! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see .
!
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
!> @brief crystallite state integration functions and reporting of results
!--------------------------------------------------------------------------------------------------
module crystallite
use prec, only: pReal, pInt
implicit none
private
character(len=64), dimension(:,:), allocatable, private :: &
crystallite_output !< name of each post result output
integer(pInt), public, protected :: &
crystallite_maxSizePostResults !< description now available
integer(pInt), dimension(:), allocatable, public, protected :: &
crystallite_sizePostResults !< description now available
integer(pInt), dimension(:,:), allocatable, private :: &
crystallite_sizePostResult !< description now available
integer(pInt), dimension(:,:,:), allocatable, private :: &
crystallite_symmetryID !< crystallographic symmetry 1=cubic 2=hexagonal, needed in all orientation calcs
real(pReal), dimension (:,:,:), allocatable, public :: &
crystallite_dt, & !< requested time increment of each grain
crystallite_Temperature, & !< Temp of each grain
crystallite_partionedTemperature0 !< Temp of each grain at start of homog inc
real(pReal), dimension (:,:,:), allocatable, private :: &
crystallite_subdt, & !< substepped time increment of each grain
crystallite_subFrac, & !< already calculated fraction of increment
crystallite_subStep, & !< size of next integration step
crystallite_subTemperature0, & !< Temp of each grain at start of crystallite inc
crystallite_dotTemperature !< evolution of Temperature of each grain
real(pReal), dimension (:,:,:,:), allocatable, public :: &
crystallite_Tstar_v, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step)
crystallite_Tstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
crystallite_partionedTstar0_v !< 2nd Piola-Kirchhoff stress vector at start of homog inc
real(pReal), dimension (:,:,:,:), allocatable, private :: &
crystallite_subTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of crystallite inc
crystallite_orientation, & !< orientation as quaternion
crystallite_orientation0, & !< initial orientation as quaternion
crystallite_rotation !< grain rotation away from initial orientation as axis-angle (in degrees) in crystal reference frame
real(pReal), dimension (:,:,:,:,:), allocatable, public :: &
crystallite_Fp, & !< current plastic def grad (end of converged time step)
crystallite_Fp0, & !< plastic def grad at start of FE inc
crystallite_partionedFp0,& !< plastic def grad at start of homog inc
crystallite_F0, & !< def grad at start of FE inc
crystallite_partionedF, & !< def grad to be reached at end of homog inc
crystallite_partionedF0, & !< def grad at start of homog inc
crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step)
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
crystallite_partionedLp0,& !< plastic velocity grad at start of homog inc
crystallite_P !< 1st Piola-Kirchhoff stress per grain
real(pReal), dimension (:,:,:,:,:), allocatable, private :: &
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
crystallite_subFe0,& !< "elastic" def grad at start of crystallite inc
crystallite_invFp, & !< inverse of current plastic def grad (end of converged time step)
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
crystallite_subF, & !< def grad to be reached at end of crystallite inc
crystallite_subF0, & !< def grad at start of crystallite inc
crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc
crystallite_disorientation !< disorientation between two neighboring ips (only calculated for single grain IPs)
real(pReal), dimension (:,:,:,:,:,:,:), allocatable, public :: &
crystallite_dPdF, & !< current individual dPdF per grain (end of converged time step)
crystallite_dPdF0, & !< individual dPdF per grain at start of FE inc
crystallite_partioneddPdF0 !< individual dPdF per grain at start of homog inc
real(pReal), dimension (:,:,:,:,:,:,:), allocatable, private :: &
crystallite_fallbackdPdF !< dPdF fallback for non-converged grains (elastic prediction)
logical, dimension (:,:,:), allocatable, public :: &
crystallite_requested !< flag to request crystallite calculation
logical, dimension (:,:,:), allocatable, public, protected :: &
crystallite_converged, & !< convergence flag
crystallite_localPlasticity !< indicates this grain to have purely local constitutive law
logical, dimension (:,:,:), allocatable, private :: &
crystallite_todo !< flag to indicate need for further computation
logical, dimension (:,:), allocatable, private :: &
crystallite_clearToWindForward, & !< description now available
crystallite_clearToCutback, & !< description now available
crystallite_syncSubFrac, & !< description now available
crystallite_syncSubFracCompleted, & !< description now available
crystallite_neighborEnforcedCutback !< description now available
public :: &
crystallite_init, &
crystallite_stressAndItsTangent, &
crystallite_orientations, &
crystallite_postResults
private :: &
crystallite_integrateStateFPI, &
crystallite_integrateStateEuler, &
crystallite_integrateStateAdaptiveEuler, &
crystallite_integrateStateRK4, &
crystallite_integrateStateRKCK45, &
crystallite_integrateStress, &
crystallite_stateJump
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates and initialize per grain variables
!--------------------------------------------------------------------------------------------------
subroutine crystallite_init(Temperature)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: debug_info, &
debug_reset, &
debug_level, &
debug_crystallite, &
debug_levelBasic
use math, only: math_I3, &
math_EulerToR, &
math_inv33, &
math_transpose33, &
math_mul33xx33, &
math_mul33x33
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use IO
use material
use lattice, only: lattice_symmetryType
use constitutive, only: constitutive_microstructure
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, &
constitutive_phenopowerlaw_structureName
use constitutive_titanmod, only: constitutive_titanmod_label, &
constitutive_titanmod_structureName
use constitutive_dislotwin, only: constitutive_dislotwin_label, &
constitutive_dislotwin_structureName
use constitutive_nonlocal, only: constitutive_nonlocal_label, &
constitutive_nonlocal_structureName
implicit none
real(pReal), intent(in) :: Temperature
integer(pInt), parameter :: myFile = 200_pInt, &
maxNchunks = 2_pInt
!*** local variables ***!
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) g, & ! grain number
i, & ! integration point number
e, & ! element number
gMax, & ! maximum number of grains
iMax, & ! maximum number of integration points
eMax, & ! maximum number of elements
nMax, & ! maximum number of ip neighbors
myNgrains, & ! number of grains in current IP
section, &
j, &
p, &
output, &
mySize, &
myPhase, &
myMat
character(len=64) tag
character(len=1024) line
write(6,'(/,a)') ' <<<+- crystallite init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a16,a)') ' Current time : ',IO_timeStamp()
#include "compilation_info.f90"
gMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
nMax = mesh_maxNipNeighbors
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal
allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal
allocate(crystallite_dotTemperature(gMax,iMax,eMax)); crystallite_dotTemperature = 0.0_pReal
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal
allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal
allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
allocate(crystallite_subFe0(3,3,gMax,iMax,eMax)); crystallite_subFe0 = 0.0_pReal
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal
allocate(crystallite_dPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF0 = 0.0_pReal
allocate(crystallite_partioneddPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_partioneddPdF0 = 0.0_pReal
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal
allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal
allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal
allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal
allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal
allocate(crystallite_orientation(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal
allocate(crystallite_orientation0(4,gMax,iMax,eMax)); crystallite_orientation0 = 0.0_pReal
allocate(crystallite_rotation(4,gMax,iMax,eMax)); crystallite_rotation = 0.0_pReal
allocate(crystallite_disorientation(4,nMax,gMax,iMax,eMax)); crystallite_disorientation = 0.0_pReal
allocate(crystallite_symmetryID(gMax,iMax,eMax)); crystallite_symmetryID = 0_pInt
allocate(crystallite_localPlasticity(gMax,iMax,eMax)); crystallite_localPlasticity = .true.
allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false.
allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .false.
allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true.
allocate(crystallite_clearToWindForward(iMax,eMax)); crystallite_clearToWindForward = .true.
allocate(crystallite_syncSubFrac(iMax,eMax)); crystallite_syncSubFrac = .false.
allocate(crystallite_syncSubFracCompleted(iMax,eMax)); crystallite_syncSubFracCompleted = .false.
allocate(crystallite_clearToCutback(iMax,eMax)); crystallite_clearToCutback = .true.
allocate(crystallite_neighborEnforcedCutback(iMax,eMax)); crystallite_neighborEnforcedCutback = .false.
allocate(crystallite_output(maxval(crystallite_Noutput), &
material_Ncrystallite)) ; crystallite_output = ''
allocate(crystallite_sizePostResults(material_Ncrystallite)) ; crystallite_sizePostResults = 0_pInt
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
material_Ncrystallite)) ; crystallite_sizePostResult = 0_pInt
if (.not. IO_open_jobFile_stat(myFile,material_localFileExt)) then ! no local material configuration present...
call IO_open_file(myFile,material_configFile) ! ...open material.config file
endif
line = ''
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to
read(myFile,'(a1024)',END=100) line
enddo
do ! read thru sections of phase part
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
output = 0_pInt ! reset output counter
endif
if (section > 0_pInt) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
output = output + 1_pInt
crystallite_output(output,section) = IO_lc(IO_stringValue(line,positions,2_pInt))
end select
endif
enddo
100 close(myFile)
do i = 1_pInt,material_Ncrystallite ! sanity checks
enddo
do i = 1_pInt,material_Ncrystallite
do j = 1_pInt,crystallite_Noutput(i)
select case(crystallite_output(j,i))
case('phase','texture','volume','grainrotationx','grainrotationy','grainrotationz')
mySize = 1_pInt
case('orientation','grainrotation') ! orientation as quaternion, or deviation from initial grain orientation in axis-angle form (angle in degrees)
mySize = 4_pInt
case('eulerangles') ! Bunge (3-1-3) Euler angles
mySize = 3_pInt
case('defgrad','f','fe','fp','lp','e','ee','p','firstpiola','1stpiola','s','tstar','secondpiola','2ndpiola')
mySize = 9_pInt
case('elasmatrix')
mySize = 36_pInt
case default
mySize = 0_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
crystallite_sizePostResult(j,i) = mySize
crystallite_sizePostResults(i) = crystallite_sizePostResults(i) + mySize
endif
enddo
enddo
crystallite_maxSizePostResults = 0_pInt
do j = 1_pInt,material_Nmicrostructure
if (microstructure_active(j)) &
crystallite_maxSizePostResults = max(crystallite_maxSizePostResults,&
crystallite_sizePostResults(microstructure_crystallite(j)))
enddo
! write description file for crystallite output
call IO_write_jobFile(myFile,'outputCrystallite')
do p = 1_pInt,material_Ncrystallite
write(myFile,*)
write(myFile,'(a)') '['//trim(crystallite_name(p))//']'
write(myFile,*)
do e = 1_pInt,crystallite_Noutput(p)
write(myFile,'(a,i4)') trim(crystallite_output(e,p))//char(9),crystallite_sizePostResult(e,p)
enddo
enddo
close(myFile)
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
myNgrains = homogenization_Ngrains(mesh_element(3,e)) ! look up homogenization-->grainCount
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1_pInt:myNgrains)
crystallite_Fp0(1:3,1:3,g,i,e) = math_EulerToR(material_EulerAngles(1:3,g,i,e)) ! plastic def gradient reflects init orientation
crystallite_F0(1:3,1:3,g,i,e) = math_I3
crystallite_localPlasticity(g,i,e) = phase_localPlasticity(material_phase(g,i,e))
crystallite_Fe(1:3,1:3,g,i,e) = math_transpose33(crystallite_Fp0(1:3,1:3,g,i,e))
crystallite_Fp(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e)
crystallite_requested(g,i,e) = .true.
