! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Polarisation scheme solver !-------------------------------------------------------------------------------------------------- module DAMASK_spectral_solverPolarisation use prec, only: & pInt, & pReal use math, only: & math_I3 use DAMASK_spectral_utilities, only: & tSolutionState implicit none private #include #include #include character (len=*), parameter, public :: & DAMASK_spectral_solverPolarisation_label = 'polarisation' !-------------------------------------------------------------------------------------------------- ! derived types type tSolutionParams !< @todo use here the type definition for a full loadcase including mask real(pReal), dimension(3,3) :: P_BC, rotation_BC real(pReal) :: timeinc real(pReal) :: timeincOld real(pReal) :: temperature real(pReal) :: density end type tSolutionParams type(tSolutionParams), private :: params real(pReal), private, dimension(3,3) :: mask_stress = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! PETSc data DM, private :: da SNES, private :: snes Vec, private :: solution_vec !-------------------------------------------------------------------------------------------------- ! common pointwise data real(pReal), private, dimension(:,:,:,:,:), allocatable :: & F_lastInc, & !< field of previous compatible deformation gradients F_lastInc2, & !< field of 2nd previous compatible deformation gradients F_tau_lastInc, & !< field of previous incompatible deformation gradient Fdot, & !< field of assumed rate of compatible deformation gradient F_tauDot !< field of assumed rate of incopatible deformation gradient complex(pReal),private, dimension(:,:,:,:,:), allocatable :: inertiaField_fourier !-------------------------------------------------------------------------------------------------- ! stress, stiffness and compliance average etc. real(pReal), private, dimension(3,3) :: & F_aimDot, & !< assumed rate of average deformation gradient F_aim = math_I3, & !< current prescribed deformation gradient F_aim_lastInc = math_I3, & !< previous average deformation gradient P_av = 0.0_pReal, & !< average 1st Piola--Kirchhoff stress P_avLastEval = 0.0_pReal !< average 1st Piola--Kirchhoff stress last call of CPFEM_general character(len=1024), private :: incInfo !< time and increment information real(pReal), private, dimension(3,3,3,3) :: & C_volAvg = 0.0_pReal, & !< current volume average stiffness C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness S = 0.0_pReal, & !< current compliance (filled up with zeros) C_scale = 0.0_pReal, & S_scale = 0.0_pReal real(pReal), private :: & err_stress, & !< deviation from stress BC err_f, & !< difference between compatible and incompatible deformation gradient err_p !< difference of stress resulting from compatible and incompatible F logical, private :: ForwardData integer(pInt), private :: & totalIter = 0_pInt !< total iteration in current increment public :: & Polarisation_init, & Polarisation_solution, & Polarisation_destroy external :: & VecDestroy, & DMDestroy, & DMDACreate3D, & DMCreateGlobalVector, & DMDASetLocalFunction, & PETScFinalize, & SNESDestroy, & SNESGetNumberFunctionEvals, & SNESGetIterationNumber, & SNESSolve, & SNESSetDM, & SNESGetConvergedReason, & SNESSetConvergenceTest, & SNESSetFromOptions, & SNESCreate, & MPI_Abort contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all neccessary fields and fills them with data, potentially from restart info !> @todo use sourced allocation, e.g. allocate(Fdot,source = F_lastInc) !