!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, KU Leuven !-------------------------------------------------------------------------------------------------- submodule(homogenization) homogenization_thermal use lattice type :: tDataContainer real(pReal), dimension(:), allocatable :: T, dot_T end type tDataContainer type(tDataContainer), dimension(:), allocatable :: current type :: tParameters character(len=pStringLen), allocatable, dimension(:) :: & output end type tParameters type(tparameters), dimension(:), allocatable :: & param contains !-------------------------------------------------------------------------------------------------- !> @brief Allocate variables and set parameters. !-------------------------------------------------------------------------------------------------- module subroutine thermal_init() class(tNode), pointer :: & configHomogenizations, & configHomogenization, & configHomogenizationThermal integer :: ho print'(/,a)', ' <<<+- homogenization_thermal init -+>>>' configHomogenizations => config_material%get('homogenization') allocate(param(configHomogenizations%length)) allocate(current(configHomogenizations%length)) do ho = 1, configHomogenizations%length allocate(current(ho)%T(count(material_homogenizationAt2==ho)), source=thermal_initialT(ho)) allocate(current(ho)%dot_T(count(material_homogenizationAt2==ho)), source=0.0_pReal) configHomogenization => configHomogenizations%get(ho) associate(prm => param(ho)) if (configHomogenization%contains('thermal')) then configHomogenizationThermal => configHomogenization%get('thermal') #if defined (__GFORTRAN__) prm%output = output_asStrings(configHomogenizationThermal) #else prm%output = configHomogenizationThermal%get_asStrings('output',defaultVal=emptyStringArray) #endif else prm%output = emptyStringArray endif end associate enddo end subroutine thermal_init !-------------------------------------------------------------------------------------------------- !> @brief Partition temperature onto the individual constituents. !-------------------------------------------------------------------------------------------------- module subroutine thermal_partition(ce) integer, intent(in) :: ce real(pReal) :: T, dot_T integer :: co T = current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce)) dot_T = current(material_homogenizationAt2(ce))%dot_T(material_homogenizationMemberAt2(ce)) do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce)) call constitutive_thermal_setField(T,dot_T,co,ce) enddo end subroutine thermal_partition !-------------------------------------------------------------------------------------------------- !> @brief Homogenize temperature rates !-------------------------------------------------------------------------------------------------- module subroutine thermal_homogenize(ip,el) integer, intent(in) :: ip,el !call constitutive_thermal_getRate(homogenization_dot_T((el-1)*discretization_nIPs+ip), ip,el) end subroutine thermal_homogenize !-------------------------------------------------------------------------------------------------- !> @brief return homogenized thermal conductivity in reference configuration !-------------------------------------------------------------------------------------------------- module function thermal_conduction_getConductivity(ip,el) result(K) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal), dimension(3,3) :: K integer :: & co K = 0.0_pReal do co = 1, homogenization_Nconstituents(material_homogenizationAt(el)) K = K + crystallite_push33ToRef(co,ip,el,lattice_K(:,:,material_phaseAt(co,el))) enddo K = K / real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal) end function thermal_conduction_getConductivity !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized specific heat capacity !-------------------------------------------------------------------------------------------------- module function thermal_conduction_getSpecificHeat(ce) result(c_P) integer, intent(in) :: ce real(pReal) :: c_P integer :: co c_P = 0.0_pReal do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce)) c_P = c_P + lattice_c_p(material_phaseAt2(co,ce)) enddo c_P = c_P / real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal) end function thermal_conduction_getSpecificHeat !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized mass density !-------------------------------------------------------------------------------------------------- module function thermal_conduction_getMassDensity(ce) result(rho) integer, intent(in) :: ce real(pReal) :: rho integer :: co rho = 0.0_pReal do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce)) rho = rho + lattice_rho(material_phaseAt2(co,ce)) enddo rho = rho / real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal) end function thermal_conduction_getMassDensity !-------------------------------------------------------------------------------------------------- !> @brief Set thermal field and its rate (T and dot_T) !-------------------------------------------------------------------------------------------------- module subroutine homogenization_thermal_setField(T,dot_T, ce) integer, intent(in) :: ce real(pReal), intent(in) :: T, dot_T current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce)) = T current(material_homogenizationAt2(ce))%dot_T(material_homogenizationMemberAt2(ce)) = dot_T end subroutine homogenization_thermal_setField !-------------------------------------------------------------------------------------------------- !> @brief writes results to HDF5 output file !-------------------------------------------------------------------------------------------------- module subroutine thermal_conduction_results(ho,group) integer, intent(in) :: ho character(len=*), intent(in) :: group integer :: o associate(prm => param(ho)) outputsLoop: do o = 1,size(prm%output) select case(trim(prm%output(o))) case('T') call results_writeDataset(group,current(ho)%T,'T','temperature','K') end select enddo outputsLoop end associate end subroutine thermal_conduction_results module function homogenization_thermal_T(ce) result(T) integer, intent(in) :: ce real(pReal) :: T T = current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce)) end function homogenization_thermal_T end submodule homogenization_thermal