(2,1)*R(3,1), R(1,1)*R(3,1), R(1,1)*R(2,1), & R(1,2)**2, R(2,2)**2, R(3,2)**2, & R(2,2)*R(3,2), R(1,2)*R(3,2), R(1,2)*R(2,2), & R(1,3)**2, R(2,3)**2, R(3,3)**2, & R(2,3)*R(3,3), R(1,3)*R(3,3), R(1,3)*R(2,3), & 2.0_pREAL*R(1,2)*R(1,3), 2.0_pREAL*R(2,2)*R(2,3), 2.0_pREAL*R(3,2)*R(3,3), & R(2,2)*R(3,3)+R(2,3)*R(3,2), R(1,2)*R(3,3)+R(1,3)*R(3,2), R(1,2)*R(2,3)+R(1,3)*R(2,2), & 2.0_pREAL*R(1,3)*R(1,1), 2.0_pREAL*R(2,3)*R(2,1), 2.0_pREAL*R(3,3)*R(3,1), & R(2,3)*R(3,1)+R(2,1)*R(3,3), R(1,3)*R(3,1)+R(1,1)*R(3,3), R(1,3)*R(2,1)+R(1,1)*R(2,3), & 2.0_pREAL*R(1,1)*R(1,2), 2.0_pREAL*R(2,1)*R(2,2), 2.0_pREAL*R(3,1)*R(3,2), & R(2,1)*R(3,2)+R(2,2)*R(3,1), R(1,1)*R(3,2)+R(1,2)*R(3,1), R(1,1)*R(2,2)+R(1,2)*R(2,1)],[6,6]) cRot = matmul(M,matmul(C,transpose(M))) end function rotStiffness !-------------------------------------------------------------------------------------------------- !> @brief Calculate misorientation. !-------------------------------------------------------------------------------------------------- pure elemental function misorientation(self,other) type(tRotation) :: misorientation class(tRotation), intent(in) :: self, other misorientation%q = multiplyQuaternion(other%q, conjugateQuaternion(self%q)) end function misorientation !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert unit quaternion to rotation matrix. !-------------------------------------------------------------------------------------------------- pure function qu2om(qu) result(om) real(pREAL), intent(in), dimension(4) :: qu real(pREAL), dimension(3,3) :: om real(pREAL) :: qq qq = qu(1)**2-sum(qu(2:4)**2) om(1,1) = qq+2.0_pREAL*qu(2)**2 om(2,2) = qq+2.0_pREAL*qu(3)**2 om(3,3) = qq+2.0_pREAL*qu(4)**2 om(1,2) = 2.0_pREAL*(qu(2)*qu(3)-qu(1)*qu(4)) om(2,3) = 2.0_pREAL*(qu(3)*qu(4)-qu(1)*qu(2)) om(3,1) = 2.0_pREAL*(qu(4)*qu(2)-qu(1)*qu(3)) om(2,1) = 2.0_pREAL*(qu(3)*qu(2)+qu(1)*qu(4)) om(3,2) = 2.0_pREAL*(qu(4)*qu(3)+qu(1)*qu(2)) om(1,3) = 2.0_pREAL*(qu(2)*qu(4)+qu(1)*qu(3)) if (sign(1.0_pREAL,P) < 0.0_pREAL) om = transpose(om) om = om/math_det33(om)**(1.0_pREAL/3.0_pREAL) end function qu2om !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert unit quaternion to Bunge Euler angles. !-------------------------------------------------------------------------------------------------- pure function qu2eu(qu) result(eu) real(pREAL), intent(in), dimension(4) :: qu real(pREAL), dimension(3) :: eu real(pREAL) :: q12, q03, chi q03 = qu(1)**2+qu(4)**2 q12 = qu(2)**2+qu(3)**2 chi = sqrt(q03*q12) degenerated: if (dEq0(q12)) then eu = [atan2(-P*2.0_pREAL*qu(1)*qu(4),qu(1)**2-qu(4)**2), 0.0_pREAL, 0.0_pREAL] elseif (dEq0(q03)) then eu = [atan2( 2.0_pREAL*qu(2)*qu(3),qu(2)**2-qu(3)**2), PI, 0.0_pREAL] else degenerated eu = [atan2((-P*qu(1)*qu(3)+qu(2)*qu(4))*chi, (-P*qu(1)*qu(2)-qu(3)*qu(4))*chi ), & atan2( 2.0_pREAL*chi, q03-q12 ), & atan2(( P*qu(1)*qu(3)+qu(2)*qu(4))*chi, (-P*qu(1)*qu(2)+qu(3)*qu(4))*chi )] end if degenerated where(sign(1.0_pREAL,eu)<0.0_pREAL) eu = mod(eu+TAU,[TAU,PI,TAU]) end function qu2eu !