endforall
enddo
crystallite_partionedTemperature0 = Temperature ! isothermal assumption
crystallite_partionedFp0 = crystallite_Fp0
crystallite_partionedF0 = crystallite_F0
crystallite_partionedF = crystallite_F0
! Initialize crystallite_symmetryID(g,i,e)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1_pInt,myNgrains
myPhase = material_phase(g,i,e)
myMat = phase_plasticityInstance(myPhase)
select case (phase_plasticity(myPhase))
case (constitutive_phenopowerlaw_label)
crystallite_symmetryID(g,i,e) = lattice_symmetryType(constitutive_phenopowerlaw_structureName(myMat))
case (constitutive_titanmod_label)
crystallite_symmetryID(g,i,e) = lattice_symmetryType(constitutive_titanmod_structureName(myMat))
case (constitutive_dislotwin_label)
crystallite_symmetryID(g,i,e) = lattice_symmetryType(constitutive_dislotwin_structureName(myMat))
case (constitutive_nonlocal_label)
crystallite_symmetryID(g,i,e) = lattice_symmetryType(constitutive_nonlocal_structureName(myMat))
case default
crystallite_symmetryID(g,i,e) = 0_pInt ! does this happen for j2 material?
end select
enddo
enddo
enddo
call crystallite_orientations()
crystallite_orientation0 = crystallite_orientation ! Store initial orientations for calculation of grain rotations
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1_pInt,myNgrains
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
enddo
enddo
enddo
!$OMP END PARALLEL DO
call crystallite_stressAndItsTangent(.true.,.false.) ! request elastic answers
crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback
! *** Output ***
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Temperature: ', shape(crystallite_Temperature)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dotTemperature: ', shape(crystallite_dotTemperature)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fe: ', shape(crystallite_Fe)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp: ', shape(crystallite_Fp)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp: ', shape(crystallite_Lp)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_F0: ', shape(crystallite_F0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF: ', shape(crystallite_partionedF)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTemp0: ', shape(crystallite_partionedTemperature0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF: ', shape(crystallite_subF)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF0: ', shape(crystallite_subF0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFe0: ', shape(crystallite_subFe0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_P: ', shape(crystallite_P)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF: ', shape(crystallite_dPdF)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF0: ', shape(crystallite_dPdF0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partioneddPdF0: ', shape(crystallite_partioneddPdF0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation: ', shape(crystallite_orientation)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation0: ', shape(crystallite_orientation0)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_rotation: ', shape(crystallite_rotation)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_disorientation: ', shape(crystallite_disorientation)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dt: ', shape(crystallite_dt)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subdt: ', shape(crystallite_subdt)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFrac: ', shape(crystallite_subFrac)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subStep: ', shape(crystallite_subStep)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_localPlasticity: ', shape(crystallite_localPlasticity)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_requested: ', shape(crystallite_requested)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_todo: ', shape(crystallite_todo)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_converged: ', shape(crystallite_converged)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults)
write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult)
write(6,*)
write(6,*) 'Number of nonlocal grains: ',count(.not. crystallite_localPlasticity)
flush(6)
endif
call debug_info
call debug_reset
end subroutine crystallite_init
!--------------------------------------------------------------------------------------------------
!> @brief calculate stress (P) and tangent (dPdF) for crystallites
!--------------------------------------------------------------------------------------------------
subroutine crystallite_stressAndItsTangent(updateJaco,rate_sensitivity)
use numerics, only: subStepMinCryst, &
subStepSizeCryst, &
stepIncreaseCryst, &
pert_Fg, &
pert_method, &
nCryst, &
numerics_integrator, &
numerics_integrationMode, &
numerics_timeSyncing, &
relevantStrain, &
analyticJaco
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g, &
debug_CrystalliteLoopDistribution
use IO, only: IO_warning
use math, only: math_inv33, &
math_identity2nd, &
math_transpose33, &
math_mul33x33, &
math_mul66x6, &
math_Mandel6to33, &
math_Mandel33to6, &
math_I3, &
math_mul3333xx3333
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_ipNeighborhood, &
FE_NipNeighbors, &
FE_geomtype
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_sizeState, &
constitutive_sizeDotState, &
constitutive_state, &
constitutive_state_backup, &
constitutive_subState0, &
constitutive_partionedState0, &
constitutive_homogenizedC, &
constitutive_dotState, &
constitutive_dotState_backup, &
constitutive_TandItsTangent
implicit none
logical, intent(in) :: updateJaco, rate_sensitivity ! flag indicating wehther we want to update the Jacobian (stiffness) or not
real(pReal) myPert, & ! perturbation with correct sign
formerSubStep, &
subFracIntermediate
real(pReal), dimension(3,3) :: invFp, & ! inverse of the plastic deformation gradient
Fe_guess, & ! guess for elastic deformation gradient
Tstar ! 2nd Piola-Kirchhoff stress tensor
real(pReal), dimension(3,3,3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
dPdF_perturbation1, &
dPdF_perturbation2
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
F_backup, &
Fp_backup, &
InvFp_backup, &
Fe_backup, &
Lp_backup, &
P_backup
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
Tstar_v_backup
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
Temperature_backup
integer(pInt) NiterationCrystallite, & ! number of iterations in crystallite loop
e, & ! element index
i, & ! integration point index
g, & ! grain index
k, &
l, &
n, &
neighboring_e, &
neighboring_i, &
o, &
p, &
perturbation , & ! loop counter for forward,backward perturbation mode
myNgrains
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
convergenceFlag_backup
! local variables used for calculating analytic Jacobian
real(pReal), dimension(3,3):: Fpinv_rate, &
FDot_inv, &
junk
real(pReal), dimension(3,3,3,3) :: dSdFe, &
dFedF, &
dFedFdot, &
dSdF, &
dSdFdot, &
dFp_invdFdot, &
junk2
real(pReal) :: counter
! --+>> INITIALIZE TO STARTING CONDITION <<+--
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt&
.and. debug_e > 0 .and. debug_e <= mesh_NcpElems &
.and. debug_i > 0 .and. debug_i <= mesh_maxNips &
.and. debug_g > 0 .and. debug_g <= homogenization_maxNgrains) then
!$OMP CRITICAL (write2out)
write(6,*)
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> crystallite start at el ip g ', debug_e, debug_i, debug_g
write(6,'(a,/,12x,f14.9)') '<< CRYST >> Temp0', crystallite_partionedTemperature0(debug_g,debug_i,debug_e)
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F0 ', &
math_transpose33(crystallite_partionedF0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp0', &
math_transpose33(crystallite_partionedFp0(1:3,1:3,debug_g,debug_i,debug_e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp0', &
math_transpose33(crystallite_partionedLp0(1:3,1:3,debug_g,debug_i,debug_e))
!$OMP END CRITICAL (write2out)
endif
crystallite_subStep = 0.0_pReal
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1_pInt:myNgrains, crystallite_requested(g,i,e))
crystallite_subTemperature0(g,i,e) = crystallite_partionedTemperature0(g,i,e) ! ...temperature
constitutive_subState0(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructure
crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_partionedFp0(1:3,1:3,g,i,e) ! ...plastic def grad
crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_partionedLp0(1:3,1:3,g,i,e) ! ...plastic velocity grad
crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_partionedF0(1:3,1:3,g,i,e) ! ...def grad
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_partionedTstar0_v(1:6,g,i,e) !...2nd PK stress
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF0(1:3,1:3,g,i,e), &
math_inv33(crystallite_subFp0(1:3,1:3,g,i,e))) ! only needed later on for stiffness calculation
crystallite_subFrac(g,i,e) = 0.0_pReal
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst
crystallite_todo(g,i,e) = .true.
crystallite_converged(g,i,e) = .false. ! pretend failed step of twice the required size
endforall
enddo
! --+>> CRYSTALLITE CUTBACK LOOP <<+--
NiterationCrystallite = 0_pInt
numerics_integrationMode = 1_pInt
do while (any(crystallite_todo(:,:,FEsolving_execELem(1):FEsolving_execElem(2)))) ! cutback loop for crystallites
if (any(.not. crystallite_localPlasticity) .and. numerics_timeSyncing) then
! Time synchronization can only be used for nonlocal calculations, and only there it makes sense.
! The idea is that in nonlocal calculations often the vast amjority of the ips
! converges in one iteration whereas a small fraction of ips has to do a lot of cutbacks.
! Hence, we try to minimize the computational effort by just doing a lot of cutbacks
! in the vicinity of the "bad" ips and leave the easily converged volume more or less as it is.
! However, some synchronization of the time step has to be done at the border between "bad" ips
! and the ones that immediately converged.
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i6)') '<< CRYST >> crystallite iteration ',NiterationCrystallite
!$OMP END CRITICAL (write2out)
endif
if (any(crystallite_syncSubFrac)) then
! Just did a time synchronization.
! If all synchrnizers converged, then do nothing else than winding them forward.
! If any of the cynchronizers did not converge, something went completely wrong
! and its not clear how to fix this, so all nonlocals become terminally ill.
if (any(crystallite_syncSubFrac .and. .not. crystallite_converged(1,:,:))) then
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (crystallite_syncSubFrac(i,e) .and. .not. crystallite_converged(1,i,e)) then
!$OMP CRITICAL (write2out)
write(6,'(a,i8,1x,i2)') '<< CRYST >> time synchronization: failed at el,ip ',e,i
!$OMP END CRITICAL (write2out)
endif
enddo
enddo
endif
crystallite_syncSubFrac = .false.
where(.not. crystallite_localPlasticity)
crystallite_substep = 0.0_pReal
crystallite_todo = .false.
endwhere
else
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_syncSubFrac(i,e)
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e)
enddo
enddo
!$OMP END PARALLEL DO
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i6)') '<< CRYST >> time synchronization: wind forward'
!$OMP END CRITICAL (write2out)
endif
endif
elseif (any(crystallite_syncSubFracCompleted)) then
! Just completed a time synchronization.
! Make sure that the ips that synchronized their time step start non-converged
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (crystallite_syncSubFracCompleted(i,e)) crystallite_converged(1,i,e) = .false.
crystallite_syncSubFracCompleted(i,e) = .false.
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) .or. .not. crystallite_converged(1,i,e)
enddo
enddo
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i6)') '<< CRYST >> time synchronization: done, proceed with cutback'
!$OMP END CRITICAL (write2out)
endif
else
! Normal calculation.
! If all converged and are at the end of the time increment, then just do a final wind forward.
! If all converged, but not all reached the end of the time increment, then we only wind
! those forward that are still on their way, all others have to wait.
! If some did not converge and all are still at the start of the time increment,
! then all non-convergers force their converged neighbors to also do a cutback.
! In case that some ips have already wound forward to an intermediate time (subfrac),
! then all those ips that converged in the first iteration, but now have a non-converged neighbor
! have to synchronize their time step to the same intermediate time. If such a synchronization
! takes place, all other ips have to wait and only the synchronizers do a cutback. In the next
! iteration those will do a wind forward while all others still wait.
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e)
enddo
enddo
!$OMP END PARALLEL DO
if (all(crystallite_localPlasticity .or. crystallite_converged)) then
if (all(crystallite_localPlasticity .or. crystallite_subStep + crystallite_subFrac >= 1.0_pReal)) then
crystallite_clearToWindForward = .true. ! final wind forward
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i6)') '<< CRYST >> final wind forward'
!$OMP END CRITICAL (write2out)
endif
else
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_subStep(1,i,e) < 1.0_pReal
enddo
enddo
!$OMP END PARALLEL DO
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i6)') '<< CRYST >> wind forward'
!$OMP END CRITICAL (write2out)
endif
endif
else
subFracIntermediate = maxval(crystallite_subFrac, mask=.not.crystallite_localPlasticity)
if (subFracIntermediate == 0.0_pReal) then
crystallite_neighborEnforcedCutback = .false. ! look for ips that require a cutback because of a nonconverged neighbor
!$OMP PARALLEL
!$OMP DO PRIVATE(neighboring_e,neighboring_i)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (.not. crystallite_localPlasticity(1,i,e) .and. crystallite_converged(1,i,e)) then
do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,e)))
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then
if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) &
.and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then
crystallite_neighborEnforcedCutback(i,e) = .true.
