!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author David Cereceda, Lawrence Livermore National Laboratory !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @brief crystal plasticity model for bcc metals, especially Tungsten !-------------------------------------------------------------------------------------------------- submodule(constitutive:constitutive_plastic) plastic_disloTungsten real(pReal), parameter :: & kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin type :: tParameters real(pReal) :: & D = 1.0_pReal, & !< grain size mu = 1.0_pReal, & !< equivalent shear modulus D_0 = 1.0_pReal, & !< prefactor for self-diffusion coefficient Q_cl = 1.0_pReal !< activation energy for dislocation climb real(pReal), allocatable, dimension(:) :: & b_sl, & !< magnitude of burgers vector [m] D_a, & i_sl, & !< Adj. parameter for distance between 2 forest dislocations atomicVolume, & !< factor to calculate atomic volume tau_0, & !< Peierls stress !* mobility law parameters delta_F, & !< activation energy for glide [J] v0, & !< dislocation velocity prefactor [m/s] p, & !< p-exponent in glide velocity q, & !< q-exponent in glide velocity B, & !< friction coefficient kink_height, & !< height of the kink pair w, & !< width of the kink pair omega !< attempt frequency for kink pair nucleation real(pReal), allocatable, dimension(:,:) :: & h_sl_sl, & !< slip resistance from slip activity forestProjection real(pReal), allocatable, dimension(:,:,:) :: & P_sl, & nonSchmid_pos, & nonSchmid_neg integer :: & sum_N_sl !< total number of active slip system character(len=pStringLen), allocatable, dimension(:) :: & output logical :: & dipoleFormation !< flag indicating consideration of dipole formation end type !< container type for internal constitutive parameters type :: tDisloTungstenState real(pReal), dimension(:,:), pointer :: & rho_mob, & rho_dip, & gamma_sl end type tDisloTungstenState type :: tDisloTungstendependentState real(pReal), dimension(:,:), allocatable :: & Lambda_sl, & threshold_stress end type tDisloTungstendependentState !-------------------------------------------------------------------------------------------------- ! containers for parameters and state type(tParameters), allocatable, dimension(:) :: param type(tDisloTungstenState), allocatable, dimension(:) :: & dotState, & state type(tDisloTungstendependentState), allocatable, dimension(:) :: dependentState contains !-------------------------------------------------------------------------------------------------- !> @brief Perform module initialization. !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function plastic_disloTungsten_init() result(myPlasticity) logical, dimension(:), allocatable :: myPlasticity integer :: & Ninstance, & p, i, & NipcMyPhase, & sizeState, sizeDotState, & startIndex, endIndex integer, dimension(:), allocatable :: & N_sl real(pReal),dimension(:), allocatable :: & rho_mob_0, & !< initial dislocation density rho_dip_0, & !< initial dipole density a !