#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string import numpy as np from collections import defaultdict from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = scriptID.split()[1] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Add column(s) containing divergence of requested column(s). Operates on periodic ordered three-dimensional data sets. Deals with both vector- and tensor-valued fields. """, version = scriptID) accuracyChoices = ['2','4','6','8'] parser.add_option('--fdm', dest='accuracy', action='extend', type='string', metavar='', help='degree of central difference accuracy (%s)'%(','.join(accuracyChoices))) parser.add_option('--fft', dest='fft', action='store_true', help='calculate divergence in Fourier space') parser.add_option('-c','--coordinates', dest='coords', action='store', type='string', metavar = 'string', help='column heading for coordinates [%default]') parser.add_option('-v','--vector', dest='vector', action='extend', type='string', metavar='', help='heading of columns containing vector field values') parser.add_option('-t','--tensor', dest='tensor', action='extend', type='string', metavar='', help='heading of columns containing tensor field values') parser.set_defaults(coords = 'ip') parser.set_defaults(accuracy = []) parser.set_defaults(fft = False) parser.set_defaults(vector = []) parser.set_defaults(tensor = []) (options,filenames) = parser.parse_args() if len(options.vector) + len(options.tensor) == 0: parser.error('no data column specified...') if not set(options.accuracy).issubset(set(accuracyChoices)): parser.error('accuracy must be chosen from %s...'%(', '.join(accuracyChoices))) if options.fft: options.accuracy.append('FFT') if not options.accuracy: parser.error('no accuracy selected') datainfo = { # list of requested labels per datatype 'vector': {'len':3, 'label':[]}, 'tensor': {'len':9, 'label':[]}, } if options.vector != None: datainfo['vector']['label'] += options.vector if options.tensor != None: datainfo['tensor']['label'] += options.tensor # ------------------------------------------ setup file handles ------------------------------------ files = [] for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) #--- loop over input files ------------------------------------------------------------------------- for file in files: file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table table.head_read() # read ASCII header info table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) # --------------- figure out size and grid --------------------------------------------------------- try: locationCol = table.labels.index('%s.x'%options.coords) # columns containing location data except ValueError: file['croak'].write('no coordinate data (%s.x) found...\n'%options.coords) continue coords = [{},{},{}] while table.data_read(): # read next data line of ASCII table for j in xrange(3): coords[j][str(table.data[locationCol+j])] = True # remember coordinate along x,y,z grid = np.array([len(coords[0]),\ len(coords[1]),\ len(coords[2]),],'i') # grid is number of distinct coordinates found size = grid/np.maximum(np.ones(3,'d'),grid-1.0)* \ np.array([max(map(float,coords[0].keys()))-min(map(float,coords[0].keys())),\ max(map(float,coords[1].keys()))-min(map(float,coords[1].keys())),\ max(map(float,coords[2].keys()))-min(map(float,coords[2].keys())),\ ],'d') # size from bounding box, corrected for cell-centeredness for i, points in enumerate(grid): if points == 1: options.packing[i] = 1 options.shift[i] = 0 mask = np.ones(3,dtype=bool) mask[i]=0 size[i] = min(size[mask]/grid[mask]) # third spacing equal to smaller of other spacing N = grid.prod() # --------------- figure out columns to process --------------------------------------------------- active = defaultdict(list) column = defaultdict(dict) values = defaultdict(dict) divergence = defaultdict(dict) for datatype,info in datainfo.items(): for label in info['label']: key = '1_%s'%label if key not in table.labels: file['croak'].write('column %s not found...\n'%key) else: active[datatype].append(label) column[datatype][label] = table.labels.index(key) # remember columns of requested data values[datatype][label] = np.array([0.0 for i in xrange(N*datainfo[datatype]['len'])]).\ reshape(list(grid)+[datainfo[datatype]['len']//3,3]) if label not in divergence[datatype]: divergence[datatype][label] = {} for accuracy in options.accuracy: divergence[datatype][label][accuracy] = np.array([0.0 for i in xrange(N*datainfo[datatype]['len']//3)]).\ reshape(list(grid)+[datainfo[datatype]['len']//3]) # ------------------------------------------ assemble header --------------------------------------- for datatype,labels in active.items(): # loop over vector,tensor for label in labels: for accuracy in options.accuracy: table.labels_append({True: ['%i_div%s(%s)'%(i+1,accuracy,label) for i in xrange(3)], # extend ASCII header with new labels False:['div%s(%s)'%(accuracy,label)]} [datatype == 'tensor']) table.head_write() # ------------------------------------------ read value field -------------------------------------- table.data_rewind() idx = 0 while table.data_read(): # read next data line of ASCII table (x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count idx += 1 for datatype,labels in active.items(): # loop over vector,tensor for label in labels: # loop over all requested curls values[datatype][label][x,y,z] = np.array( map(float,table.data[column[datatype][label]: column[datatype][label]+datainfo[datatype]['len']]),'d') \ .reshape(datainfo[datatype]['len']//3,3) # ------------------------------------------ process value field ----------------------------------- for datatype,labels in active.items(): # loop over vector,tensor for label in labels: # loop over all requested divergencies for accuracy in options.accuracy: if accuracy == 'FFT': divergence[datatype][label][accuracy] =\ damask.core.math.divergenceFFT(size,values[datatype][label]) else: divergence[datatype][label][accuracy] =\ damask.core.math.divergenceFDM(size,eval(accuracy)//2-1,values[datatype][label]) # ------------------------------------------ process data ------------------------------------------ table.data_rewind() idx = 0 outputAlive = True while outputAlive and table.data_read(): # read next data line of ASCII table (x,y,z) = damask.util.gridLocation(idx,grid) # figure out (x,y,z) position from line count idx += 1 for datatype,labels in active.items(): # loop over vector,tensor for label in labels: # loop over all requested for accuracy in options.accuracy: table.data_append(list(divergence[datatype][label][accuracy][x,y,z].reshape(datainfo[datatype]['len']//3))) outputAlive = table.data_write() # output processed line # ------------------------------------------ output result ----------------------------------------- outputAlive and table.output_flush() # just in case of buffered ASCII table file['input'].close() # close input ASCII table file['output'].close() # close output ASCII table os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new