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ', neighboring_e,neighboring_i, &
' enforced cutback at ',e,i
#endif
exit
endif
endif
enddo
endif
enddo
enddo
!$OMP END DO
!$OMP DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if(crystallite_neighborEnforcedCutback(i,e)) crystallite_converged(1,i,e) = .false.
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else
crystallite_syncSubFrac = .false. ! look for ips that have to do a time synchronization because of a nonconverged neighbor
!$OMP PARALLEL
!$OMP DO PRIVATE(neighboring_e,neighboring_i)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if (.not. crystallite_localPlasticity(1,i,e) .and. crystallite_subFrac(1,i,e) == 0.0_pReal) then
do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,e)))
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then
if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) &
.and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then
crystallite_syncSubFrac(i,e) = .true.
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ',neighboring_e,neighboring_i, &
' enforced time synchronization at ',e,i
#endif
exit
endif
endif
enddo
endif
enddo
enddo
!$OMP END DO
!$OMP DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if(crystallite_syncSubFrac(i,e)) crystallite_converged(1,i,e) = .false.
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
where(.not. crystallite_localPlasticity .and. crystallite_subStep < 1.0_pReal) &
crystallite_converged = .false.
if (any(crystallite_syncSubFrac)) then ! have to do syncing now, so all wait except for the synchronizers which do a cutback
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_syncSubFrac(i,e)
enddo
enddo
!$OMP END PARALLEL DO
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i6)') '<< CRYST >> time synchronization: cutback'
!$OMP END CRITICAL (write2out)
endif
else
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if(.not. crystallite_converged(1,i,e)) crystallite_clearToCutback(i,e) = .true.
enddo
enddo
!$OMP END PARALLEL DO
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i6)') '<< CRYST >> cutback'
!$OMP END CRITICAL (write2out)
endif
endif
endif
endif
! Make sure that all cutbackers start with the same substep
where(.not. crystallite_localPlasticity .and. .not. crystallite_converged) &
crystallite_subStep = minval(crystallite_subStep, mask=.not. crystallite_localPlasticity &
.and. .not. crystallite_converged)
! Those that do neither wind forward nor cutback are not to do
!$OMP PARALLEL DO PRIVATE(myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
if(.not. crystallite_clearToWindForward(i,e) .and. .not. crystallite_clearToCutback(i,e)) &
crystallite_todo(1,i,e) = .false.
enddo
enddo
!$OMP END PARALLEL DO
endif
!$OMP PARALLEL DO PRIVATE(myNgrains,formerSubStep)
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
! --- wind forward ---
if (crystallite_converged(g,i,e) .and. crystallite_clearToWindForward(i,e)) then
formerSubStep = crystallite_subStep(g,i,e)
crystallite_subFrac(g,i,e) = crystallite_subFrac(g,i,e) + crystallite_subStep(g,i,e)
!$OMP FLUSH(crystallite_subFrac)
crystallite_subStep(g,i,e) = min(1.0_pReal - crystallite_subFrac(g,i,e), &
stepIncreaseCryst * crystallite_subStep(g,i,e))
!$OMP FLUSH(crystallite_subStep)
if (crystallite_subStep(g,i,e) > 0.0_pReal) then
crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward...
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_subF(1:3,1:3,g,i,e) ! ...def grad
!$OMP FLUSH(crystallite_subF0)
crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_Fp(1:3,1:3,g,i,e) ! ...plastic def grad
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e)) ! only needed later on for stiffness calculation
crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_Lp(1:3,1:3,g,i,e) ! ...plastic velocity gradient
constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_Tstar_v(1:6,g,i,e) ! ...2nd PK stress
if (crystallite_syncSubFrac(i,e)) then ! if we just did a synchronization of states, then we wind forward without any further time integration
crystallite_syncSubFracCompleted(i,e) = .true.
crystallite_syncSubFrac(i,e) = .false.
crystallite_todo(g,i,e) = .false.
else
crystallite_todo(g,i,e) = .true.
endif
!$OMP FLUSH(crystallite_todo)
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,f12.8,a,f12.8,a,i8,1x,i2,1x,i3)') '<< CRYST >> winding forward from ', &
crystallite_subFrac(g,i,e)-formerSubStep,' to current crystallite_subfrac ', &
crystallite_subFrac(g,i,e),' in crystallite_stressAndItsTangent at el ip g ',e,i,g
write(6,*)
endif
#endif
elseif (formerSubStep > 0.0_pReal) then ! this crystallite just converged for the entire timestep
crystallite_todo(g,i,e) = .false. ! so done here
!$OMP FLUSH(crystallite_todo)
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionCrystallite)
debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) = &
debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) + 1_pInt
!$OMP END CRITICAL (distributionCrystallite)
endif
endif
! --- cutback ---
elseif (.not. crystallite_converged(g,i,e) .and. crystallite_clearToCutback(i,e)) then
if (crystallite_syncSubFrac(i,e)) then ! synchronize time
crystallite_subStep(g,i,e) = subFracIntermediate
else
crystallite_subStep(g,i,e) = subStepSizeCryst * crystallite_subStep(g,i,e) ! cut step in half and restore...
endif
!$OMP FLUSH(crystallite_subStep)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) ! ...temperature
crystallite_Fp(1:3,1:3,g,i,e) = crystallite_subFp0(1:3,1:3,g,i,e) ! ...plastic def grad
!$OMP FLUSH(crystallite_Fp)
crystallite_invFp(1:3,1:3,g,i,e) = math_inv33(crystallite_Fp(1:3,1:3,g,i,e))
!$OMP FLUSH(crystallite_invFp)
crystallite_Lp(1:3,1:3,g,i,e) = crystallite_subLp0(1:3,1:3,g,i,e) ! ...plastic velocity grad
constitutive_state(g,i,e)%p = constitutive_subState0(g,i,e)%p ! ...microstructure
crystallite_Tstar_v(1:6,g,i,e) = crystallite_subTstar0_v(1:6,g,i,e) ! ...2nd PK stress
! cant restore dotState here, since not yet calculated in first cutback after initialization
crystallite_todo(g,i,e) = crystallite_subStep(g,i,e) > subStepMinCryst ! still on track or already done (beyond repair)
!$OMP FLUSH(crystallite_todo)
#ifndef _OPENMP
if(iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
if (crystallite_todo(g,i,e)) then
write(6,'(a,f12.8,a,i8,1x,i2,1x,i3)') '<< CRYST >> cutback step in crystallite_stressAndItsTangent &
&with new crystallite_subStep: ',&
crystallite_subStep(g,i,e),' at el ip g ',e,i,g
else
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> reached minimum step size &
&in crystallite_stressAndItsTangent at el ip g ',e,i,g
endif
write(6,*)
endif
#endif
endif
! --- prepare for integration ---
if (crystallite_todo(g,i,e) .and. (crystallite_clearToWindForward(i,e) .or. crystallite_clearToCutback(i,e))) then
crystallite_subF(1:3,1:3,g,i,e) = crystallite_subF0(1:3,1:3,g,i,e) &
+ crystallite_subStep(g,i,e) &
* (crystallite_partionedF(1:3,1:3,g,i,e) - crystallite_partionedF0(1:3,1:3,g,i,e))
!$OMP FLUSH(crystallite_subF)
crystallite_Fe(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e))
crystallite_subdt(g,i,e) = crystallite_subStep(g,i,e) * crystallite_dt(g,i,e)
crystallite_converged(g,i,e) = .false. ! start out non-converged
endif
enddo ! grains
enddo ! IPs
enddo ! elements
!$OMP END PARALLEL DO
if(numerics_timeSyncing) then
if (any(.not. crystallite_localPlasticity .and. .not. crystallite_todo .and. .not. crystallite_converged &
.and. crystallite_subStep <= subStepMinCryst)) then ! no way of rescuing a nonlocal ip that violated the lower time step limit, ...
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
if (.not. crystallite_localPlasticity(g,i,e) .and. .not. crystallite_todo(g,i,e) &
.and. .not. crystallite_converged(g,i,e) .and. crystallite_subStep(g,i,e) <= subStepMinCryst) then
!$OMP CRITICAL (write2out)
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> nonlocal violated minimum subStep at el,ip,g ',e,i,g
!$OMP END CRITICAL (write2out)
endif
enddo
enddo
enddo
endif
where(.not. crystallite_localPlasticity)
crystallite_todo = .false. ! ... so let all nonlocal ips die peacefully
crystallite_subStep = 0.0_pReal
endwhere
endif
endif
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,*)
write(6,'(a,e12.5)') '<< CRYST >> min(subStep) ',minval(crystallite_subStep)
write(6,'(a,e12.5)') '<< CRYST >> max(subStep) ',maxval(crystallite_subStep)
write(6,'(a,e12.5)') '<< CRYST >> min(subFrac) ',minval(crystallite_subFrac)
write(6,'(a,e12.5)') '<< CRYST >> max(subFrac) ',maxval(crystallite_subFrac)
write(6,*)
!$OMP END CRITICAL (write2out)
endif
! --- integrate --- requires fully defined state array (basic + dependent state)
if (any(crystallite_todo)) then
select case(numerics_integrator(numerics_integrationMode))
case(1_pInt)
call crystallite_integrateStateFPI()
case(2_pInt)
call crystallite_integrateStateEuler()
case(3_pInt)
call crystallite_integrateStateAdaptiveEuler()
case(4_pInt)
call crystallite_integrateStateRK4()
case(5_pInt)
call crystallite_integrateStateRKCK45()
end select
endif
where(.not. crystallite_converged .and. crystallite_subStep > subStepMinCryst) & ! do not try non-converged & fully cutbacked any further
crystallite_todo = .true.
NiterationCrystallite = NiterationCrystallite + 1_pInt
enddo ! cutback loop
! --+>> CHECK FOR NON-CONVERGED CRYSTALLITES <<+--
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
if (.not. crystallite_converged(g,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway)
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> no convergence: respond fully elastic at el ip g ',e,i,g
write(6,*)
!$OMP END CRITICAL (write2out)
endif
invFp = math_inv33(crystallite_partionedFp0(1:3,1:3,g,i,e))
Fe_guess = math_mul33x33(crystallite_partionedF(1:3,1:3,g,i,e), invFp)
call constitutive_TandItsTangent(Tstar, junk2, Fe_guess,g,i,e)
crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(Fe_guess,math_mul33x33(Tstar,transpose(invFp)))
endif
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) then
!$OMP CRITICAL (write2out)
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> central solution of cryst_StressAndTangent at el ip g ',e,i,g
write(6,*)
write(6,'(a,/,3(12x,3(f12.4,1x)/))') '<< CRYST >> P / MPa', math_transpose33(crystallite_P(1:3,1:3,g,i,e))/1.0e6_pReal
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp', math_transpose33(crystallite_Fp(1:3,1:3,g,i,e))
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp', math_transpose33(crystallite_Lp(1:3,1:3,g,i,e))
write(6,*)
!$OMP END CRITICAL (write2out)
endif
enddo
enddo
enddo
! --+>> STIFFNESS CALCULATION <<+--
if(updateJaco) then ! Jacobian required
if (.not. analyticJaco) then ! Calculate Jacobian using perturbations
numerics_integrationMode = 2_pInt
! --- BACKUP ---
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = &
constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) ! remember unperturbed, converged state, ...
constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = &
constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) ! ... dotStates, ...
endforall
enddo
Temperature_backup = crystallite_Temperature ! ... Temperature, ...
