
Parallel Fourier Transform
A Practical Guide

Dhrubaditya Mitra

Indian Institute of Science, Bangalore, 560012

Parallel Fourier Transform – p.1/29

Outline

Motivation

Serial FFT
Serial FFT : Basic Algorithm
FFT of Real Data
FFT in d>1
Limitations
Advertising FFTW

Parallel FFT

Applications : Spectral Methods

Parallel Fourier Transform – p.2/29

Motivation

"If you speed up any non-trivial algorithm by a factor of
million or so, the world beat a path towards finding useful
application for it " -Numreical Recepies.

Convolution and Correlation

Optimal Filtering

Power Spectrum Estimation

Integral Transforms (Wavelet and Fourier)

Spectral Method for solving PDE

Parallel Fourier Transform – p.3/29

(Continuous) Fourier Transform

(Inverse) Fourier Transform

�

��� � ��

(Forward) Fourier Transform

�

� � � � ��

Parallel Fourier Transform – p.4/29

Discrete Fourier Transform

Finite time series, sampled at an interval

� �

Discrete (Forward) Fourier Transform

� 	
��
 �

�
�� � ��� � �

� � �

with � � �, where �

	

 �

Discrete (Inverse) Fourier Transform
�

� 	
�
 �

�

�� � ��� � �

Parallel Fourier Transform – p.5/29

Discrete Fourier Transform(contd)

Discrete Fourier Transform

�

� 	
�
 �

�

� � ��� � �

� � �

Output in "wrap around order"

Naively Order

algorithm !

�

� 	
��
 �

� � �
�� � � �

Parallel Fourier Transform – p.6/29

Fast Fourier Transform

�

� �
��� �

� � �

�� �
��� �

� � � � �

� � �
��� �

� � � � � � � � � � �

�� �
��� �

� �
� � �

�� �
��� �

� �
� � � �

�
�

�
�

Parallel Fourier Transform – p.7/29

Fast Fourier Transform (contd)

� �
�

�
�

for some k

To find Corresponding k : Bit Reversal

Reverse e and o
, gives k in binary

Parallel Fourier Transform – p.8/29

Fast Fourier Transform (contd)

� � �
�

� �
�

� �
�

� �
�

for some k

To find Corresponding k : Bit Reversal

Reverse e and o
, gives k in binary

Parallel Fourier Transform – p.8/29

Fast Fourier Transform (contd)

� � � �
�

� � �
�

� � � �
�

� � �
�

for some k

To find Corresponding k : Bit Reversal

Reverse e and o
, gives k in binary

Parallel Fourier Transform – p.8/29

Fast Fourier Transform (contd)

for some k

To find Corresponding k : Bit Reversal

Reverse e and o
, gives k in binary

Parallel Fourier Transform – p.8/29

Algorithmic Complexity

Let denote the amount of computation needed for an
array of size

!

. Then,

!

Hence

! �

, and

�
� �

Parallel Fourier Transform – p.9/29

Serial FFT:Improvements

Twidle Factor Trick : Evaluation of

�

involves time
consuming evaluation of sines and cosines.

Make a look up table
Lot of are , or (about

Cache Efficiency
one FLOP is faster than Memory Access
Cache Overflow

Parallel Fourier Transform – p.10/29

Serial FFT:Improvements

Twidle Factor Trick : Evaluation of

�

involves time
consuming evaluation of sines and cosines.

Make a look up table

Lot of are , or (about

Cache Efficiency
one FLOP is faster than Memory Access
Cache Overflow

Parallel Fourier Transform – p.10/29

Serial FFT:Improvements

Twidle Factor Trick : Evaluation of

�

involves time
consuming evaluation of sines and cosines.

Make a look up table
Lot of

�

are , or (about

�

Cache Efficiency
one FLOP is faster than Memory Access
Cache Overflow

Parallel Fourier Transform – p.10/29

Serial FFT:Improvements

Twidle Factor Trick : Evaluation of

�

involves time
consuming evaluation of sines and cosines.

Make a look up table
Lot of

�

are , or (about

�

Cache Efficiency

one FLOP is faster than Memory Access
Cache Overflow

Parallel Fourier Transform – p.10/29

Serial FFT:Improvements

Twidle Factor Trick : Evaluation of

�

involves time
consuming evaluation of sines and cosines.