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert unit quaternion to axis-angle pair. !-------------------------------------------------------------------------------------------------- pure function qu2ax(qu) result(ax) real(pREAL), intent(in), dimension(4) :: qu real(pREAL), dimension(4) :: ax real(pREAL) :: omega, s if (dEq0(sum(qu(2:4)**2))) then ax = [ 0.0_pREAL, 0.0_pREAL, 1.0_pREAL, 0.0_pREAL ] ! axis = [001] elseif (dNeq0(qu(1))) then s = sign(1.0_pREAL,qu(1))/norm2(qu(2:4)) omega = 2.0_pREAL * acos(math_clip(qu(1),-1.0_pREAL,1.0_pREAL)) ax = [ qu(2)*s, qu(3)*s, qu(4)*s, omega ] else ax = [ qu(2), qu(3), qu(4), PI ] end if end function qu2ax !-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief Convert rotation matrix to unit quaternion. !> @details the original formulation (direct conversion) had (numerical?) issues !-------------------------------------------------------------------------------------------------- pure function om2qu(om) result(qu) real(pREAL), intent(in), dimension(3,3) :: om real(pREAL), dimension(4) :: qu real(pREAL) :: trace,s trace = math_trace33(om) if (trace > 0.0_pREAL) then s = 0.5_pREAL / sqrt(trace+1.0_pREAL) qu = [0.25_pREAL/s, (om(3,2)-om(2,3))*s,(om(1,3)-om(3,1))*s,(om(2,1)-om(1,2))*s] else if ( om(1,1) > om(2,2) .and. om(1,1) > om(3,3) ) then s = 2.0_pREAL * sqrt( 1.0_pREAL + om(1,1) - om(2,2) - om(3,3)) qu = [ (om(3,2) - om(2,3)) /s,0.25_pREAL * s,(om(1,2) + om(2,1)) / s,(om(1,3) + om(3,1)) / s] elseif (om(2,2) > om(3,3)) then s = 2.0_pREAL * sqrt( 1.0_pREAL + om(2,2) - om(1,1) - om(3,3)) qu = [ (om(1,3) - om(3,1)) /s,(om(1,2) + om(2,1)) / s,0.25_pREAL * s,(om(2,3) + om(3,2)) / s] else s = 2.0_pREAL * sqrt( 1.0_pREAL + om(3,3) - om(1,1) - om(2,2) ) qu = [ (om(2,1) - om(1,2)) /s,(om(1,3) + om(3,1)) / s,(om(2,3) + om(3,2)) / s,0.25_pREAL * s] end if end if if (sign(1.0_pREAL,qu(1))<0.0_pREAL) qu =-1.0_pREAL * qu qu(2:4) = merge(qu(2:4),qu(2:4)*P,dEq0(qu(2:4))) qu = qu/norm2(qu) end function om2qu !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert orientation matrix to Bunge Euler angles. !> @details Two step check for special cases to avoid invalid operations (not needed for python) !-------------------------------------------------------------------------------------------------- pure function om2eu(om) result(eu) real(pREAL), intent(in), dimension(3,3) :: om real(pREAL), dimension(3) :: eu real(pREAL) :: zeta if (dNeq(abs(om(3,3)),1.0_pREAL,1.e-8_pREAL)) then zeta = 1.0_pREAL/sqrt(math_clip(1.0_pREAL-om(3,3)**2,1e-64_pREAL,1.0_pREAL)) eu = [atan2(om(3,1)*zeta,-om(3,2)*zeta), & acos(math_clip(om(3,3),-1.0_pREAL,1.0_pREAL)), & atan2(om(1,3)*zeta, om(2,3)*zeta)] else eu = [atan2(om(1,2),om(1,1)), 0.5_pREAL*PI*(1.0_pREAL-om(3,3)),0.0_pREAL ] end if where(abs(eu) < 1.e-8_pREAL) eu = 0.0_pREAL where(sign(1.0_pREAL,eu)<0.0_pREAL) eu = mod(eu+TAU,[TAU,PI,TAU]) end function om2eu !