F_backup = crystallite_subF ! ... and kinematics
Fp_backup = crystallite_Fp
InvFp_backup = crystallite_invFp
Fe_backup = crystallite_Fe
Lp_backup = crystallite_Lp
Tstar_v_backup = crystallite_Tstar_v
P_backup = crystallite_P
convergenceFlag_backup = crystallite_converged
! --- CALCULATE STATE AND STRESS FOR PERTURBATION ---
dPdF_perturbation1 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
dPdF_perturbation2 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
do perturbation = 1,2 ! forward and backward perturbation
if (iand(pert_method,perturbation) > 0_pInt) then ! mask for desired direction
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step
do k = 1,3; do l = 1,3 ! ...alter individual components
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,2(1x,i1),1x,a)') '<< CRYST >> [[[[[[ Stiffness perturbation',k,l,']]]]]]'
write(6,*)
!$OMP END CRITICAL (write2out)
endif
! --- INITIALIZE UNPERTURBED STATE ---
select case(numerics_integrator(numerics_integrationMode))
case(1_pInt) ! Fix-point method: restore to last converged state at end of subinc, since this is probably closest to perturbed state
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = &
constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e))
constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = &
constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e))
endforall
enddo
crystallite_Temperature = Temperature_backup
crystallite_Fp = Fp_backup
crystallite_invFp = InvFp_backup
crystallite_Fe = Fe_backup
crystallite_Lp = Lp_backup
crystallite_Tstar_v = Tstar_v_backup
case(2_pInt,3_pInt) ! explicit Euler methods: nothing to restore (except for F), since we are only doing a stress integration step
case(4_pInt,5_pInt) ! explicit Runge-Kutta methods: restore to start of subinc, since we are doing a full integration of state and stress
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = &
constitutive_subState0(g,i,e)%p(1:constitutive_sizeState(g,i,e))
constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = &
constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e))
endforall
enddo
crystallite_Temperature = crystallite_subTemperature0
crystallite_Fp = crystallite_subFp0
crystallite_Fe = crystallite_subFe0
crystallite_Lp = crystallite_subLp0
crystallite_Tstar_v = crystallite_subTstar0_v
end select
! --- PERTURB EITHER FORWARD OR BACKWARD ---
crystallite_subF = F_backup
crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert
crystallite_converged = convergenceFlag_backup
crystallite_todo = crystallite_requested .and. crystallite_converged
where (crystallite_todo) crystallite_converged = .false. ! start out non-converged
select case(numerics_integrator(numerics_integrationMode))
case(1_pInt)
call crystallite_integrateStateFPI()
case(2_pInt)
call crystallite_integrateStateEuler()
case(3_pInt)
call crystallite_integrateStateAdaptiveEuler()
case(4_pInt)
call crystallite_integrateStateRK4()
case(5_pInt)
call crystallite_integrateStateRKCK45()
end select
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
select case(perturbation)
case(1_pInt)
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) & ! converged state warrants stiffness update
dPdF_perturbation1(1:3,1:3,k,l,g,i,e) = (crystallite_P(1:3,1:3,g,i,e) - P_backup(1:3,1:3,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
case(2_pInt)
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) & ! converged state warrants stiffness update
dPdF_perturbation2(1:3,1:3,k,l,g,i,e) = (crystallite_P(1:3,1:3,g,i,e) - P_backup(1:3,1:3,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
end select
enddo
enddo; enddo ! k,l component perturbation loop
endif
enddo ! perturbation direction
! --- STIFFNESS ACCORDING TO PERTURBATION METHOD AND CONVERGENCE ---
elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
select case(pert_method)
case(1_pInt)
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 1: central solution converged
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e)
case(2_pInt)
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 2: central solution converged
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e)
case(3_pInt)
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 3: central solution converged
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.5_pReal* ( dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e) &
+ dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e))
end select
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
crystallite_requested(g,i,e) .and. .not. convergenceFlag_backup(g,i,e)) & ! for any pertubation mode: if central solution did not converge...
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = crystallite_fallbackdPdF(1:3,1:3,1:3,1:3,g,i,e) ! ...use (elastic) fallback
enddo elementLooping
! --- RESTORE ---
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = &
constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e))
constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = &
constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e))
endforall
enddo
crystallite_Temperature = Temperature_backup
crystallite_subF = F_backup
crystallite_Fp = Fp_backup
crystallite_invFp = InvFp_backup
crystallite_Fe = Fe_backup
crystallite_Lp = Lp_backup
crystallite_Tstar_v = Tstar_v_backup
crystallite_P = P_backup
crystallite_converged = convergenceFlag_backup
else ! Calculate Jacobian using analytical expression
! --- CALCULATE ANALYTIC dPdF ---
!$OMP PARALLEL DO PRIVATE(dFedF,dSdF,dSdFe,myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1_pInt,myNgrains
dFedF = 0.0_pReal
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
dFedF(p,o,o,1:3) = crystallite_invFp(1:3,p,g,i,e) ! dFe^T_ij/dF_kl = delta_jk * (Fp current^-1)_li
enddo; enddo
call constitutive_TandItsTangent(junk,dSdFe,crystallite_subFe0(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative
dSdF = math_mul3333xx3333(dSdFe,dFedF) ! dS/dF = dS/dFe * dFe/dF
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
crystallite_dPdF(1:3,1:3,o,p,g,i,e) = math_mul33x33(math_mul33x33(dFedF(1:3,1:3,o,p),&
math_Mandel6to33(crystallite_Tstar_v)),math_transpose33(&
crystallite_invFp(1:3,1:3,g,i,e))) & ! dP/dF = dFe/dF * S * Fp^-T...
+ math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e),&
math_mul33x33(dSdF(1:3,1:3,o,p),math_transpose33(crystallite_invFp(1:3,1:3,g,i,e)))) ! + Fe * dS/dF * Fp^-T
enddo; enddo
enddo; enddo; enddo
!$OMP END PARALLEL DO
endif
if (rate_sensitivity) then
!$OMP PARALLEL DO PRIVATE(dFedFdot,dSdFdot,dSdFe,Fpinv_rate,FDot_inv,counter,dFp_invdFdot,myNgrains)
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1_pInt,myNgrains
Fpinv_rate = math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e),crystallite_Lp(1:3,1:3,g,i,e)) ! dFp^-1 = dFp^-1/dt *dt... dFp may overshoot dF by small ammount as
FDot_inv = crystallite_subF(1:3,1:3,g,i,e) - crystallite_F0(1:3,1:3,g,i,e)
counter = 0.0_pReal
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
if (abs(FDot_inv(o,p)) < relevantStrain) then
FDot_inv(o,p) = 0.0_pReal
else
counter = counter + 1.0_pReal
FDot_inv(o,p) = crystallite_dt(g,i,e)/FDot_inv(o,p)
endif
enddo; enddo
if (counter > 0.0_pReal) FDot_inv = FDot_inv/counter
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
dFp_invdFdot(o,p,1:3,1:3) = Fpinv_rate(o,p)*FDot_inv
enddo; enddo
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
dFedFdot(1:3,1:3,o,p) = math_transpose33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
dFp_invdFdot(1:3,1:3,o,p)))
enddo; enddo
call constitutive_TandItsTangent(junk,dSdFe,crystallite_subFe0(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative
dSdFdot = math_mul3333xx3333(dSdFe,dFedFdot)
do p=1_pInt,3_pInt; do o=1_pInt,3_pInt
crystallite_dPdF(1:3,1:3,o,p,g,i,e) = crystallite_dPdF(1:3,1:3,o,p,g,i,e) - &
(math_mul33x33(math_mul33x33(dFedFdot(1:3,1:3,o,p), &
math_Mandel6to33(crystallite_Tstar_v)),math_transpose33( &
crystallite_invFp(1:3,1:3,g,i,e))) + & ! dP/dFdot = dFe/dFdot * S * Fp^-T...
math_mul33x33(math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e), &
math_Mandel6to33(crystallite_Tstar_v)),math_transpose33(dFp_invdFdot(1:3,1:3,o,p))) & ! + Fe * S * dFp^-T/dFdot...
+ math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e), &
math_mul33x33(dSdFdot(1:3,1:3,o,p),math_transpose33(crystallite_invFp(1:3,1:3,g,i,e))))) ! + Fe * dS/dFdot * Fp^-T
enddo; enddo
enddo; enddo; enddo
!$OMP END PARALLEL DO
endif
endif ! jacobian calculation
end subroutine crystallite_stressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state and Temperature with 4th order explicit Runge Kutta method
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateRK4(gg,ii,ee)
use prec, only: pInt, &
pReal
use numerics, only: numerics_integrationMode
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_state, &
constitutive_subState0, &
constitutive_dotState, &
constitutive_RK4dotState, &
constitutive_collectDotState, &
constitutive_deltaState, &
constitutive_collectDeltaState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
real(pReal), dimension(4), parameter :: timeStepFraction = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
real(pReal), dimension(4), parameter :: weight = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal] ! weight of slope used for Runge Kutta integration
!*** input variables ***!
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** output variables ***!
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
n, &
mySizeDotState
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
RK4dotTemperature ! evolution of Temperature of each grain for Runge Kutta integration
logical singleRun ! flag indicating computation for single (g,i,e) triple
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = .false.