Make a look up table
Lot of

�

are , or (about

�

Cache Efficiency
one FLOP is faster than Memory Access

Cache Overflow

Parallel Fourier Transform – p.10/29

Serial FFT:Improvements

Twidle Factor Trick : Evaluation of

�

involves time
consuming evaluation of sines and cosines.

Make a look up table
Lot of

�

are , or (about

�

Cache Efficiency
one FLOP is faster than Memory Access
Cache Overflow

Parallel Fourier Transform – p.10/29

Serial FFT: Improvements(contd.)

Efficiency crucially depends on particular system
architecture

USE SYSTEM LIBRARIES (ESSL in IBM, DXML in
Compaq etc)

Disadvantage : No Portability

Execption : FFTW

Parallel Fourier Transform – p.11/29

Serial FFT: Real Data

� � �

Calculate only half the output !

Two for the price of one

A different algorithm for Real Data.

In-Place Transform.

Parallel Fourier Transform – p.12/29

Serial FFT : Data Storage

0 1 2 N-1 N N+1

Array of Real Data, of size N. Last two elements (N,N+1)
are zero.

Parallel Fourier Transform – p.13/29

Serial FFT : Data Storage

0 1 2 N-1 N N+1

Array of Real Data, of size N. Last two elements (N,N+1)
are zero.

-N/2 0 N/2

Fourier Transform of Real Data. Complex data No array
element is zero. But

Parallel Fourier Transform – p.13/29

Serial FFT : Data Storage

0 1 2 N-1 N N+1

Array of Real Data, of size N. Last two elements (N,N+1)
are zero.

0 N/2

Only the positive frequency part of complex data.

Parallel Fourier Transform – p.13/29

Serial FFT : Data Storage

0 1 2 N-1 N N+1

Array of Real Data, of size N. Last two elements (N,N+1)
are zero.

0 N/2

Only the positive frequency part of complex data, with real
and imaginary part explicitly shown.

Parallel Fourier Transform – p.13/29

Serial FFT : Data Storage

0 1 2 N-1 N N+1

Array of Real Data, of size N. Last two elements (N,N+1)
are zero.

0 N/2

Only the positive frequency part of complex data, with real
and imaginary part explicitly shown.

zero-padding

Imaginary part and is zero.

Parallel Fourier Transform – p.13/29

Serial FFT : 2-d

essentially two transforms in two directions.

Computational complexity :

�

output in ’wrap around order’

Real Input Data
zero-padding in the first direction. (for Fortran)
Output in the second direction in wrap around
order.

Parallel Fourier Transform – p.14/29

Fast Fourier Transform : Limitations

N should be power of small primes.

For prime N algorithms are slower.

Aliasing Error.

Parallel Fourier Transform – p.15/29

Advertising FFTW (www.fftw.org)

Portable but efficient

Callable from both C and Fortran.

Free !! under GPL

Parallel transform of both Shared and Distributed
memory machines

Parallel Fourier Transform – p.16/29

Is FFT Parallelisable ?

Naive approach to parallelising FFT
Divide the data equally among two processors.
FFT now involves evaluating bit-reversing which
will imply lots of communication between the
processors.
communication is much slower than FLOPS (or
local memory access)

Lessons :
multidimensional FFT will be better parallelisable
then 1-d
parallelisation of 1-d FFT essentially need new
approach.

Parallel Fourier Transform – p.17/29

Why Parallise FFT ?

Fluid Dyanmics : Turbulence
Direct Numerical Simulation of Navier-Stokes
equation, in Spectral Method with

"
grid points

requires about GB of memory.

Weather Prediction

Complex Fluids

The Earth Simulator

Parallel Fourier Transform – p.18/29

The Earth Simulator

Parallel Fourier Transform – p.19/29

The Earth Simulator

Nodes : 640 processor nodes, each with 8 vector
processors.

Each node has 16 GB shared memory. i.e. Each
node is a shared memory machine.

Communication : 16GB/s full duplex mode.

Total Peak Performance : 40 TFLOPS which is of
course only theoritical.

computing paradigm : Both shared and distributed
memory coding.