< non-Schmid coefficients character(len=pStringLen) :: & extmsg = '' class(tNode), pointer :: & phases, & phase, & pl print'(/,a)', ' <<<+- plastic_dislotungsten init -+>>>' myPlasticity = plastic_active('disloTungsten') Ninstance = count(myPlasticity) print'(a,i2)', ' # instances: ',Ninstance; flush(OUTPUT_UNIT) if(Ninstance == 0) return print*, 'Cereceda et al., International Journal of Plasticity 78:242–256, 2016' print*, 'https://dx.doi.org/10.1016/j.ijplas.2015.09.002' allocate(param(Ninstance)) allocate(state(Ninstance)) allocate(dotState(Ninstance)) allocate(dependentState(Ninstance)) phases => config_material%get('phase') i = 0 do p = 1, phases%length phase => phases%get(p) if(.not. myPlasticity(p)) cycle i = i + 1 associate(prm => param(i), & dot => dotState(i), & stt => state(i), & dst => dependentState(i)) pl => phase%get('plasticity') #if defined (__GFORTRAN__) prm%output = output_asStrings(pl) #else prm%output = pl%get_asStrings('output',defaultVal=emptyStringArray) #endif ! This data is read in already in lattice prm%mu = lattice_mu(p) !-------------------------------------------------------------------------------------------------- ! slip related parameters N_sl = pl%get_asInts('N_sl',defaultVal=emptyIntArray) prm%sum_N_sl = sum(abs(N_sl)) slipActive: if (prm%sum_N_sl > 0) then prm%P_sl = lattice_SchmidMatrix_slip(N_sl,phase%get_asString('lattice'),& phase%get_asFloat('c/a',defaultVal=0.0_pReal)) if(trim(phase%get_asString('lattice')) == 'bcc') then a = pl%get_asFloats('nonSchmid_coefficients',defaultVal = emptyRealArray) prm%nonSchmid_pos = lattice_nonSchmidMatrix(N_sl,a,+1) prm%nonSchmid_neg = lattice_nonSchmidMatrix(N_sl,a,-1) else prm%nonSchmid_pos = prm%P_sl prm%nonSchmid_neg = prm%P_sl endif prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl,pl%get_asFloats('h_sl_sl'), & phase%get_asString('lattice')) prm%forestProjection = lattice_forestProjection_edge(N_sl,phase%get_asString('lattice'),& phase%get_asFloat('c/a',defaultVal=0.0_pReal)) prm%forestProjection = transpose(prm%forestProjection) rho_mob_0 = pl%get_asFloats('rho_mob_0', requiredSize=size(N_sl)) rho_dip_0 = pl%get_asFloats('rho_dip_0', requiredSize=size(N_sl)) prm%v0 = pl%get_asFloats('v_0', requiredSize=size(N_sl)) prm%b_sl = pl%get_asFloats('b_sl', requiredSize=size(N_sl)) prm%delta_F = pl%get_asFloats('Q_s', requiredSize=size(N_sl)) prm%i_sl = pl%get_asFloats('i_sl', requiredSize=size(N_sl)) prm%tau_0 = pl%get_asFloats('tau_peierls', requiredSize=size(N_sl)) prm%p = pl%get_asFloats('p_sl', requiredSize=size(N_sl), & defaultVal=[(1.0_pReal,i=1,size(N_sl))]) prm%q = pl%get_asFloats('q_sl', requiredSize=size(N_sl), & defaultVal=[(1.0_pReal,i=1,size(N_sl))]) prm%kink_height = pl%get_asFloats('h', requiredSize=size(N_sl)) prm%w = pl%get_asFloats('w', requiredSize=size(N_sl)) prm%omega = pl%get_asFloats('omega', requiredSize=size(N_sl)) prm%B = pl%get_asFloats('B', requiredSize=size(N_sl)) prm%D = pl%get_asFloat('D') prm%D_0 = pl%get_asFloat('D_0') prm%Q_cl = pl%get_asFloat('Q_cl') prm%atomicVolume = pl%get_asFloat('f_at') * prm%b_sl**3.0_pReal prm%D_a = pl%get_asFloat('D_a') * prm%b_sl prm%dipoleformation = pl%get_asBool('dipole_formation_factor', defaultVal = .true.) ! expand: family => system rho_mob_0 = math_expand(rho_mob_0, N_sl) rho_dip_0 = math_expand(rho_dip_0, N_sl) prm%q = math_expand(prm%q, N_sl) prm%p = math_expand(prm%p, N_sl) prm%delta_F = math_expand(prm%delta_F, N_sl) prm%b_sl = math_expand(prm%b_sl, N_sl) prm%kink_height = math_expand(prm%kink_height, N_sl) prm%w = math_expand(prm%w, N_sl) prm%omega = math_expand(prm%omega, N_sl) prm%tau_0 = math_expand(prm%tau_0, N_sl) prm%v0 = math_expand(prm%v0, N_sl) prm%B = math_expand(prm%B, N_sl) prm%i_sl = math_expand(prm%i_sl, N_sl) prm%atomicVolume = math_expand(prm%atomicVolume, N_sl) prm%D_a = math_expand(prm%D_a, N_sl) ! sanity checks if ( prm%D_0 <= 0.0_pReal) extmsg = trim(extmsg)//' D_0' if ( prm%Q_cl <= 0.0_pReal) extmsg = trim(extmsg)//' Q_cl' if (any(rho_mob_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_mob_0' if (any(rho_dip_0 < 0.0_pReal)) extmsg = trim(extmsg)//' rho_dip_0' if (any(prm%v0 < 0.0_pReal)) extmsg = trim(extmsg)//' v_0' if (any(prm%b_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' b_sl' if (any(prm%delta_F <= 0.0_pReal)) extmsg = trim(extmsg)//' Q_s' if (any(prm%tau_0 < 0.0_pReal)) extmsg = trim(extmsg)//' tau_peierls' if (any(prm%D_a <= 0.0_pReal)) extmsg = trim(extmsg)//' D_a or b_sl' if (any(prm%atomicVolume <= 0.0_pReal)) extmsg = trim(extmsg)//' f_at or b_sl' else slipActive rho_mob_0= emptyRealArray; rho_dip_0 = emptyRealArray allocate(prm%b_sl,prm%D_a,prm%i_sl,prm%atomicVolume,prm%tau_0, & prm%delta_F,prm%v0,prm%p,prm%q,prm%B,prm%kink_height,prm%w,prm%omega, & source = emptyRealArray) allocate(prm%forestProjection(0,0)) allocate(prm%h_sl_sl (0,0)) endif slipActive !-------------------------------------------------------------------------------------------------- ! allocate state arrays NipcMyPhase = count(material_phaseAt == p) * discretization_nIP sizeDotState = size(['rho_mob ','rho_dip ','gamma_sl']) * prm%sum_N_sl sizeState = sizeDotState call constitutive_allocateState(plasticState(p),NipcMyPhase,sizeState,sizeDotState,0) !-------------------------------------------------------------------------------------------------- ! state aliases and initialization startIndex = 1 endIndex = prm%sum_N_sl stt%rho_mob => plasticState(p)%state(startIndex:endIndex,:) stt%rho_mob = spread(rho_mob_0,2,NipcMyPhase) dot%rho_mob => plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal) if (any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_rho' startIndex = endIndex + 1 endIndex = endIndex + prm%sum_N_sl stt%rho_dip => plasticState(p)%state(startIndex:endIndex,:) stt%rho_dip = spread(rho_dip_0,2,NipcMyPhase) dot%rho_dip => plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_rho',defaultVal=1.0_pReal) startIndex = endIndex + 1 endIndex = endIndex + prm%sum_N_sl stt%gamma_sl => plasticState(p)%state(startIndex:endIndex,:) dot%gamma_sl => plasticState(p)%dotState(startIndex:endIndex,:) plasticState(p)%atol(startIndex:endIndex) = 1.0e-2_pReal ! global alias plasticState(p)%slipRate => plasticState(p)%dotState(startIndex:endIndex,:) allocate(dst%Lambda_sl(prm%sum_N_sl,NipcMyPhase), source=0.0_pReal) allocate(dst%threshold_stress(prm%sum_N_sl,NipcMyPhase), source=0.0_pReal) plasticState(p)%state0 = plasticState(p)%state ! ToDo: this could be done centrally end associate !-------------------------------------------------------------------------------------------------- ! exit if any parameter is out of range if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(disloTungsten)') enddo end function plastic_disloTungsten_init !-------------------------------------------------------------------------------------------------- !