endif
! --- FIRST RUNGE KUTTA STEP ---
RK4dotTemperature = 0.0_pReal ! initialize Runge-Kutta dotTemperature
!$OMP PARALLEL PRIVATE(mySizeDotState)
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
constitutive_RK4dotState(g,i,e)%p = 0.0_pReal ! initialize Runge-Kutta dotState
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION ---
do n = 1_pInt,4_pInt
! --- state update ---
!$OMP PARALLEL PRIVATE(mySizeDotState)
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
if (n < 4) then
constitutive_RK4dotState(g,i,e)%p = constitutive_RK4dotState(g,i,e)%p + weight(n)*constitutive_dotState(g,i,e)%p
RK4dotTemperature(g,i,e) = RK4dotTemperature(g,i,e) + weight(n)*crystallite_dotTemperature(g,i,e)
elseif (n == 4) then
constitutive_dotState(g,i,e)%p = (constitutive_RK4dotState(g,i,e)%p + &
weight(n)*constitutive_dotState(g,i,e)%p) / 6.0_pReal ! use weighted RKdotState for final integration
crystallite_dotTemperature(g,i,e) = (RK4dotTemperature(g,i,e) + weight(n)*crystallite_dotTemperature(g,i,e)) / 6.0_pReal
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) * timeStepFraction(n)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) * timeStepFraction(n)
if (n == 4) then ! final integration step
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g
write(6,*)
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
write(6,*)
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
write(6,*)
endif
#endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- state jump ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- update dependent states ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- stress integration ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,timeStepFraction(n)) ! fraction of original times step
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- dot state and RK dot state---
if (n < 4) then
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), timeStepFraction(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
endif
!$OMP END PARALLEL
enddo
! --- SET CONVERGENCE FLAG ---
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(4,numerics_integrationMode) = &
debug_StateLoopDistribution(4,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
! --- CHECK NONLOCAL CONVERGENCE ---
if (.not. singleRun) then ! if not requesting Integration of just a single IP
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
endif
endif
end subroutine crystallite_integrateStateRK4
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state and Temperature with 5th order Runge-Kutta Cash-Karp method with
!> adaptive step size (use 5th order solution to advance = "local extrapolation")
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateRKCK45(gg,ii,ee)
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use numerics, only: rTol_crystalliteState, &
rTol_crystalliteTemperature, &
numerics_integrationMode
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_maxSizeDotState, &
constitutive_state, &
constitutive_aTolState, &
constitutive_subState0, &
constitutive_dotState, &
constitutive_RKCK45dotState, &
constitutive_collectDotState, &
constitutive_deltaState, &
constitutive_collectDeltaState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
n, & ! stage index in integration stage loop
mySizeDotState, & ! size of dot State
s ! state index
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
RKCK45dotTemperature ! evolution of Temperature of each grain for Runge Kutta Cash Karp integration
real(pReal), dimension(5,5) :: a ! coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6)
real(pReal), dimension(6) :: b, db ! coefficients in Butcher tableau (used for final integration and error estimate)
real(pReal), dimension(5) :: c ! coefficients in Butcher tableau (fractions of original time step in stages 2 to 6)
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
stateResiduum, & ! residuum from evolution in micrstructure
relStateResiduum ! relative residuum from evolution in microstructure
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
temperatureResiduum, & ! residuum from evolution in temperature
relTemperatureResiduum ! relative residuum from evolution in temperature
logical singleRun ! flag indicating computation for single (g,i,e) triple
! --- FILL BUTCHER TABLEAU ---
a = 0.0_pReal
b = 0.0_pReal
db = 0.0_pReal
c = 0.0_pReal
a(1,1) = 0.2_pReal
a(1,2) = 0.075_pReal
a(2,2) = 0.225_pReal
a(1,3) = 0.3_pReal
a(2,3) = -0.9_pReal
a(3,3) = 1.2_pReal
a(1,4) = -11.0_pReal / 54.0_pReal
a(2,4) = 2.5_pReal
a(3,4) = -70.0_pReal / 27.0_pReal
a(4,4) = 35.0_pReal / 27.0_pReal
a(1,5) = 1631.0_pReal / 55296.0_pReal
a(2,5) = 175.0_pReal / 512.0_pReal
a(3,5) = 575.0_pReal / 13824.0_pReal
a(4,5) = 44275.0_pReal / 110592.0_pReal
a(5,5) = 253.0_pReal / 4096.0_pReal
b(1) = 37.0_pReal / 378.0_pReal
b(3) = 250.0_pReal / 621.0_pReal
b(4) = 125.0_pReal / 594.0_pReal
b(6) = 512.0_pReal / 1771.0_pReal
db(1) = b(1) - 2825.0_pReal / 27648.0_pReal
db(3) = b(3) - 18575.0_pReal / 48384.0_pReal
db(4) = b(4) - 13525.0_pReal / 55296.0_pReal
db(5) = - 277.0_pReal / 14336.0_pReal
db(6) = b(6) - 0.25_pReal
c(1) = 0.2_pReal
c(2) = 0.3_pReal
c(3) = 0.6_pReal
c(4) = 1.0_pReal
c(5) = 0.875_pReal
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = .false.
endif
! --- FIRST RUNGE KUTTA STEP ---
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,1x,i1)') '<< CRYST >> RUNGE KUTTA STEP',1
!$OMP END CRITICAL (write2out)
endif
!$OMP PARALLEL PRIVATE(mySizeDotState)
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --- SECOND TO SIXTH RUNGE KUTTA STEP ---
do n = 1_pInt,5_pInt
! --- state update ---
!$OMP PARALLEL PRIVATE(mySizeDotState)
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_RKCK45dotState(n,g,i,e)%p = constitutive_dotState(g,i,e)%p ! store Runge-Kutta dotState
RKCK45dotTemperature(n,g,i,e) = crystallite_dotTemperature(g,i,e) ! store Runge-Kutta dotTemperature
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
if (n == 1) then ! NEED TO DO THE ADDITION IN THIS LENGTHY WAY BECAUSE OF PARALLELIZATION (CAN'T USE A REDUCTION CLAUSE ON A POINTER OR USER DEFINED TYPE)
constitutive_dotState(g,i,e)%p = a(1,1) * constitutive_RKCK45dotState(1,g,i,e)%p
crystallite_dotTemperature(g,i,e) = a(1,1) * RKCK45dotTemperature(1,g,i,e)
elseif (n == 2) then
constitutive_dotState(g,i,e)%p = a(1,2) * constitutive_RKCK45dotState(1,g,i,e)%p &
+ a(2,2) * constitutive_RKCK45dotState(2,g,i,e)%p
crystallite_dotTemperature(g,i,e) = a(1,2) * RKCK45dotTemperature(1,g,i,e) &
+ a(2,2) * RKCK45dotTemperature(2,g,i,e)
elseif (n == 3) then
constitutive_dotState(g,i,e)%p = a(1,3) * constitutive_RKCK45dotState(1,g,i,e)%p &
+ a(2,3) * constitutive_RKCK45dotState(2,g,i,e)%p &
+ a(3,3) * constitutive_RKCK45dotState(3,g,i,e)%p
crystallite_dotTemperature(g,i,e) = a(1,3) * RKCK45dotTemperature(1,g,i,e) &
+ a(2,3) * RKCK45dotTemperature(2,g,i,e) &
+ a(3,3) * RKCK45dotTemperature(3,g,i,e)
elseif (n == 4) then
constitutive_dotState(g,i,e)%p = a(1,4) * constitutive_RKCK45dotState(1,g,i,e)%p &
+ a(2,4) * constitutive_RKCK45dotState(2,g,i,e)%p &
+ a(3,4) * constitutive_RKCK45dotState(3,g,i,e)%p &
+ a(4,4) * constitutive_RKCK45dotState(4,g,i,e)%p
crystallite_dotTemperature(g,i,e) = a(1,4) * RKCK45dotTemperature(1,g,i,e) &
+ a(2,4) * RKCK45dotTemperature(2,g,i,e) &
+ a(3,4) * RKCK45dotTemperature(3,g,i,e) &
+ a(4,4) * RKCK45dotTemperature(4,g,i,e)
elseif (n == 5) then
constitutive_dotState(g,i,e)%p = a(1,5) * constitutive_RKCK45dotState(1,g,i,e)%p &
+ a(2,5) * constitutive_RKCK45dotState(2,g,i,e)%p &
+ a(3,5) * constitutive_RKCK45dotState(3,g,i,e)%p &
+ a(4,5) * constitutive_RKCK45dotState(4,g,i,e)%p &
+ a(5,5) * constitutive_RKCK45dotState(5,g,i,e)%p
crystallite_dotTemperature(g,i,e) = a(1,5) * RKCK45dotTemperature(1,g,i,e) &
+ a(2,5) * RKCK45dotTemperature(2,g,i,e) &
+ a(3,5) * RKCK45dotTemperature(3,g,i,e) &
+ a(4,5) * RKCK45dotTemperature(4,g,i,e) &
+ a(5,5) * RKCK45dotTemperature(5,g,i,e)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- state jump ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- update dependent states ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- stress integration ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,c(n)) ! fraction of original time step
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- dot state and RK dot state---
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',n+1_pInt
endif
#endif
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), c(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
enddo
! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE AND TEMPERATURE ---
relStateResiduum = 0.0_pReal
relTemperatureResiduum = 0.0_pReal
!$OMP PARALLEL PRIVATE(mySizeDotState)
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_RKCK45dotState(6,g,i,e)%p = constitutive_dotState(g,i,e)%p ! store Runge-Kutta dotState
RKCK45dotTemperature(6,g,i,e) = crystallite_dotTemperature(g,i,e) ! store Runge-Kutta dotTemperature
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
! --- absolute residuum in state and temperature ---
! NEED TO DO THE ADDITION IN THIS LENGTHY WAY BECAUSE OF PARALLELIZATION
! CAN'T USE A REDUCTION CLAUSE ON A POINTER OR USER DEFINED TYPE
stateResiduum(1:mySizeDotState,g,i,e) = &
( db(1) * constitutive_RKCK45dotState(1,g,i,e)%p(1:mySizeDotState) &
+ db(2) * constitutive_RKCK45dotState(2,g,i,e)%p(1:mySizeDotState) &
+ db(3) * constitutive_RKCK45dotState(3,g,i,e)%p(1:mySizeDotState) &
+ db(4) * constitutive_RKCK45dotState(4,g,i,e)%p(1:mySizeDotState) &
+ db(5) * constitutive_RKCK45dotState(5,g,i,e)%p(1:mySizeDotState) &
+ db(6) * constitutive_RKCK45dotState(6,g,i,e)%p(1:mySizeDotState)) &
* crystallite_subdt(g,i,e)
temperatureResiduum(g,i,e) = ( db(1) * RKCK45dotTemperature(1,g,i,e) &
+ db(2) * RKCK45dotTemperature(2,g,i,e) &
+ db(3) * RKCK45dotTemperature(3,g,i,e) &
+ db(4) * RKCK45dotTemperature(4,g,i,e) &
+ db(5) * RKCK45dotTemperature(5,g,i,e) &
+ db(6) * RKCK45dotTemperature(6,g,i,e)) &
* crystallite_subdt(g,i,e)
! --- dot state and dot temperature ---
constitutive_dotState(g,i,e)%p = b(1) * constitutive_RKCK45dotState(1,g,i,e)%p &
+ b(2) * constitutive_RKCK45dotState(2,g,i,e)%p &
+ b(3) * constitutive_RKCK45dotState(3,g,i,e)%p &
+ b(4) * constitutive_RKCK45dotState(4,g,i,e)%p &
+ b(5) * constitutive_RKCK45dotState(5,g,i,e)%p &
+ b(6) * constitutive_RKCK45dotState(6,g,i,e)%p
crystallite_dotTemperature(g,i,e) = b(1) * RKCK45dotTemperature(1,g,i,e) &
+ b(2) * RKCK45dotTemperature(2,g,i,e) &
+ b(3) * RKCK45dotTemperature(3,g,i,e) &
+ b(4) * RKCK45dotTemperature(4,g,i,e) &
+ b(5) * RKCK45dotTemperature(5,g,i,e) &
+ b(6) * RKCK45dotTemperature(6,g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- state and temperature update ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- relative residui and state convergence ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
forall (s = 1_pInt:mySizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) &
relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / constitutive_state(g,i,e)%p(s)
if (crystallite_Temperature(g,i,e) > 0) then
relTemperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) / crystallite_Temperature(g,i,e)
endif
!$OMP FLUSH(relStateResiduum,relTemperatureResiduum)
crystallite_todo(g,i,e) = &
( all( abs(relStateResiduum(:,g,i,e)) < rTol_crystalliteState &
.or. abs(stateResiduum(1:mySizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState) ) &
.and. abs(relTemperatureResiduum(g,i,e)) < rTol_crystalliteTemperature )
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt&
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i3,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g
write(6,*)
write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> absolute residuum tolerance', &
stateResiduum(1:mySizeDotState,g,i,e) / constitutive_aTolState(g,i,e)%p(1:mySizeDotState)
write(6,*)
write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> relative residuum tolerance', &
relStateResiduum(1:mySizeDotState,g,i,e) / rTol_crystalliteState
write(6,*)
write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
write(6,*)
write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
write(6,*)
endif
#endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE DEPENDENT STATES IF RESIDUUM BELOW TOLERANCE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- FINAL STRESS INTEGRATION STEP IF RESIDUUM BELOW TOLERANCE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- SET CONVERGENCE FLAG ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(6,numerics_integrationMode) = &
debug_StateLoopDistribution(6,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --- nonlocal convergence check ---
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged'
write(6,*)
!$OMP END CRITICAL (write2out)
endif
if (.not. singleRun) then ! if not requesting Integration of just a single IP
if ( any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
endif
endif
end subroutine crystallite_integrateStateRKCK45
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state and Temperature with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateAdaptiveEuler(gg,ii,ee)
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use numerics, only: rTol_crystalliteState, &
rTol_crystalliteTemperature, &
numerics_integrationMode
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_maxSizeDotState, &
constitutive_state, &
constitutive_aTolState, &
constitutive_subState0, &
constitutive_dotState, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
mySizeDotState, & ! size of dot State
s ! state index
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
stateResiduum, & ! residuum from evolution in micrstructure
relStateResiduum ! relative residuum from evolution in microstructure
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
temperatureResiduum, & ! residuum from evolution in temperature
relTemperatureResiduum ! relative residuum from evolution in temperature
logical singleRun ! flag indicating computation for single (g,i,e) triple
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = .false.