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert orientation matrix to axis-angle pair. !-------------------------------------------------------------------------------------------------- function om2ax(om) result(ax) real(pREAL), intent(in), dimension(3,3) :: om real(pREAL), dimension(4) :: ax real(pREAL) :: t real(pREAL), dimension(3) :: Wr, Wi real(pREAL), dimension((64+2)*3) :: work real(pREAL), dimension(3,3) :: VR, devNull, om_ integer :: ierr, i om_ = om ! first get the rotation angle t = 0.5_pREAL * (math_trace33(om) - 1.0_pREAL) ax(4) = acos(math_clip(t,-1.0_pREAL,1.0_pREAL)) if (dEq0(ax(4))) then ax(1:3) = [ 0.0_pREAL, 0.0_pREAL, 1.0_pREAL ] else call dgeev('N','V',3,om_,3,Wr,Wi,devNull,3,VR,3,work,size(work,1),ierr) if (ierr /= 0) error stop 'LAPACK error' i = findloc(cEq(cmplx(Wr,Wi,pREAL),cmplx(1.0_pREAL,0.0_pREAL,pREAL),tol=1.0e-14_pREAL),.true.,dim=1) !find eigenvalue (1,0) if (i == 0) error stop 'om2ax conversion failed' ax(1:3) = VR(1:3,i) where ( dNeq0([om(2,3)-om(3,2), om(3,1)-om(1,3), om(1,2)-om(2,1)])) & ax(1:3) = sign(ax(1:3),-P *[om(2,3)-om(3,2), om(3,1)-om(1,3), om(1,2)-om(2,1)]) end if end function om2ax !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert Bunge Euler angles to unit quaternion. !-------------------------------------------------------------------------------------------------- pure function eu2qu(eu) result(qu) real(pREAL), intent(in), dimension(3) :: eu real(pREAL), dimension(4) :: qu real(pREAL), dimension(3) :: ee real(pREAL) :: cPhi, sPhi ee = 0.5_pREAL*eu cPhi = cos(ee(2)) sPhi = sin(ee(2)) qu = [ cPhi*cos(ee(1)+ee(3)), & -P*sPhi*cos(ee(1)-ee(3)), & -P*sPhi*sin(ee(1)-ee(3)), & -P*cPhi*sin(ee(1)+ee(3))] if (sign(1.0_pREAL,qu(1)) < 0.0_pREAL) qu = qu * (-1.0_pREAL) end function eu2qu !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert Euler angles to orientation matrix. !-------------------------------------------------------------------------------------------------- pure function eu2om(eu) result(om) real(pREAL), intent(in), dimension(3) :: eu real(pREAL), dimension(3,3) :: om real(pREAL), dimension(3) :: c, s c = cos(eu) s = sin(eu) om(1,1) = c(1)*c(3)-s(1)*s(3)*c(2) om(2,1) = -c(1)*s(3)-s(1)*c(3)*c(2) om(3,1) = s(1)*s(2) om(1,2) = s(1)*c(3)+c(1)*s(3)*c(2) om(2,2) = -s(1)*s(3)+c(1)*c(3)*c(2) om(3,2) = -c(1)*s(2) om(1,3) = s(3)*s(2) om(2,3) = c(3)*s(2) om(3,3) = c(2) where(abs(om)<1.0e-12_pREAL) om = 0.0_pREAL end function eu2om !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert Bunge Euler angles to axis-angle pair. !-------------------------------------------------------------------------------------------------- pure function eu2ax(eu) result(ax) real(pREAL), intent(in), dimension(3) :: eu real(pREAL), dimension(4) :: ax real(pREAL) :: t, delta, tau, alpha, sigma t = tan(eu(2)*0.5_pREAL) sigma = 0.5_pREAL*(eu(1)+eu(3)) delta = 0.5_pREAL*(eu(1)-eu(3)) tau = sqrt(t**2+sin(sigma)**2) alpha = merge(PI, 2.0_pREAL*atan(tau/cos(sigma)), dEq(sigma,PI*0.5_pREAL,tol=1.0e-15_pREAL)) if (dEq0(alpha)) then ! return a default identity axis-angle pair ax = [ 0.0_pREAL, 0.0_pREAL, 1.0_pREAL, 0.0_pREAL ] else ax(1:3) = -P/tau * [ t*cos(delta), t*sin(delta), sin(sigma) ] ! passive axis-angle pair so a minus sign in front ax(4) = alpha if (sign(1.0_pREAL,alpha) < 0.0_pREAL) ax = -ax ! ensure alpha is positive end if end function eu2ax !