> @brief Calculate plastic velocity gradient and its tangent. !-------------------------------------------------------------------------------------------------- pure module subroutine plastic_disloTungsten_LpAndItsTangent(Lp,dLp_dMp, & Mp,T,instance,of) real(pReal), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pReal), dimension(3,3,3,3), intent(out) :: & dLp_dMp !< derivative of Lp with respect to the Mandel stress real(pReal), dimension(3,3), intent(in) :: & Mp !< Mandel stress real(pReal), intent(in) :: & T !< temperature integer, intent(in) :: & instance, & of integer :: & i,k,l,m,n real(pReal), dimension(param(instance)%sum_N_sl) :: & dot_gamma_pos,dot_gamma_neg, & ddot_gamma_dtau_pos,ddot_gamma_dtau_neg Lp = 0.0_pReal dLp_dMp = 0.0_pReal associate(prm => param(instance)) call kinetics(Mp,T,instance,of,dot_gamma_pos,dot_gamma_neg,ddot_gamma_dtau_pos,ddot_gamma_dtau_neg) do i = 1, prm%sum_N_sl Lp = Lp + (dot_gamma_pos(i)+dot_gamma_neg(i))*prm%P_sl(1:3,1:3,i) forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) & + ddot_gamma_dtau_pos(i) * prm%P_sl(k,l,i) * prm%nonSchmid_pos(m,n,i) & + ddot_gamma_dtau_neg(i) * prm%P_sl(k,l,i) * prm%nonSchmid_neg(m,n,i) enddo end associate end subroutine plastic_disloTungsten_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief Calculate the rate of change of microstructure. !-------------------------------------------------------------------------------------------------- module subroutine plastic_disloTungsten_dotState(Mp,T,instance,of) real(pReal), dimension(3,3), intent(in) :: & Mp !< Mandel stress real(pReal), intent(in) :: & T !< temperature integer, intent(in) :: & instance, & of real(pReal) :: & VacancyDiffusion real(pReal), dimension(param(instance)%sum_N_sl) :: & gdot_pos, gdot_neg,& tau_pos,& tau_neg, & v_cl, & dot_rho_dip_formation, & dot_rho_dip_climb, & dip_distance associate(prm => param(instance), stt => state(instance),dot => dotState(instance), dst => dependentState(instance)) call kinetics(Mp,T,instance,of,& gdot_pos,gdot_neg, & tau_pos_out = tau_pos,tau_neg_out = tau_neg) dot%gamma_sl(:,of) = (gdot_pos+gdot_neg) ! ToDo: needs to be abs VacancyDiffusion = prm%D_0*exp(-prm%Q_cl/(kB*T)) where(dEq0(tau_pos)) ! ToDo: use avg of pos and neg dot_rho_dip_formation = 0.0_pReal dot_rho_dip_climb = 0.0_pReal else where dip_distance = math_clip(3.0_pReal*prm%mu*prm%b_sl/(16.0_pReal*PI*abs(tau_pos)), & prm%D_a, & ! lower limit dst%Lambda_sl(:,of)) ! upper limit dot_rho_dip_formation = merge(2.0_pReal*dip_distance* stt%rho_mob(:,of)*abs(dot%gamma_sl(:,of))/prm%b_sl, & ! ToDo: ignore region of spontaneous annihilation 0.0_pReal, & prm%dipoleformation) v_cl = (3.0_pReal*prm%mu*VacancyDiffusion*prm%atomicVolume/(2.0_pReal*pi*kB*T)) & * (1.0_pReal/(dip_distance+prm%D_a)) dot_rho_dip_climb = (4.0_pReal*v_cl*stt%rho_dip(:,of))/(dip_distance-prm%D_a) ! ToDo: Discuss with Franz: Stress dependency? end where dot%rho_mob(:,of) = abs(dot%gamma_sl(:,of))/(prm%b_sl*dst%Lambda_sl(:,of)) & ! multiplication - dot_rho_dip_formation & - (2.0_pReal*prm%D_a)/prm%b_sl*stt%rho_mob(:,of)*abs(dot%gamma_sl(:,of)) ! Spontaneous annihilation of 2 single edge dislocations dot%rho_dip(:,of) = dot_rho_dip_formation & - (2.0_pReal*prm%D_a)/prm%b_sl*stt%rho_dip(:,of)*abs(dot%gamma_sl(:,of)) & ! Spontaneous annihilation of a single edge dislocation with a dipole constituent - dot_rho_dip_climb end associate end subroutine plastic_disloTungsten_dotState !