Parallel Fourier Transform – p.19/29

2-d Parallel FFT

Divide the array equally among 2 processors, along
the second direction (fortran).
(word of caution : This is non-standard)

Do FFT along the local direction.

Transpose (The time consuming communication step)

Do FFT along the local direction (again).

Transpose Back (Optional step)

Transposing Trick

3-d fft paralleises better than 2-d

Parallel Fourier Transform – p.20/29

Parallel FFT (contd)

FFT of Real data :

Do NOT divide along the first direction(fortran)
PESSL data storage is really wierd
FFTW is much easier to use, but not so fast.

Bandwidth is more important than latency.

Does NOT scale well.

Code must be tuned to the architecture.

Parallel Fourier Transform – p.21/29

Fast Fourier Transform in ES

Divide the array equally among Processor
Nodes(PN), along 3rd direction(fortran 90).

Use threading (parallel do loops) with 8 arithmatic
processors(AP) in each PN, to FFT in 1-d. (Automatic
Parallelisation was not effective enough !)

Use vectorization and microtasking in each AP.

Peak performance of each AP is 8Gflops. Bandwidth
between AP and (shared) memory is 32GB/s, i.e.
processor get only one (double precision) number for
two flops.
But in Radix-2 FFT, memory access:flops = 1:1.
i.e. if Radix-2 FFT is used processor will be kept
waiting for data from memory.

Solution : Use Radix-4 FFT.

Data transposition through communication.

Fourier transform in the 3rd direction.

Parallel Fourier Transform – p.22/29

Is ES big enough?

single precision run of

"

DNS. (world record)

double precision run of

"

DNS. (world record)

Is this persual of huge size physically meaningfuly?
YES

Even world record simulations gives Reynolds
Number as small as , whereas experimental data
gives about 10 times larger.

The Earth (simulator) is Not Enough

Parallel Fourier Transform – p.23/29

Spectral Method:Burgers Equation

1 dimensional, nonlinear PDE

periodic boundary condition

time stepping not spectral (obvious)

Evaluate Derivatives in Fourier Space

Products in Real Space.

Parallel Fourier Transform – p.24/29

Spectral Method : Virtues

Best spatial derivative possible. Bettern than any finite
difference.

Quite fast (thanks to FFT)

Often you are interested in fourier space quantities for
physical reasons. (e.g. energy spectrum)

Parallel Fourier Transform – p.25/29

Spectral Method : Vices

Difficult to work with anything other than periodic
boundary condition.

FFT is not very parallelisable.

Parallel Fourier Transform – p.26/29

Conclusions

Parallel FFT holds the key to huge simulations in
almost any field of research.

Performance of Parallel FFT depends crucially on
tuning the code to the architecture of the parallel
machines.

FFTW seems to be the best choice for single node
FFT.

Even the Earth Simulator is not the limit.

The story of beowulf.

Parallel Fourier Transform – p.27/29

BEOWULF

Parallel Fourier Transform – p.28/29

Acknowledgements

CSIR, India

Indo-French Centre of Advanced Scientific Research.

Rahul Pandit, Dept of Physics, IISc

Chinmay Das,Pinaki Chaudhuri.

Jasjeet Singh Bagla, MRI, Allahabad

Yanik Ponty, Observatorie of Nice, France.

Parallel Fourier Transform – p.29/29

	Outline
	Motivation
	(Continuous)
Fourier Transform
	Discrete Fourier Transform
	Discrete Fourier Transform(contd)
	Fast Fourier Transform
	Fast Fourier Transform (contd)
	Algorithmic Complexity
	Serial FFT:Improvements
	Serial FFT: Improvements(contd.)
	Serial FFT: Real Data
	Serial FFT : Data Storage
	Serial FFT : 2-d
	Fast Fourier Transform : Limitations
	Advertising FFTW (www.fftw.org)

	Is FFT Parallelisable ?
	Why Parallise FFT ?
	The Earth Simulator
	2-d Parallel FFT
	Parallel FFT (contd)
	Fast Fourier Transform in ES
	Is ES big enough?
	Spectral Method:Burgers Equation
	Spectral Method : Virtues
	Spectral Method : Vices
	Conclusions
	BEOWULF
	Acknowledgements