endif
stateResiduum = 0.0_pReal
!$OMP PARALLEL PRIVATE(mySizeDotState)
if (numerics_integrationMode == 1_pInt) then
! --- DOT STATE AND TEMPERATURE (EULER INTEGRATION) ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE UPDATE (EULER INTEGRATION) ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
stateResiduum(1:mySizeDotState,g,i,e) = - 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature
temperatureResiduum(g,i,e) = - 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMP ENDDO
endif
! --- STRESS INTEGRATION (EULER INTEGRATION) ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
if (numerics_integrationMode == 1_pInt) then
! --- DOT STATE AND TEMPERATURE (HEUN METHOD) ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- ERROR ESTIMATE FOR STATE AND TEMPERATURE (HEUN METHOD) ---
!$OMP SINGLE
relStateResiduum = 0.0_pReal
relTemperatureResiduum = 0.0_pReal
!$OMP END SINGLE
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
! --- contribution of heun step to absolute residui ---
stateResiduum(1:mySizeDotState,g,i,e) = stateResiduum(1:mySizeDotState,g,i,e) &
+ 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature
temperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) &
+ 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
!$OMP FLUSH(stateResiduum,temperatureResiduum)
! --- relative residui ---
forall (s = 1_pInt:mySizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) &
relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / constitutive_state(g,i,e)%p(s)
if (crystallite_Temperature(g,i,e) > 0_pInt) then
relTemperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) / crystallite_Temperature(g,i,e)
endif
!$OMP FLUSH(relStateResiduum,relTemperatureResiduum)
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g
write(6,*)
write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> absolute residuum tolerance', &
stateResiduum(1:mySizeDotState,g,i,e) / constitutive_aTolState(g,i,e)%p(1:mySizeDotState)
write(6,*)
write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> relative residuum tolerance', &
relStateResiduum(1:mySizeDotState,g,i,e) / rTol_crystalliteState
write(6,*)
write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState) &
- 2.0_pReal * stateResiduum(1:mySizeDotState,g,i,e) / crystallite_subdt(g,i,e) ! calculate former dotstate from higher order solution and state residuum
write(6,*)
write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
write(6,*)
endif
#endif
! --- converged ? ---
if ( all( abs(relStateResiduum(:,g,i,e)) < rTol_crystalliteState &
.or. abs(stateResiduum(1:mySizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState)) &
.and. abs(relTemperatureResiduum(g,i,e)) < rTol_crystalliteTemperature ) then
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(2,numerics_integrationMode) = &
debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
elseif (numerics_integrationMode > 1) then ! stiffness calculation
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(2,numerics_integrationMode) = &
debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
endif
!$OMP END PARALLEL
! --- NONLOCAL CONVERGENCE CHECK ---
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged'
write(6,*)
!$OMP END CRITICAL (write2out)
endif
if (.not. singleRun) then ! if not requesting Integration of just a single IP
if ( any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
endif
endif
end subroutine crystallite_integrateStateAdaptiveEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state and Temperature with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateEuler(gg,ii,ee)
use numerics, only: numerics_integrationMode, &
numerics_timeSyncing
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems
use material, only: homogenization_Ngrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_state, &
constitutive_subState0, &
constitutive_dotState, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
mySizeDotState
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
logical singleRun ! flag indicating computation for single (g,i,e) triple
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
singleRun = .false.
endif
!$OMP PARALLEL
if (numerics_integrationMode == 1_pInt) then
! --- DOT STATE AND TEMPERATURE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localPlasticity(g,i,e) .and. .not. numerics_timeSyncing) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE STATE AND TEMPERATURE ---
!$OMP DO PRIVATE(mySizeDotState)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g
write(6,*)
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
write(6,*)
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
write(6,*)
endif
#endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local...
.and. .not. numerics_timeSyncing) then
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE DEPENDENT STATES ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMP ENDDO
endif
! --- STRESS INTEGRATION ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local...
.and. .not. numerics_timeSyncing) then
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- SET CONVERGENCE FLAG ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(1,numerics_integrationMode) = &
debug_StateLoopDistribution(1,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --- CHECK NON-LOCAL CONVERGENCE ---
if (.not. singleRun) then ! if not requesting Integration of just a single IP
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity) & ! any non-local not yet converged (or broken)...
.and. .not. numerics_timeSyncing) then
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
endif
endif
end subroutine crystallite_integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state and Temperature with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
subroutine crystallite_integrateStateFPI(gg,ii,ee)
use debug, only: debug_e, &
debug_i, &
debug_g, &
debug_level,&
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_StateLoopDistribution
use numerics, only: nState, &
numerics_integrationMode, &
rTol_crystalliteState, &
rTol_crystalliteTemperature
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems
use material, only: homogenization_Ngrains
use constitutive, only: constitutive_subState0, &
constitutive_state, &
constitutive_sizeDotState, &
constitutive_maxSizeDotState, &
constitutive_dotState, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure, &
constitutive_previousDotState, &
constitutive_previousDotState2, &
constitutive_aTolState
implicit none
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** local variables ***!
integer(pInt) NiterationState, & ! number of iterations in state loop
e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
mySizeDotState
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal) dot_prod12, &
dot_prod22, &
stateDamper, & ! damper for integration of state
temperatureResiduum
real(pReal), dimension(constitutive_maxSizeDotState) :: &
stateResiduum, &
tempState
logical singleRun ! flag indicating computation for single (g,i,e) triple
singleRun = present(ee) .and. present(ii) .and. present(gg)
if (singleRun) then
eIter = ee
iIter(1:2,ee) = ii
gIter(1:2,ee) = gg
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(1:2,e) = FEsolving_execIP(1:2,e)
gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))]
enddo
endif
! --+>> PREGUESS FOR STATE <<+--
!$OMP PARALLEL
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
constitutive_previousDotState(g,i,e)%p = 0.0_pReal
constitutive_previousDotState2(g,i,e)%p = 0.0_pReal
enddo; enddo; enddo
!$OMP ENDDO
! --- DOT STATES ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken is a non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals done (and broken)
!$OMP END CRITICAL (checkTodo)
else ! broken one was local...
crystallite_todo(g,i,e) = .false. ! ... done (and broken)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE STATE AND TEMPERATURE ---
!$OMP DO PRIVATE(mySizeDotState)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
+ constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
! --+>> STATE LOOP <<+--
NiterationState = 0_pInt
do while (any(crystallite_todo .and. .not. crystallite_converged) .and. NiterationState < nState ) ! convergence loop for crystallite
NiterationState = NiterationState + 1_pInt
!$OMP PARALLEL
! --- UPDATE DEPENDENT STATES ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), &
crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
endif
constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p ! remember previous dotState
constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p ! remember current dotState
enddo; enddo; enddo
!$OMP ENDDO
! --- STRESS INTEGRATION ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ... then all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP SINGLE
!$OMP CRITICAL (write2out)
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after stress integration'
endif
!$OMP END CRITICAL (write2out)
!$OMP END SINGLE
! --- DOT STATE AND TEMPERATURE ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
crystallite_todo(g,i,e) = .false. ! ... skip me next time
if (.not. crystallite_localPlasticity(g,i,e)) then ! if me is non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- UPDATE STATE AND TEMPERATURE ---
!$OMP DO PRIVATE(dot_prod12,dot_prod22,statedamper,mySizeDotState,stateResiduum,temperatureResiduum,tempState)
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
! --- state damper ---
dot_prod12 = dot_product( constitutive_dotState(g,i,e)%p - constitutive_previousDotState(g,i,e)%p, &
constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p )
dot_prod22 = dot_product( constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p, &
constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p )
if ( dot_prod22 > 0.0_pReal &
.and. ( dot_prod12 < 0.0_pReal &
.or. dot_product(constitutive_dotState(g,i,e)%p, constitutive_previousDotState(g,i,e)%p) < 0.0_pReal) ) then
statedamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
statedamper = 1.0_pReal
endif
! --- get residui ---
mySizeDotState = constitutive_sizeDotState(g,i,e)
stateResiduum(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) &
- constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
- (constitutive_dotState(g,i,e)%p * statedamper &
+ constitutive_previousDotState(g,i,e)%p * (1.0_pReal - statedamper)) * crystallite_subdt(g,i,e)
temperatureResiduum = crystallite_Temperature(g,i,e) &
- crystallite_subTemperature0(g,i,e) &
- crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
! --- correct state and temperature with residuum ---
tempState(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) - stateResiduum(1:mySizeDotState) ! need to copy to local variable, since we cant flush a pointer in openmp
crystallite_Temperature(g,i,e) = crystallite_Temperature(g,i,e) - temperatureResiduum
!$OMP FLUSH(crystallite_Temperature)
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g
write(6,*)
write(6,'(a,f6.1)') '<< CRYST >> statedamper ',statedamper
write(6,*)
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> state residuum',stateResiduum(1:mySizeDotState)
write(6,*)
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state',tempState(1:mySizeDotState)
write(6,*)
endif
#endif
! --- store corrected dotState --- (cannot do this before state update, because not sure how to flush pointers in openmp)
constitutive_dotState(g,i,e)%p = constitutive_dotState(g,i,e)%p * statedamper &
+ constitutive_previousDotState(g,i,e)%p * (1.0_pReal - statedamper)
! --- converged ? ---
if ( all( abs(stateResiduum(1:mySizeDotState)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState) &
.or. abs(stateResiduum(1:mySizeDotState)) < rTol_crystalliteState &
* abs(tempState(1:mySizeDotState)) ) &
.and. (abs(temperatureResiduum) < rTol_crystalliteTemperature * crystallite_Temperature(g,i,e) &
.or. crystallite_Temperature(g,i,e) == 0.0_pReal) ) then
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(NiterationState,numerics_integrationMode) = &
debug_StateLoopDistribution(NiterationState,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionState)
endif
endif
constitutive_state(g,i,e)%p(1:mySizeDotState) = tempState(1:mySizeDotState) ! copy local backup to global pointer
endif
enddo; enddo; enddo
!$OMP ENDDO
! --- STATE JUMP ---
!$OMP DO
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
!$OMP FLUSH(crystallite_todo)
if (crystallite_todo(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged and still alive...
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
!$OMP FLUSH(crystallite_todo)
if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken
crystallite_converged(g,i,e) = .false.