-------------------------------------------------------------------------------------------------- subroutine Polarisation_init(temperature) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment) use IO, only: & IO_intOut, & IO_read_JobBinaryFile, & IO_write_JobBinaryFile, & IO_timeStamp use debug, only : & debug_level, & debug_spectral, & debug_spectralRestart use FEsolving, only: & restartInc use DAMASK_interface, only: & getSolverJobName use DAMASK_spectral_Utilities, only: & Utilities_init, & Utilities_constitutiveResponse, & Utilities_updateGamma, & grid, & grid1Red, & geomSize, & wgt use mesh, only: & mesh_ipCoordinates, & mesh_deformedCoordsFFT use math, only: & math_invSym3333 implicit none real(pReal), intent(inout) :: & temperature #include #include real(pReal), dimension(:,:,:,:,:), allocatable :: P real(pReal), dimension(3,3) :: & temp33_Real = 0.0_pReal real(pReal), dimension(3,3,3,3) :: & temp3333_Real = 0.0_pReal, & temp3333_Real2 = 0.0_pReal PetscErrorCode :: ierr PetscObject :: dummy PetscScalar, pointer, dimension(:,:,:,:) :: xx_psc, F, F_tau call Utilities_init() write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverPolarisation init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a16,a)') ' Current time : ',IO_timeStamp() #include "compilation_info.f90" allocate (P (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) !-------------------------------------------------------------------------------------------------- ! allocate global fields allocate (F_lastInc (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (F_lastInc2 (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (Fdot (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (F_tau_lastInc(3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (F_tauDot (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal) allocate (inertiaField_fourier (grid1Red,grid(2),grid(3),3,3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) !-------------------------------------------------------------------------------------------------- ! PETSc Init call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr) call DMDACreate3d(PETSC_COMM_WORLD, & DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, & DMDA_STENCIL_BOX,grid(1),grid(2),grid(3),PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE, & 18,1,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr) CHKERRQ(ierr) call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr) call DMDASetLocalFunction(da,Polarisation_formResidual,ierr); CHKERRQ(ierr) call SNESSetDM(snes,da,ierr); CHKERRQ(ierr) call SNESSetConvergenceTest(snes,Polarisation_converged,dummy,PETSC_NULL_FUNCTION,ierr) CHKERRQ(ierr) call SNESSetFromOptions(snes,ierr); CHKERRQ(ierr) !-------------------------------------------------------------------------------------------------- ! init fields call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! places pointer xx_psc on PETSc data F => xx_psc(0:8,:,:,:) F_tau => xx_psc(9:17,:,:,:) if (restartInc == 1_pInt) then ! no deformation (no restart) F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid(3)) ! initialize to identity F_lastInc2 = F_lastInc F_tau_lastInc = 2.0_pReal*F_lastInc F = reshape(F_lastInc,[9,grid(1),grid(2),grid(3)]) F_tau = 2.0_pReal* F elseif (restartInc > 1_pInt) then if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0) & write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') & 'reading values of increment', restartInc - 1_pInt, 'from file' flush(6) call IO_read_jobBinaryFile(777,'F',& trim(getSolverJobName()),size(F)) read (777,rec=1) F close (777) call IO_read_jobBinaryFile(777,'F_lastInc',& trim(getSolverJobName()),size(F_lastInc)) read (777,rec=1) F_lastInc close (777) call IO_read_jobBinaryFile(777,'F_lastInc2',& trim(getSolverJobName()),size(F_lastInc2)) read (777,rec=1) F_lastInc2 close (777) F_aim = reshape(sum(sum(sum(F,dim=4),dim=3),dim=2) * wgt, [3,3]) ! average of F F_aim_lastInc = sum(sum(sum(F_lastInc,dim=5),dim=4),dim=3) * wgt ! average of F_lastInc call IO_read_jobBinaryFile(777,'F_tau',& trim(getSolverJobName()),size(F_tau)) read (777,rec=1) F_tau close (777) call IO_read_jobBinaryFile(777,'F_tau_lastInc',& trim(getSolverJobName()),size(F_tau_lastInc)) read (777,rec=1) F_tau_lastInc close (777) call IO_read_jobBinaryFile(777,'F_aimDot',trim(getSolverJobName()),size(f_aimDot)) read (777,rec=1) f_aimDot close (777) call IO_read_jobBinaryFile(777,'C_volAvg',trim(getSolverJobName()),size(C_volAvg)) read (777,rec=1) C_volAvg close (777) call IO_read_jobBinaryFile(777,'C_volAvgLastInc',trim(getSolverJobName()),size(C_volAvgLastInc)) read (777,rec=1) C_volAvgLastInc close (777) call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(temp3333_Real)) read (777,rec=1) C_minMaxAvg close (777) endif mesh_ipCoordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(& F,[3,3,grid(1),grid(2),grid(3)])),[3,1,product(grid)]) call Utilities_constitutiveResponse(F,F,temperature,0.0_pReal,P,temp3333_Real,temp3333_Real2,& temp33_Real,.false.,math_I3) call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) !-------------------------------------------------------------------------------------------------- ! reference stiffness if (restartInc == 1_pInt) then ! use initial stiffness as reference stiffness C_minMaxAvg = temp3333_Real2 C_volAvg = temp3333_Real endif call Utilities_updateGamma(temp3333_Real2,.True.) C_scale = temp3333_Real2 S_scale = math_invSym3333(temp3333_Real2) end subroutine Polarisation_init !-------------------------------------------------------------------------------------------------- !> @brief solution for the Polarisation scheme with internal iterations !-------------------------------------------------------------------------------------------------- type(tSolutionState) function & Polarisation_solution(incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,temperature_bc,rotation_BC,density) use numerics, only: & update_gamma use math, only: & math_mul33x33 ,& math_mul3333xx33, & math_rotate_backward33, & math_invSym3333 use mesh, only: & mesh_ipCoordinates, & mesh_deformedCoordsFFT use IO, only: & IO_write_JobBinaryFile use DAMASK_spectral_Utilities, only: & grid, & geomSize, & tBoundaryCondition, & Utilities_forwardField, & Utilities_calculateRate, & Utilities_maskedCompliance, & Utilities_updateGamma, & cutBack use FEsolving, only: & restartWrite, & terminallyIll implicit none #include #include !-------------------------------------------------------------------------------------------------- ! input data for solution real(pReal), intent(in) :: & timeinc, & !< increment in time for current solution timeinc_old, & !< increment in time of last increment loadCaseTime, & !< remaining time of current load case temperature_bc, & density logical, intent(in) :: & guess type(tBoundaryCondition), intent(in) :: & P_BC, & F_BC character(len=*), intent(in) :: & incInfoIn real(pReal), dimension(3,3), intent(in) :: rotation_BC !-------------------------------------------------------------------------------------------------- ! PETSc Data PetscScalar, dimension(:,:,:,:), pointer :: xx_psc, F, F_tau PetscErrorCode :: ierr SNESConvergedReason :: reason incInfo = incInfoIn ! set global variable to incoming one call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr) F => xx_psc(0:8,:,:,:) F_tau => xx_psc(9:17,:,:,:) !-------------------------------------------------------------------------------------------------- ! restart information for spectral solver if (restartWrite) then write(6,'(/,a)') ' writing converged results for restart' flush(6) call IO_write_jobBinaryFile(777,'F',size(F)) ! writing deformation gradient field to file write (777,rec=1) F close (777) call IO_write_jobBinaryFile(777,'F_lastInc',size(F_lastInc)) ! writing F_lastInc field to file write (777,rec=1) F_lastInc close (777) call IO_write_jobBinaryFile(777,'F_tau',size(F_tau)) ! writing deformation gradient field to file write (777,rec=1) F_tau close (777) call IO_write_jobBinaryFile(777,'F_tau_lastInc',size(F_tau_lastInc)) ! writing F_lastInc field to file write (777,rec=1) F_tau_lastInc close (777) call IO_write_jobBinaryFile(777,'F_aimDot',size(F_aimDot)) write (777,rec=1) F_aimDot close(777) call IO_write_jobBinaryFile(777,'C_volAvg',size(C_volAvg)) write (777,rec=1) C_volAvg close(777) call IO_write_jobBinaryFile(777,'C_volAvgLastInc',size(C_volAvgLastInc)) write (777,rec=1) C_volAvgLastInc close(777) endif Polarisation_solution%converged =.false. if (cutBack) then F_aim = F_aim_lastInc F_tau= reshape(F_tau_lastInc,[9,grid(1),grid(2),grid(3)]) F = reshape(F_lastInc, [9,grid(1),grid(2),grid(3)]) C_volAvg = C_volAvgLastInc else C_volAvgLastInc = C_volAvg !