import numpy as np def Cauchy(F,P): if np.shape(F) == np.shape(P) == (3,3): sigma = 1.0/np.linalg.det(F) * np.dot(F,P) return (sigma+sigma.T)*0.5 else: sigma = np.einsum('i,ijk,ilk->ijl',1.0/np.linalg.det(F),P,F) return (sigma + np.transpose(sigma,(0,2,1)))*0.5 def deviator(x): if np.shape(x) == (3,3): return x - np.eye(3)*np.trace(x)/3.0 else: return d - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[d.shape[0],3,3]),np.trace(d,axis1=1,axis2=2)/3.0) def spherical(x): if np.shape(x) == (3,3): return np.trace(x)/3.0 else: return np.trace(x,axis1=1,axis2=2)/3.0