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL (checkTodo)
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
!$OMP END CRITICAL (checkTodo)
endif
endif
endif
enddo; enddo; enddo
!$OMP ENDDO
!$OMP END PARALLEL
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL(write2out)
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), &
' grains converged after state integration no. ', NiterationState
write(6,*)
!$OMP END CRITICAL(write2out)
endif
! --- NON-LOCAL CONVERGENCE CHECK ---
if (.not. singleRun) then ! if not requesting Integration of just a single IP
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
endif
endif
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
!$OMP CRITICAL(write2out)
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_converged(:,:,:)),' grains converged after non-local check'
write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after state integration no. ',&
NiterationState
write(6,*)
!$OMP END CRITICAL(write2out)
endif
enddo ! crystallite convergence loop
end subroutine crystallite_integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief calculates a jump in the state according to the current state and the current stress
!--------------------------------------------------------------------------------------------------
function crystallite_stateJump(g,i,e)
use debug, only: debug_level, &
debug_crystallite, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems
use material, only: homogenization_Ngrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_state, &
constitutive_deltaState, &
constitutive_collectDeltaState, &
constitutive_microstructure
implicit none
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
!*** output variables ***!
logical crystallite_stateJump
!*** local variables ***!
integer(pInt) mySizeDotState
crystallite_stateJump = .false.
call constitutive_collectDeltaState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Temperature(g,i,e), g,i,e)
mySizeDotState = constitutive_sizeDotState(g,i,e)
if (any(constitutive_deltaState(g,i,e)%p(1:mySizeDotState) /= constitutive_deltaState(g,i,e)%p(1:mySizeDotState))) then
return
endif
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) &
+ constitutive_deltaState(g,i,e)%p(1:mySizeDotState)
#ifndef _OPENMP
if (any(constitutive_deltaState(g,i,e)%p(1:mySizeDotState) /= 0.0_pReal) &
.and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g
write(6,*)
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> deltaState', constitutive_deltaState(g,i,e)%p(1:mySizeDotState)
write(6,*)
write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
write(6,*)
endif
#endif
crystallite_stateJump = .true.
end function crystallite_stateJump
!--------------------------------------------------------------------------------------------------
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
!> intermediate acceleration of the Newton-Raphson correction
!--------------------------------------------------------------------------------------------------
function crystallite_integrateStress(&
g,& ! grain number
i,& ! integration point number
e,& ! element number
timeFraction &
)
use prec, only: pLongInt
use numerics, only: nStress, &
aTol_crystalliteStress, &
rTol_crystalliteStress, &
iJacoLpresiduum, &
numerics_integrationMode
use debug, only: debug_level, &
debug_crystallite, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g, &
debug_cumLpCalls, &
debug_cumLpTicks, &
debug_StressLoopDistribution
use constitutive, only: constitutive_LpAndItsTangent, &
constitutive_TandItsTangent, &
constitutive_homogenizedC
use math, only: math_mul33x33, &
math_mul33xx33, &
math_mul66x6, &
math_mul99x99, &
math_transpose33, &
math_inv33, &
math_invert33, &
math_invert, &
math_det33, &
math_norm33, &
math_I3, &
math_identity2nd, &
math_Mandel66to3333, &
math_Mandel6to33, &
math_Mandel33to6, &
math_Plain3333to99, &
math_Plain33to9, &
math_Plain9to33
implicit none
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep
!*** output variables ***!
logical crystallite_integrateStress ! flag indicating if integration suceeded
!*** local variables ***!
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
Fp_current, & ! plastic deformation gradient at start of timestep
Fp_new, & ! plastic deformation gradient at end of timestep
Fe_new, & ! elastic deformation gradient at end of timestep
invFp_new, & ! inverse of Fp_new
invFp_current, & ! inverse of Fp_current
Lpguess, & ! current guess for plastic velocity gradient
Lpguess_old, & ! known last good guess for plastic velocity gradient
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
residuum, & ! current residuum of plastic velocity gradient
residuum_old, & ! last residuum of plastic velocity gradient
deltaLp, & ! direction of next guess
Tstar,& ! 2nd Piola-Kirchhoff Stress
A,&
B, &
Fe ! elastic deformation gradient
real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation
real(pReal), dimension(9):: work ! needed for matrix inversion by LAPACK
integer(pInt), dimension(9) :: ipiv ! needed for matrix inversion by LAPACK
real(pReal), dimension(9,9) :: dLp_dT_constitutive, & ! partial derivative of plastic velocity gradient calculated by constitutive law
dT_dFe_constitutive, & ! partial derivative of 2nd Piola-Kirchhoff stress calculated by constitutive law
dFe_dLp, & ! partial derivative of elastic deformation gradient
dR_dLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
dR_dLp2 ! working copy of dRdLp
real(pReal), dimension(3,3,3,3):: dT_dFe3333, & ! partial derivative of 2nd Piola-Kirchhoff stress
dFe_dLp3333 ! partial derivative of elastic deformation gradient
real(pReal) p_hydro, & ! volumetric part of 2nd Piola-Kirchhoff Stress
det, & ! determinant
steplength0, &
steplength, &
dt, & ! time increment
aTol
logical error ! flag indicating an error
integer(pInt) NiterationStress, & ! number of stress integrations
ierr, & ! error indicator for LAPACK
n, &
o, &
p, &
jacoCounter ! counter to check for Jacobian update
integer(pLongInt) tick, &
tock, &
tickrate, &
maxticks
external :: dgesv
!* be pessimistic
crystallite_integrateStress = .false.
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress at el ip g ',e,i,g
endif
#endif
!* only integrate over fraction of timestep?
if (present(timeFraction)) then
dt = crystallite_subdt(g,i,e) * timeFraction
Fg_new = crystallite_subF0(1:3,1:3,g,i,e) + (crystallite_subF(1:3,1:3,g,i,e) - crystallite_subF0(1:3,1:3,g,i,e)) * timeFraction
else
dt = crystallite_subdt(g,i,e)
Fg_new = crystallite_subF(1:3,1:3,g,i,e)
endif
!* feed local variables
Fp_current = crystallite_subFp0(1:3,1:3,g,i,e) ! "Fp_current" is only used as temp var here...
Lpguess_old = crystallite_Lp(1:3,1:3,g,i,e) ! consider present Lp good (i.e. worth remembering) ...
Lpguess = crystallite_Lp(1:3,1:3,g,i,e) ! ... and take it as first guess
!* inversion of Fp_current...
invFp_current = math_inv33(Fp_current)
if (all(invFp_current == 0.0_pReal)) then ! ... failed?
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fp_current at el ip g ',e,i,g
if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) then
write(6,*)
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',math_transpose33(Fp_current(1:3,1:3))
endif
endif
#endif
return
endif
A = math_mul33x33(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
!* start LpLoop with normal step length
NiterationStress = 0_pInt
jacoCounter = 0_pInt
steplength0 = 1.0_pReal
steplength = steplength0
residuum_old = 0.0_pReal
LpLoop: do
NiterationStress = NiterationStress + 1_pInt
!* too many loops required ?
if (NiterationStress > nStress) then
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i3,a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress reached loop limit',nStress,' at el ip g ',e,i,g
write(6,*)
endif
#endif
return
endif
!* calculate (elastic) 2nd Piola--Kirchhoff stress tensor and its tangent from constitutive law
B = math_I3 - dt*Lpguess
Fe = math_mul33x33(A,B) ! current elastic deformation tensor
call constitutive_TandItsTangent(Tstar, dT_dFe3333, Fe, g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative
Tstar_v = math_Mandel33to6(Tstar)
p_hydro = sum(Tstar_v(1:3)) / 3.0_pReal
forall(n=1_pInt:3_pInt) Tstar_v(n) = Tstar_v(n) - p_hydro ! get deviatoric stress tensor
!* calculate plastic velocity gradient and its tangent from constitutive law
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
call constitutive_LpAndItsTangent(Lp_constitutive, dLp_dT_constitutive, Tstar_v, crystallite_Temperature(g,i,e), g, i, e)
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
!$OMP CRITICAL (debugTimingLpTangent)
debug_cumLpCalls = debug_cumLpCalls + 1_pInt
debug_cumLpTicks = debug_cumLpTicks + tock-tick
!$OMP FLUSH (debug_cumLpTicks)
if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks
!$OMP END CRITICAL (debugTimingLpTangent)
endif
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i3)') '<< CRYST >> iteration ', NiterationStress
write(6,*)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive', math_transpose33(Lp_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess', math_transpose33(Lpguess)
endif
#endif
!* update current residuum and check for convergence of loop
aTol = max(rTol_crystalliteStress * max(math_norm33(Lpguess),math_norm33(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
aTol_crystalliteStress) ! minimum lower cutoff
residuum = Lpguess - Lp_constitutive
if (any(residuum /= residuum)) then ! NaN in residuum...
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,i2,1x,i3,a,i3,a)') '<< CRYST >> integrateStress encountered NaN at el ip g ',e,i,g,&
' ; iteration ', NiterationStress,&
' >> returning..!'
endif
#endif
return ! ...me = .false. to inform integrator about problem
elseif (math_norm33(residuum) < aTol) then ! converged if below absolute tolerance
exit LpLoop ! ...leave iteration loop
elseif (math_norm33(residuum) < math_norm33(residuum_old) .or. NiterationStress == 1_pInt ) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuum_old = residuum ! ...remember old values and...
Lpguess_old = Lpguess
steplength = steplength0 ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplength = 0.5_pReal * steplength ! ...try with smaller step length in same direction
Lpguess = Lpguess_old + steplength * deltaLp
cycle LpLoop
endif
!* calculate Jacobian for correction term
if (mod(jacoCounter, iJacoLpresiduum) == 0_pInt) then
dFe_dLp3333 = 0.0_pReal
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
dFe_dLp3333(p,o,1:3,p) = A(o,1:3) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) delta(j,l)
enddo; enddo
dFe_dLp3333 = -dt * dFe_dLp3333
dFe_dLp = math_Plain3333to99(dFe_dLp3333)
dT_dFe_constitutive = math_Plain3333to99(dT_dFe3333)
dR_dLp = math_identity2nd(9_pInt) - &
math_mul99x99(dLp_dT_constitutive, math_mul99x99(dT_dFe_constitutive , dFe_dLp))
dR_dLp2 = dR_dLp ! will be overwritten in first call to LAPACK routine
work = math_plain33to9(residuum)
#if(FLOAT==8)
call dgesv(9,1,dR_dLp2,9,ipiv,work,9,ierr) ! solve dR/dLp * delta Lp = -res for dR/dLp
#elif(FLOAT==4)
call sgesv(9,1,dR_dLp2,9,ipiv,work,9,ierr) ! solve dR/dLp * delta Lp = -res for dR/dLp
#endif
if (ierr /= 0_pInt) then
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on dR/dLp inversion at el ip g ',e,i,g
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLp',transpose(dR_dLp)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLp',transpose(dFe_dLp)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFe_constitutive',transpose(dT_dFe_constitutive)
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLp_dT_constitutive',transpose(dLp_dT_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> A',math_transpose33(A)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> B',math_transpose33(B)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive',math_transpose33(Lp_constitutive)
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess',math_transpose33(Lpguess)
endif
endif
#endif
return
endif
deltaLp = - math_plain9to33(work)
endif
jacoCounter = jacoCounter + 1_pInt ! increase counter for jaco update
Lpguess = Lpguess + steplength * deltaLp
enddo LpLoop
!* calculate new plastic and elastic deformation gradient
invFp_new = math_mul33x33(invFp_current,B)
invFp_new = invFp_new/math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
call math_invert33(invFp_new,Fp_new,det,error)
if (error .or. any(Fp_new/=Fp_new)) then
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
write(6,'(a,i8,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on invFp_new inversion at el ip g ',&
e,i,g, ' ; iteration ', NiterationStress
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,*)
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> invFp_new',math_transpose33(invFp_new)
endif
endif
#endif
return
endif
Fe_new = math_mul33x33(Fg_new,invFp_new) ! calc resulting Fe
!* add volumetric component to 2nd Piola-Kirchhoff stress and calculate 1st Piola-Kirchhoff stress
forall (n=1_pInt:3_pInt) Tstar_v(n) = Tstar_v(n) + p_hydro
crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(Fe_new, math_mul33x33(math_Mandel6to33(Tstar_v), math_transpose33(invFp_new)))
!* store local values in global variables
crystallite_Lp(1:3,1:3,g,i,e) = Lpguess
crystallite_Tstar_v(1:6,g,i,e) = Tstar_v
crystallite_Fp(1:3,1:3,g,i,e) = Fp_new
crystallite_Fe(1:3,1:3,g,i,e) = Fe_new
crystallite_invFp(1:3,1:3,g,i,e) = invFp_new
!* set return flag to true
crystallite_integrateStress = .true.