-------------------------------------------------------------------------------------------------- ! calculate rate for aim if (F_BC%myType=='l') then ! calculate f_aimDot from given L and current F f_aimDot = F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim) elseif(F_BC%myType=='fdot') then ! f_aimDot is prescribed f_aimDot = F_BC%maskFloat * F_BC%values elseif(F_BC%myType=='f') then ! aim at end of load case is prescribed f_aimDot = F_BC%maskFloat * (F_BC%values -F_aim)/loadCaseTime endif if (guess) f_aimDot = f_aimDot + P_BC%maskFloat * (F_aim - F_aim_lastInc)/timeinc_old F_aim_lastInc = F_aim !-------------------------------------------------------------------------------------------------- ! update coordinates and rate and forward last inc mesh_ipCoordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(& F,[3,3,grid(1),grid(2),grid(3)])),[3,1,product(grid)]) Fdot = Utilities_calculateRate(math_rotate_backward33(f_aimDot,rotation_BC), & timeinc_old,guess,F_lastInc,reshape(F,[3,3,grid(1),grid(2),grid(3)])) F_tauDot = Utilities_calculateRate(math_rotate_backward33(2.0_pReal*f_aimDot,rotation_BC), & timeinc_old,guess,F_tau_lastInc,reshape(F_tau,[3,3,grid(1),grid(2),grid(3)])) F_lastInc2 = F_lastInc F_lastInc = reshape(F, [3,3,grid(1),grid(2),grid(3)]) F_tau_lastInc = reshape(F_tau,[3,3,grid(1),grid(2),grid(3)]) endif F_aim = F_aim + f_aimDot * timeinc !-------------------------------------------------------------------------------------------------- ! update local deformation gradient F = reshape(Utilities_forwardField(timeinc,F_lastInc,Fdot, & ! ensure that it matches rotated F_aim math_rotate_backward33(F_aim,rotation_BC)),[9,grid(1),grid(2),grid(3)]) F_tau = reshape(Utilities_forwardField(timeinc,F_tau_lastInc,F_taudot), [9,grid(1),grid(2),grid(3)]) ! does not have any average value as boundary condition call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr) CHKERRQ(ierr) !-------------------------------------------------------------------------------------------------- ! update stiffness (and gamma operator) S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C_volAvg) if (update_gamma) then call Utilities_updateGamma(C_minMaxAvg,restartWrite) C_scale = C_minMaxAvg S_scale = math_invSym3333(C_minMaxAvg) endif ForwardData = .True. mask_stress = P_BC%maskFloat params%P_BC = P_BC%values params%rotation_BC = rotation_BC params%timeinc = timeinc params%timeincOld = timeinc_old params%temperature = temperature_bc params%density = density !-------------------------------------------------------------------------------------------------- ! solve BVP call SNESSolve(snes,PETSC_NULL_OBJECT,solution_vec,ierr) CHKERRQ(ierr) !-------------------------------------------------------------------------------------------------- ! check convergence call SNESGetConvergedReason(snes,reason,ierr) CHKERRQ(ierr) Polarisation_solution%termIll = terminallyIll terminallyIll = .false. Polarisation_solution%converged = .true. if (reason < 1 ) Polarisation_solution%converged = .false. Polarisation_solution%iterationsNeeded = totalIter end function Polarisation_solution !-------------------------------------------------------------------------------------------------- !> @brief forms the Polarisation residual vector !