! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see .
!
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Isostrain (full constraint Taylor assuption) homogenization scheme
!--------------------------------------------------------------------------------------------------
module homogenization_isostrain
use prec, only: &
pInt
implicit none
private
character (len=*), parameter, public :: &
homogenization_isostrain_label = 'isostrain'
integer(pInt), dimension(:), allocatable, public :: &
homogenization_isostrain_sizeState, &
homogenization_isostrain_sizePostResults
integer(pInt), dimension(:,:), allocatable, target, public :: &
homogenization_isostrain_sizePostResult
character(len=64), dimension(:,:), allocatable, target, public :: &
homogenization_isostrain_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
homogenization_isostrain_Ngrains
public :: &
homogenization_isostrain_init, &
homogenization_isostrain_stateInit, &
homogenization_isostrain_partitionDeformation, &
homogenization_isostrain_updateState, &
homogenization_isostrain_averageStressAndItsTangent, &
homogenization_isostrain_averageTemperature, &
homogenization_isostrain_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_init(myFile)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: math_Mandel3333to66, math_Voigt66to3333
use IO
use material
integer(pInt), intent(in) :: myFile
integer(pInt), parameter :: maxNchunks = 2_pInt
integer(pInt), dimension(1_pInt+2_pInt*maxNchunks) :: positions
integer(pInt) section, i, j, output, mySize
integer :: maxNinstance, k ! no pInt (stores a system dependen value from 'count'
character(len=64) :: tag
character(len=1024) :: line = '' ! to start initialized
write(6,*)
write(6,*) '<<<+- homogenization_',trim(homogenization_isostrain_label),' init -+>>>'
write(6,*) '$Id$'
write(6,'(a16,a)') ' Current time : ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = count(homogenization_type == homogenization_isostrain_label)
if (maxNinstance == 0) return
allocate(homogenization_isostrain_sizeState(maxNinstance)) ; homogenization_isostrain_sizeState = 0_pInt
allocate(homogenization_isostrain_sizePostResults(maxNinstance)); homogenization_isostrain_sizePostResults = 0_pInt
allocate(homogenization_isostrain_sizePostResult(maxval(homogenization_Noutput), &
maxNinstance)); homogenization_isostrain_sizePostResult = 0_pInt
allocate(homogenization_isostrain_Ngrains(maxNinstance)); homogenization_isostrain_Ngrains = 0_pInt
allocate(homogenization_isostrain_output(maxval(homogenization_Noutput), &
maxNinstance)) ; homogenization_isostrain_output = ''
rewind(myFile)
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization) ! wind forward to
read(myFile,'(a1024)',END=100) line
enddo
do ! read thru sections of phase part
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
output = 0_pInt ! reset output counter
endif
if (section > 0 .and. homogenization_type(section) == homogenization_isostrain_label) then ! one of my sections
i = homogenization_typeInstance(section) ! which instance of my type is present homogenization
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
output = output + 1_pInt
homogenization_isostrain_output(output,i) = IO_lc(IO_stringValue(line,positions,2_pInt))
case ('ngrains')
homogenization_isostrain_Ngrains(i) = IO_intValue(line,positions,2_pInt)
end select
endif
enddo
100 do k = 1,maxNinstance
homogenization_isostrain_sizeState(i) = 0_pInt
do j = 1_pInt,maxval(homogenization_Noutput)
select case(homogenization_isostrain_output(j,i))
case('ngrains')
mySize = 1_pInt
case default
mySize = 0_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
homogenization_isostrain_sizePostResult(j,i) = mySize
homogenization_isostrain_sizePostResults(i) = &
homogenization_isostrain_sizePostResults(i) + mySize
endif
enddo
enddo
end subroutine homogenization_isostrain_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the initial homogenization stated
!--------------------------------------------------------------------------------------------------
function homogenization_isostrain_stateInit(myInstance)
use prec, only: &
pReal
implicit none
integer(pInt), intent(in) :: myInstance
real(pReal), dimension(homogenization_isostrain_sizeState(myInstance)) :: &
homogenization_isostrain_stateInit