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert axis-angle pair to unit quaternion. !-------------------------------------------------------------------------------------------------- pure function ax2qu(ax) result(qu) real(pREAL), intent(in), dimension(4) :: ax real(pREAL), dimension(4) :: qu real(pREAL) :: c, s if (dEq0(ax(4))) then qu = [ 1.0_pREAL, 0.0_pREAL, 0.0_pREAL, 0.0_pREAL ] else c = cos(ax(4)*0.5_pREAL) s = sin(ax(4)*0.5_pREAL) qu = [ c, ax(1)*s, ax(2)*s, ax(3)*s ] end if end function ax2qu !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert axis-angle pair to orientation matrix. !-------------------------------------------------------------------------------------------------- pure function ax2om(ax) result(om) real(pREAL), intent(in), dimension(4) :: ax real(pREAL), dimension(3,3) :: om real(pREAL) :: q, c, s, omc c = cos(ax(4)) s = sin(ax(4)) omc = 1.0_pREAL-c om(1,1) = ax(1)**2*omc + c om(2,2) = ax(2)**2*omc + c om(3,3) = ax(3)**2*omc + c q = omc*ax(1)*ax(2) om(1,2) = q + s*ax(3) om(2,1) = q - s*ax(3) q = omc*ax(2)*ax(3) om(2,3) = q + s*ax(1) om(3,2) = q - s*ax(1) q = omc*ax(3)*ax(1) om(3,1) = q + s*ax(2) om(1,3) = q - s*ax(2) if (P > 0.0_pREAL) om = transpose(om) end function ax2om !-------------------------------------------------------------------------------------------------- !> @author Marc De Graef, Carnegie Mellon University !> @brief Convert axis-angle pair to Bunge Euler angles. !-------------------------------------------------------------------------------------------------- pure function ax2eu(ax) result(eu) real(pREAL), intent(in), dimension(4) :: ax real(pREAL), dimension(3) :: eu eu = om2eu(ax2om(ax)) end function ax2eu !-------------------------------------------------------------------------------------------------- !> @brief Multiply two quaternions. !-------------------------------------------------------------------------------------------------- pure function multiplyQuaternion(qu1,qu2) real(pREAL), dimension(4), intent(in) :: qu1, qu2 real(pREAL), dimension(4) :: multiplyQuaternion multiplyQuaternion(1) = qu1(1)*qu2(1) - qu1(2)*qu2(2) - qu1(3)*qu2(3) - qu1(4)*qu2(4) multiplyQuaternion(2) = qu1(1)*qu2(2) + qu1(2)*qu2(1) + P * (qu1(3)*qu2(4) - qu1(4)*qu2(3)) multiplyQuaternion(3) = qu1(1)*qu2(3) + qu1(3)*qu2(1) + P * (qu1(4)*qu2(2) - qu1(2)*qu2(4)) multiplyQuaternion(4) = qu1(1)*qu2(4) + qu1(4)*qu2(1) + P * (qu1(2)*qu2(3) - qu1(3)*qu2(2)) end function multiplyQuaternion !-------------------------------------------------------------------------------------------------- !