#!/usr/bin/env python2.7 # -*- coding: UTF-8 no BOM -*- import os,sys import math # noqa import numpy as np from optparse import OptionParser import damask scriptName = os.path.splitext(os.path.basename(__file__))[0] scriptID = ' '.join([scriptName,damask.version]) # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Apply a user-specified function to condense all rows for which column 'label' has identical values into a single row. Output table will contain as many rows as there are different (unique) values in the grouping column. Examples: For grain averaged values, replace all rows of particular 'texture' with a single row containing their average. """, version = scriptID) parser.add_option('-l','--label', dest = 'label', type = 'string', metavar = 'string', help = 'column label for grouping rows') parser.add_option('-f','--function', dest = 'function', type = 'string', metavar = 'string', help = 'mapping function [%default]') parser.add_option('-a','--all', dest = 'all', action = 'store_true' help = 'apply mapping function also to grouping column') parser.set_defaults(function = 'np.average') (options,filenames) = parser.parse_args() funcModule,funcName = options.function.split('.') try: mapFunction = getattr(locals().get(funcModule) or globals().get(funcModule) or __import__(funcModule), funcName) except: mapFunction = None if options.label is None: parser.error('no grouping column specified.') if not hasattr(mapFunction,'__call__'): parser.error('function "{}" is not callable.'.format(options.function)) # --- loop over input files ------------------------------------------------------------------------- if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name, buffered = False) except: continue damask.util.report(scriptName,name) # ------------------------------------------ sanity checks --------------------------------------- table.head_read() if table.label_dimension(options.label) != 1: damask.util.croak('column {} is not of scalar dimension.'.format(options.label)) table.close(dismiss = True) # close ASCIItable and remove empty file continue else: grpColumn = table.label_index(options.label) # ------------------------------------------ assemble info --------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.head_write() # ------------------------------------------ process data -------------------------------- table.data_readArray() rows,cols = table.data.shape table.data = table.data[np.lexsort([table.data[:,grpColumn]])] # sort data by grpColumn values,index = np.unique(table.data[:,grpColumn], return_index = True) # unique grpColumn values and their positions index = np.append(index,rows) # add termination position grpTable = np.empty((len(values), cols)) # initialize output for i in xrange(len(values)): # iterate over groups (unique values in grpColumn) grpTable[i] = np.apply_along_axis(mapFunction,0,table.data[index[i]:index[i+1]]) # apply mapping function if not options.all: grpTable[i,grpColumn] = table.data[index[i],grpColumn] # restore grouping column value table.data = grpTable # ------------------------------------------ output result ------------------------------- table.data_writeArray() table.close() # close ASCII table