homogenization_isostrain_stateInit = 0.0_pReal
end function homogenization_isostrain_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief partitions the deformation gradient onto the constituents
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_partitionDeformation(F,F0,avgF,state,i,e)
use prec, only: pReal,p_vec
use mesh, only: mesh_element
use material, only: homogenization_maxNgrains,homogenization_Ngrains
implicit none
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: F ! partioned def grad per grain
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: F0 ! initial partioned def grad per grain
real(pReal), dimension (3,3), intent(in) :: avgF ! my average def grad
type(p_vec), intent(in) :: state ! my state
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
F = spread(avgF,3,homogenization_Ngrains(mesh_element(3,e)))
end subroutine homogenization_isostrain_partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and
! "happy" with result
!--------------------------------------------------------------------------------------------------
function homogenization_isostrain_updateState(state,P,dPdF,i,e)
use prec, only: &
pReal,&
p_vec
use material, only: &
homogenization_maxNgrains
implicit none
type(p_vec), intent(inout) :: state !< my state
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P !< array of current grain stresses
real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF !< array of current grain stiffnesses
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
logical, dimension(2) :: homogenization_isostrain_updateState
homogenization_isostrain_updateState = .true. ! homogenization at material point converged (done and happy)
end function homogenization_isostrain_updateState
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,i,e)
use prec, only: &
pReal
use mesh, only: &
mesh_element
use material, only: homogenization_maxNgrains, homogenization_Ngrains
implicit none
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P !< array of current grain stresses
real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF !< array of current grain stiffnesses
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
integer(pInt) :: Ngrains
Ngrains = homogenization_Ngrains(mesh_element(3,e))
avgP = sum(P,3)/real(Ngrains,pReal)
dAvgPdAvgF = sum(dPdF,5)/real(Ngrains,pReal)
end subroutine homogenization_isostrain_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief derive average temperature from constituent quantities
!--------------------------------------------------------------------------------------------------
real(pReal) pure function homogenization_isostrain_averageTemperature(Temperature,i,e)
use prec, only: &
pReal
use mesh, only: &
mesh_element
use material, only: &
homogenization_maxNgrains, &
homogenization_Ngrains
implicit none
real(pReal), dimension (homogenization_maxNgrains), intent(in) :: Temperature
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
integer(pInt) :: Ngrains
Ngrains = homogenization_Ngrains(mesh_element(3,e))
homogenization_isostrain_averageTemperature = sum(Temperature(1:Ngrains))/real(Ngrains,pReal)
end function homogenization_isostrain_averageTemperature
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion
!--------------------------------------------------------------------------------------------------
pure function homogenization_isostrain_postResults(state,i,e)
use prec, only: &
pReal,&
p_vec
use mesh, only: &
mesh_element
use material, only: &
homogenization_typeInstance, &
homogenization_Noutput
implicit none
type(p_vec), intent(in) :: state
integer(pInt), intent(in) :: &
i, & !< integration point number
e !< element number
integer(pInt) :: homID,o,c
real(pReal), dimension(homogenization_isostrain_sizePostResults&
(homogenization_typeInstance(mesh_element(3,e)))) :: homogenization_isostrain_postResults
c = 0_pInt
homID = homogenization_typeInstance(mesh_element(3,e))
homogenization_isostrain_postResults = 0.0_pReal
do o = 1_pInt,homogenization_Noutput(mesh_element(3,e))
select case(homogenization_isostrain_output(o,homID))
case ('ngrains')
homogenization_isostrain_postResults(c+1_pInt) = real(homogenization_isostrain_Ngrains(homID),pReal)
c = c + 1_pInt
end select
enddo
end function homogenization_isostrain_postResults
end module homogenization_isostrain