#ifndef _OPENMP
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt &
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> P / MPa',math_transpose33(crystallite_P(1:3,1:3,g,i,e))/1.0e6_pReal
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Cauchy / MPa', &
math_mul33x33(crystallite_P(1:3,1:3,g,i,e), math_transpose33(Fg_new)) / 1.0e6_pReal / math_det33(Fg_new)
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fe Lp Fe^-1', &
math_transpose33(math_mul33x33(Fe_new, math_mul33x33(crystallite_Lp(1:3,1:3,g,i,e), math_inv33(Fe_new)))) ! transpose to get correct print out order
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp',math_transpose33(crystallite_Fp(1:3,1:3,g,i,e))
endif
#endif
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (distributionStress)
debug_StressLoopDistribution(NiterationStress,numerics_integrationMode) = &
debug_StressLoopDistribution(NiterationStress,numerics_integrationMode) + 1_pInt
!$OMP END CRITICAL (distributionStress)
endif
end function crystallite_integrateStress
!--------------------------------------------------------------------------------------------------
!> @brief calculates orientations and disorientations (in case of single grain ips)
!--------------------------------------------------------------------------------------------------
subroutine crystallite_orientations
use math, only: math_pDecomposition, &
math_RtoQ, &
math_qDisorientation, &
math_qConj
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use IO, only: IO_warning
use material, only: material_phase, &
homogenization_Ngrains, &
phase_localPlasticity, &
phase_plasticityInstance
use mesh, only: mesh_element, &
mesh_ipNeighborhood, &
FE_NipNeighbors, &
FE_geomtype
use constitutive_nonlocal, only: constitutive_nonlocal_structure, &
constitutive_nonlocal_updateCompatibility
implicit none
integer(pInt) e, & ! element index
i, & ! integration point index
g, & ! grain index
n, & ! neighbor index
neighboring_e, & ! element index of my neighbor
neighboring_i, & ! integration point index of my neighbor
myPhase, & ! phase
neighboringPhase, &
myInstance, & ! instance of plasticity
neighboringInstance, &
myStructure, & ! lattice structure
neighboringStructure
real(pReal), dimension(3,3) :: U, R
real(pReal), dimension(4) :: orientation
logical error
! --- CALCULATE ORIENTATION AND LATTICE ROTATION ---
!$OMP PARALLEL DO PRIVATE(error,U,R,orientation)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1_pInt,homogenization_Ngrains(mesh_element(3,e))
!$OMP CRITICAL (polarDecomp) ! somehow this subroutine is not threadsafe, so need critical statement here; not clear, what exactly the problem is
call math_pDecomposition(crystallite_Fe(1:3,1:3,g,i,e), U, R, error) ! polar decomposition of Fe
!$OMP END CRITICAL (polarDecomp)
if (error) then
call IO_warning(650_pInt, e, i, g)
orientation = [1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal] ! fake orientation
else
orientation = math_RtoQ(transpose(R))
endif
crystallite_rotation(1:4,g,i,e) = math_qDisorientation(crystallite_orientation0(1:4,g,i,e), & ! active rotation from ori0
orientation, & ! to current orientation
0_pInt ) ! we don't want symmetry here
crystallite_orientation(1:4,g,i,e) = orientation
enddo
enddo
enddo
!$OMP END PARALLEL DO
! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL ---
! --- we use crystallite_orientation from above, so need a seperate loop
!$OMP PARALLEL DO PRIVATE(myPhase,myInstance,myStructure,neighboring_e,neighboring_i,neighboringPhase,&
!$OMP neighboringInstance,neighboringStructure)
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
myPhase = material_phase(1,i,e) ! get my phase
if (.not. phase_localPlasticity(myPhase)) then ! if nonlocal model
myInstance = phase_plasticityInstance(myPhase)
myStructure = constitutive_nonlocal_structure(myInstance) ! get my crystal structure
! --- calculate disorientation between me and my neighbor ---
do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,e))) ! loop through my neighbors
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase
if (.not. phase_localPlasticity(neighboringPhase)) then ! neighbor got also nonlocal plasticity
neighboringInstance = phase_plasticityInstance(neighboringPhase)
neighboringStructure = constitutive_nonlocal_structure(neighboringInstance) ! get my neighbor's crystal structure
if (myStructure == neighboringStructure) then ! if my neighbor has same crystal structure like me
crystallite_disorientation(:,n,1,i,e) = &
math_qDisorientation( crystallite_orientation(1:4,1,i,e), &
crystallite_orientation(1:4,1,neighboring_i,neighboring_e), &
crystallite_symmetryID(1,i,e)) ! calculate disorientation
else ! for neighbor with different phase
crystallite_disorientation(:,n,1,i,e) = (/0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! 180 degree rotation about 100 axis
endif
else ! for neighbor with local plasticity
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
endif
else ! no existing neighbor
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
endif
enddo
! --- calculate compatibility and transmissivity between me and my neighbor ---
call constitutive_nonlocal_updateCompatibility(crystallite_orientation,i,e)
endif
enddo
enddo
!$OMP END PARALLEL DO
end subroutine crystallite_orientations
!--------------------------------------------------------------------------------------------------
!> @brief return results of particular grain
!--------------------------------------------------------------------------------------------------
function crystallite_postResults(&
dt,& ! time increment
g,& ! grain number
i,& ! integration point number
e & ! element number
)
use math, only: math_qToEuler, &
math_qToAxisAngle, &
math_mul33x33, &
math_transpose33, &
math_det33, &
math_I3, &
inDeg, &
math_Mandel6to33, &
math_qMul, &
math_qConj
use mesh, only: mesh_element, &
mesh_ipVolume
use material, only: microstructure_crystallite, &
crystallite_Noutput, &
material_phase, &
material_texture, &
homogenization_Ngrains
use constitutive, only: constitutive_sizePostResults, &
constitutive_postResults, &
constitutive_homogenizedC
implicit none
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
real(pReal), intent(in):: dt ! time increment
!*** output variables ***!
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,e)))+ &
1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults
!*** local variables ***!
real(pReal), dimension(3,3) :: Ee
real(pReal), dimension(4) :: rotation
real(pReal) detF
integer(pInt) o,c,crystID,mySize
crystID = microstructure_crystallite(mesh_element(4,e))
crystallite_postResults = 0.0_pReal
c = 0_pInt
crystallite_postResults(c+1) = real(crystallite_sizePostResults(crystID),pReal) ! size of results from cryst
c = c + 1_pInt
do o = 1_pInt,crystallite_Noutput(crystID)
mySize = 0_pInt
select case(crystallite_output(o,crystID))
case ('phase')
mySize = 1_pInt
crystallite_postResults(c+1) = real(material_phase(g,i,e),pReal) ! phaseID of grain
case ('texture')
mySize = 1_pInt
crystallite_postResults(c+1) = real(material_texture(g,i,e),pReal) ! textureID of grain
case ('volume')
mySize = 1_pInt
detF = math_det33(crystallite_partionedF(1:3,1:3,g,i,e)) ! V_current = det(F) * V_reference
crystallite_postResults(c+1) = detF * mesh_ipVolume(i,e) / homogenization_Ngrains(mesh_element(3,e)) ! grain volume (not fraction but absolute)
case ('orientation')
mySize = 4_pInt
crystallite_postResults(c+1:c+mySize) = crystallite_orientation(1:4,g,i,e) ! grain orientation as quaternion
case ('eulerangles')
mySize = 3_pInt
crystallite_postResults(c+1:c+mySize) = inDeg * math_qToEuler(crystallite_orientation(1:4,g,i,e)) ! grain orientation as Euler angles in degree
case ('grainrotation')
mySize = 4_pInt
crystallite_postResults(c+1:c+mySize) = math_qToAxisAngle(crystallite_rotation(1:4,g,i,e)) ! grain rotation away from initial orientation as axis-angle in crystal reference coordinates
crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree
case ('grainrotationx')
mySize = 1_pInt
rotation = math_qToAxisAngle(math_qMul(math_qMul(crystallite_orientation(1:4,g,i,e), &
crystallite_rotation(1:4,g,i,e)), &
math_qConj(crystallite_orientation(1:4,g,i,e)))) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
crystallite_postResults(c+1) = inDeg * rotation(1) * rotation(4) ! angle in degree
case ('grainrotationy')
mySize = 1_pInt
rotation = math_qToAxisAngle(math_qMul(math_qMul(crystallite_orientation(1:4,g,i,e), &
crystallite_rotation(1:4,g,i,e)), &
math_qConj(crystallite_orientation(1:4,g,i,e)))) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
crystallite_postResults(c+1) = inDeg * rotation(2) * rotation(4) ! angle in degree
case ('grainrotationz')
mySize = 1_pInt
rotation = math_qToAxisAngle(math_qMul(math_qMul(crystallite_orientation(1:4,g,i,e), &
crystallite_rotation(1:4,g,i,e)), &
math_qConj(crystallite_orientation(1:4,g,i,e)))) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
crystallite_postResults(c+1) = inDeg * rotation(3) * rotation(4) ! angle in degree
! remark: tensor output is of the form 11,12,13, 21,22,23, 31,32,33
! thus row index i is slow, while column index j is fast. reminder: "row is slow"
case ('defgrad','f')
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_partionedF(1:3,1:3,g,i,e)),[mySize])
case ('e')
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = 0.5_pReal * reshape((math_mul33x33( &
math_transpose33(crystallite_partionedF(1:3,1:3,g,i,e)), &
crystallite_partionedF(1:3,1:3,g,i,e)) - math_I3),[mySize])
case ('fe')
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Fe(1:3,1:3,g,i,e)),[mySize])
case ('ee')
Ee = 0.5_pReal * (math_mul33x33(math_transpose33(crystallite_Fe(1:3,1:3,g,i,e)), crystallite_Fe(1:3,1:3,g,i,e)) - math_I3)
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = reshape(Ee,[mySize])
case ('fp')
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Fp(1:3,1:3,g,i,e)),[mySize])
case ('lp')
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Lp(1:3,1:3,g,i,e)),[mySize])
case ('p','firstpiola','1stpiola')
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_P(1:3,1:3,g,i,e)),[mySize])
case ('s','tstar','secondpiola','2ndpiola')
mySize = 9_pInt
crystallite_postResults(c+1:c+mySize) = reshape(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)),[mySize])
case ('elasmatrix')
mySize = 36_pInt
crystallite_postResults(c+1:c+mySize) = reshape(constitutive_homogenizedC(g,i,e),(/mySize/))
end select
c = c + mySize
enddo
crystallite_postResults(c+1) = real(constitutive_sizePostResults(g,i,e),pReal) ! size of constitutive results
c = c + 1_pInt
if (constitutive_sizePostResults(g,i,e) > 0_pInt) &
crystallite_postResults(c+1:c+constitutive_sizePostResults(g,i,e)) = constitutive_postResults(crystallite_Tstar_v(1:6,g,i,e), &
crystallite_Fe, &
crystallite_Temperature(g,i,e), &
dt, g, i, e)
c = c + constitutive_sizePostResults(g,i,e)
end function crystallite_postResults
end module crystallite