-------------------------------------------------------------------------------------------------- !> @brief Calculate derived quantities from state. !-------------------------------------------------------------------------------------------------- module subroutine plastic_disloTungsten_dependentState(instance,of) integer, intent(in) :: & instance, & of real(pReal), dimension(param(instance)%sum_N_sl) :: & dislocationSpacing associate(prm => param(instance), stt => state(instance),dst => dependentState(instance)) dislocationSpacing = sqrt(matmul(prm%forestProjection,stt%rho_mob(:,of)+stt%rho_dip(:,of))) dst%threshold_stress(:,of) = prm%mu*prm%b_sl & * sqrt(matmul(prm%h_sl_sl,stt%rho_mob(:,of)+stt%rho_dip(:,of))) dst%Lambda_sl(:,of) = prm%D/(1.0_pReal+prm%D*dislocationSpacing/prm%i_sl) end associate end subroutine plastic_disloTungsten_dependentState !-------------------------------------------------------------------------------------------------- !> @brief Write results to HDF5 output file. !-------------------------------------------------------------------------------------------------- module subroutine plastic_disloTungsten_results(instance,group) integer, intent(in) :: instance character(len=*), intent(in) :: group integer :: o associate(prm => param(instance), stt => state(instance), dst => dependentState(instance)) outputsLoop: do o = 1,size(prm%output) select case(trim(prm%output(o))) case('rho_mob') if(prm%sum_N_sl>0) call results_writeDataset(group,stt%rho_mob,trim(prm%output(o)), & 'mobile dislocation density','1/m²') case('rho_dip') if(prm%sum_N_sl>0) call results_writeDataset(group,stt%rho_dip,trim(prm%output(o)), & 'dislocation dipole density''1/m²') case('gamma_sl') if(prm%sum_N_sl>0) call results_writeDataset(group,stt%gamma_sl,trim(prm%output(o)), & 'plastic shear','1') case('Lambda_sl') if(prm%sum_N_sl>0) call results_writeDataset(group,dst%Lambda_sl,trim(prm%output(o)), & 'mean free path for slip','m') case('tau_pass') if(prm%sum_N_sl>0) call results_writeDataset(group,dst%threshold_stress,trim(prm%output(o)), & 'threshold stress for slip','Pa') end select enddo outputsLoop end associate end subroutine plastic_disloTungsten_results !-------------------------------------------------------------------------------------------------- !> @brief Calculate shear rates on slip systems, their derivatives with respect to resolved ! stress, and the resolved stress. !> @details Derivatives and resolved stress are calculated only optionally. ! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to ! have the optional arguments at the end !-------------------------------------------------------------------------------------------------- pure subroutine kinetics(Mp,T,instance,of, & dot_gamma_pos,dot_gamma_neg,ddot_gamma_dtau_pos,ddot_gamma_dtau_neg,tau_pos_out,tau_neg_out) real(pReal), dimension(3,3), intent(in) :: & Mp !< Mandel stress real(pReal), intent(in) :: & T !