-------------------------------------------------------------------------------------------------- subroutine Polarisation_formResidual(in,x_scal,f_scal,dummy,ierr) use numerics, only: & itmax, & itmin, & polarAlpha, & polarBeta, & err_stress_tolrel, & err_stress_tolabs, & err_f_tolabs, & err_p_tolabs, & err_f_p_tolrel, & err_stress_tolabs use IO, only: & IO_intOut use math, only: & math_rotate_backward33, & math_transpose33, & math_mul3333xx33, & math_invSym3333, & PI use DAMASK_spectral_Utilities, only: & grid, & geomSize, & wgt, & field_real, & field_fourier, & Utilities_FFTforward, & Utilities_fourierConvolution, & Utilities_inverseLaplace, & Utilities_FFTbackward, & Utilities_constitutiveResponse use debug, only: & debug_level, & debug_spectral, & debug_spectralRotation use homogenization, only: & materialpoint_P, & materialpoint_dPdF implicit none !-------------------------------------------------------------------------------------------------- ! strange syntax in the next line because otherwise macros expand beyond 132 character limit DMDALocalInfo, dimension(& DMDA_LOCAL_INFO_SIZE) :: & in PetscScalar, target, dimension(3,3,2, & XG_RANGE,YG_RANGE,ZG_RANGE) :: & x_scal PetscScalar, target, dimension(3,3,2, & X_RANGE,Y_RANGE,Z_RANGE) :: & f_scal PetscScalar, pointer, dimension(:,:,:,:,:) :: & F, & F_tau, & residual_F, & residual_F_tau PetscInt :: & PETScIter, & nfuncs PetscObject :: dummy PetscErrorCode :: ierr integer(pInt) :: & i, j, k, e real(pReal) :: correctionFactor F => x_scal(1:3,1:3,1,& XG_RANGE,YG_RANGE,ZG_RANGE) F_tau => x_scal(1:3,1:3,2,& XG_RANGE,YG_RANGE,ZG_RANGE) residual_F => f_scal(1:3,1:3,1,& X_RANGE,Y_RANGE,Z_RANGE) residual_F_tau => f_scal(1:3,1:3,2,& X_RANGE,Y_RANGE,Z_RANGE) call SNESGetNumberFunctionEvals(snes,nfuncs,ierr); CHKERRQ(ierr) call SNESGetIterationNumber(snes,PETScIter,ierr); CHKERRQ(ierr) if(nfuncs== 0 .and. PETScIter == 0) totalIter = -1_pInt ! new increment if (totalIter <= PETScIter) then ! new iteration !-------------------------------------------------------------------------------------------------- ! report begin of new iteration totalIter = totalIter + 1_pInt write(6,'(1x,a,3(a,'//IO_intOut(itmax)//'))') trim(incInfo), & ' @ Iteration ', itmin, '≤',totalIter, '≤', itmax if (iand(debug_level(debug_spectral),debug_spectralRotation) /= 0) & write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim (lab) =', & math_transpose33(math_rotate_backward33(F_aim,params%rotation_BC)) write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim =', & math_transpose33(F_aim) flush(6) endif !-------------------------------------------------------------------------------------------------- ! evaluate inertia dynamic: if (params%density > 0.0_pReal) then residual_F = ((F - F_lastInc)/params%timeinc - (F_lastInc - F_lastInc2)/params%timeincOld)/& ((params%timeinc + params%timeincOld)/2.0_pReal) residual_F = params%density*product(geomSize/grid)*residual_F field_real = 0.0_pReal field_real(1:grid(1),1:grid(2),1:grid(3),1:3,1:3) = reshape(residual_F,[grid(1),grid(2),grid(3),3,3],& order=[4,5,1,2,3]) ! field real has a different order call Utilities_FFTforward() call Utilities_inverseLaplace() inertiaField_fourier = field_fourier else dynamic inertiaField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal) endif dynamic !-------------------------------------------------------------------------------------------------- ! field_real = 0.0_pReal do k = 1_pInt, grid(3); do j = 1_pInt, grid(2); do i = 1_pInt, grid(1) field_real(i,j,k,1:3,1:3) = math_mul3333xx33(C_scale,(polarAlpha + polarBeta)*F(1:3,1:3,i,j,k) - & (polarAlpha)*F_tau(1:3,1:3,i,j,k)) enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! doing convolution in Fourier space call Utilities_FFTforward() field_fourier = field_fourier + polarAlpha*inertiaField_fourier call Utilities_fourierConvolution(math_rotate_backward33(polarBeta*F_aim,params%rotation_BC)) call Utilities_FFTbackward() !-------------------------------------------------------------------------------------------------- ! constructing residual residual_F_tau = polarBeta*F - reshape(field_real(1:grid(1),1:grid(2),1:grid(3),1:3,1:3),& [3,3,grid(1),grid(2),grid(3)],order=[3,4,5,1,2]) !