> @brief Calculate conjugate complex of a quaternion. !-------------------------------------------------------------------------------------------------- pure function conjugateQuaternion(qu) real(pREAL), dimension(4), intent(in) :: qu real(pREAL), dimension(4) :: conjugateQuaternion conjugateQuaternion = [qu(1), -qu(2), -qu(3), -qu(4)] end function conjugateQuaternion !-------------------------------------------------------------------------------------------------- !> @brief Check correctness of some rotations functions. !-------------------------------------------------------------------------------------------------- subroutine rotations_selfTest() type(tRotation) :: R real(pREAL), dimension(4) :: qu real(pREAL), dimension(3) :: x, eu, v3 real(pREAL), dimension(3,3) :: om, t33 real(pREAL), dimension(3,3,3,3) :: t3333 real(pREAL), dimension(6,6) :: C real(pREAL) :: A,B integer :: i do i = 1, 20 if (i==1) then qu = [1.0_pREAL, 0.0_pREAL, 0.0_pREAL, 0.0_pREAL] elseif (i==2) then qu = [1.0_pREAL,-0.0_pREAL,-0.0_pREAL,-0.0_pREAL] elseif (i==3) then qu = [0.0_pREAL, 1.0_pREAL, 0.0_pREAL, 0.0_pREAL] elseif (i==4) then qu = [0.0_pREAL,0.0_pREAL,1.0_pREAL,0.0_pREAL] elseif (i==5) then qu = [0.0_pREAL, 0.0_pREAL, 0.0_pREAL, 1.0_pREAL] else call random_number(x) A = sqrt(x(3)) B = sqrt(1-0_pREAL -x(3)) qu = [cos(TAU*x(1))*A,& sin(TAU*x(2))*B,& cos(TAU*x(2))*B,& sin(TAU*x(1))*A] if (qu(1)<0.0_pREAL) qu = qu * (-1.0_pREAL) end if if (.not. quaternion_equal(om2qu(qu2om(qu)),qu)) error stop 'om2qu2om' if (.not. quaternion_equal(eu2qu(qu2eu(qu)),qu)) error stop 'eu2qu2eu' if (.not. quaternion_equal(ax2qu(qu2ax(qu)),qu)) error stop 'ax2qu2ax' om = qu2om(qu) if (.not. quaternion_equal(om2qu(eu2om(om2eu(om))),qu)) error stop 'eu2om2eu' if (.not. quaternion_equal(om2qu(ax2om(om2ax(om))),qu)) error stop 'ax2om2ax' eu = qu2eu(qu) if (.not. quaternion_equal(eu2qu(ax2eu(eu2ax(eu))),qu)) error stop 'ax2eu2ax' call R%fromMatrix(om) call random_number(v3) if (any(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pREAL))) & error stop 'rotVector' call random_number(t33) if (any(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pREAL))) & error stop 'rotTensor2' call random_number(t3333) if (any(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pREAL))) & error stop 'rotTensor4' call random_number(C) C = C+transpose(C) if (any(dNeq(R%rotStiffness(C), & math_3333toVoigt66_stiffness(R%rotate(math_Voigt66to3333_stiffness(C))),1.0e-12_pREAL))) & error stop 'rotStiffness' call R%fromQuaternion(qu * (1.0_pREAL + merge(+5.e-9_pREAL,-5.e-9_pREAL, mod(i,2) == 0))) ! allow reasonable tolerance for ASCII/YAML end do contains pure recursive function quaternion_equal(qu1,qu2) result(ok) real(pREAL), intent(in), dimension(4) :: qu1,qu2 logical :: ok ok = all(dEq(qu1,qu2,1.0e-7_pREAL)) if (dEq0(qu1(1),1.0e-12_pREAL)) & ok = ok .or. all(dEq(-1.0_pREAL*qu1,qu2,1.0e-7_pREAL)) end function quaternion_equal end subroutine rotations_selfTest end module rotations