< temperature integer, intent(in) :: & instance, & of real(pReal), intent(out), dimension(param(instance)%sum_N_sl) :: & dot_gamma_pos, & dot_gamma_neg real(pReal), intent(out), optional, dimension(param(instance)%sum_N_sl) :: & ddot_gamma_dtau_pos, & ddot_gamma_dtau_neg, & tau_pos_out, & tau_neg_out real(pReal), dimension(param(instance)%sum_N_sl) :: & StressRatio, & StressRatio_p,StressRatio_pminus1, & dvel, vel, & tau_pos,tau_neg, & t_n, t_k, dtk,dtn, & needsGoodName ! ToDo: @Karo: any idea? integer :: j associate(prm => param(instance), stt => state(instance), dst => dependentState(instance)) do j = 1, prm%sum_N_sl tau_pos(j) = math_tensordot(Mp,prm%nonSchmid_pos(1:3,1:3,j)) tau_neg(j) = math_tensordot(Mp,prm%nonSchmid_neg(1:3,1:3,j)) enddo if (present(tau_pos_out)) tau_pos_out = tau_pos if (present(tau_neg_out)) tau_neg_out = tau_neg associate(BoltzmannRatio => prm%delta_F/(kB*T), & dot_gamma_0 => stt%rho_mob(:,of)*prm%b_sl*prm%v0, & effectiveLength => dst%Lambda_sl(:,of) - prm%w) significantPositiveTau: where(abs(tau_pos)-dst%threshold_stress(:,of) > tol_math_check) StressRatio = (abs(tau_pos)-dst%threshold_stress(:,of))/prm%tau_0 StressRatio_p = StressRatio** prm%p StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal) needsGoodName = exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) t_n = prm%b_sl/(needsGoodName*prm%omega*effectiveLength) t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos) vel = prm%kink_height/(t_n + t_k) dot_gamma_pos = dot_gamma_0 * sign(vel,tau_pos) * 0.5_pReal else where significantPositiveTau dot_gamma_pos = 0.0_pReal end where significantPositiveTau if (present(ddot_gamma_dtau_pos)) then significantPositiveTau2: where(abs(tau_pos)-dst%threshold_stress(:,of) > tol_math_check) dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) & * (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_0 dtk = -1.0_pReal * t_k / tau_pos dvel = -1.0_pReal * prm%kink_height * (dtk + dtn) / (t_n + t_k)**2.0_pReal ddot_gamma_dtau_pos = dot_gamma_0 * dvel* 0.5_pReal else where significantPositiveTau2 ddot_gamma_dtau_pos = 0.0_pReal end where significantPositiveTau2 endif significantNegativeTau: where(abs(tau_neg)-dst%threshold_stress(:,of) > tol_math_check) StressRatio = (abs(tau_neg)-dst%threshold_stress(:,of))/prm%tau_0 StressRatio_p = StressRatio** prm%p StressRatio_pminus1 = StressRatio**(prm%p-1.0_pReal) needsGoodName = exp(-BoltzmannRatio*(1-StressRatio_p) ** prm%q) t_n = prm%b_sl/(needsGoodName*prm%omega*effectiveLength) t_k = effectiveLength * prm%B /(2.0_pReal*prm%b_sl*tau_pos) vel = prm%kink_height/(t_n + t_k) dot_gamma_neg = dot_gamma_0 * sign(vel,tau_neg) * 0.5_pReal else where significantNegativeTau dot_gamma_neg = 0.0_pReal end where significantNegativeTau if (present(ddot_gamma_dtau_neg)) then significantNegativeTau2: where(abs(tau_neg)-dst%threshold_stress(:,of) > tol_math_check) dtn = -1.0_pReal * t_n * BoltzmannRatio * prm%p * prm%q * (1.0_pReal-StressRatio_p)**(prm%q - 1.0_pReal) & * (StressRatio)**(prm%p - 1.0_pReal) / prm%tau_0 dtk = -1.0_pReal * t_k / tau_neg dvel = -1.0_pReal * prm%kink_height * (dtk + dtn) / (t_n + t_k)**2.0_pReal ddot_gamma_dtau_neg = dot_gamma_0 * dvel * 0.5_pReal else where significantNegativeTau2 ddot_gamma_dtau_neg = 0.0_pReal end where significantNegativeTau2 end if end associate end associate end subroutine kinetics end submodule plastic_disloTungsten