-------------------------------------------------------------------------------------------------- ! evaluate constitutive response P_avLastEval = P_av call Utilities_constitutiveResponse(F_lastInc,F - residual_F_tau/polarBeta,params%temperature,params%timeinc, & residual_F,C_volAvg,C_minMaxAvg,P_av,ForwardData,params%rotation_BC) ForwardData = .False. !-------------------------------------------------------------------------------------------------- ! stress BC handling write(6,'(/,a)') ' ... correcting F to fullfill stress BC ....................................' correctionFactor = (cos((1.0-10000.0_pReal**(-sum((P_av-P_avLastEval)**2.0_pReal)/& ! only correct when averages stress of last two calls doesn't strongly deviate sum(P_av**2.0_pReal)))*PI)+1.0)/2.0_pReal write(6,'(/,a,f10.4)') ' stress BC correction factor = ', correctionFactor F_aim = F_aim - correctionFactor *math_mul3333xx33(S, ((P_av - params%P_BC))) ! S = 0.0 for no bc err_stress = maxval(abs(mask_stress * (P_av - params%P_BC))) ! mask = 0.0 for no bc !-------------------------------------------------------------------------------------------------- ! constructing residual e = 0_pInt err_p = 0.0_pReal do k = 1_pInt, grid(3); do j = 1_pInt, grid(2); do i = 1_pInt, grid(1) e = e + 1_pInt err_p = err_p + sum((math_mul3333xx33(C_scale,F_tau(1:3,1:3,i,j,k) -& F(1:3,1:3,i,j,k) - residual_F_tau(1:3,1:3,i,j,k)/polarBeta -& math_I3) - & residual_F(1:3,1:3,i,j,k))**2.0_pReal) residual_F(1:3,1:3,i,j,k) = math_mul3333xx33(math_invSym3333(materialpoint_dPdF(:,:,:,:,1,e) + C_scale), & residual_F(1:3,1:3,i,j,k) - & math_mul3333xx33(C_scale,F_tau(1:3,1:3,i,j,k) - F(1:3,1:3,i,j,k) - math_I3)) & + residual_F_tau(1:3,1:3,i,j,k) enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! calculating errors err_f = wgt*sqrt(sum(residual_F_tau**2.0_pReal))/polarBeta err_p = wgt*sqrt(err_p) end subroutine Polarisation_formResidual !-------------------------------------------------------------------------------------------------- !> @brief convergence check !-------------------------------------------------------------------------------------------------- subroutine Polarisation_converged(snes_local,PETScIter,xnorm,snorm,fnorm,reason,dummy,ierr) use numerics, only: & itmax, & itmin, & err_f_tolabs, & err_p_tolabs, & err_f_p_tolrel, & err_stress_tolabs, & err_stress_tolrel use FEsolving, only: & terminallyIll implicit none SNES :: snes_local PetscInt :: PETScIter PetscReal :: & xnorm, & snorm, & fnorm SNESConvergedReason :: reason PetscObject :: dummy PetscErrorCode ::ierr real(pReal) :: & mismatch_f_tol, & mismatch_p_tol, & stressBC_tol mismatch_f_tol = max(maxval(abs(F_aim-math_I3))*err_f_p_tolrel,err_f_tolabs) mismatch_p_tol = max(maxval(abs(P_av)) *err_f_p_tolrel,err_p_tolabs) stressBC_tol = max(maxval(abs(P_av)) *err_stress_tolrel,err_stress_tolabs) write(6,'(1/,a)') ' ... reporting .............................................................' write(6,'(/,a,f8.2,a,es11.5,a,es11.4,a)') ' mismatch F = ', & err_f/mismatch_f_tol, & ' (',err_f,' -, tol =',mismatch_f_tol,')' write(6,'(a,f8.2,a,es11.5,a,es11.4,a)') ' mismatch P = ', & err_p/mismatch_p_tol, & ' (',err_p,' -, tol =',mismatch_p_tol,')' write(6,'(a,f8.2,a,es11.5,a,es11.4,a)') ' error stress BC = ', & err_stress/stressBC_tol, ' (',err_stress, ' Pa, tol =',stressBC_tol,')' write(6,'(/,a)') ' ===========================================================================' flush(6) converged: if ((totalIter >= itmin .and. & all([ err_f/mismatch_f_tol, & err_p/mismatch_p_tol, & err_stress/stressBC_tol] < 1.0_pReal)) & .or. terminallyIll) then reason = 1 elseif (totalIter >= itmax) then converged reason = -1 else converged reason = 0 endif converged end subroutine Polarisation_converged !-------------------------------------------------------------------------------------------------- !> @brief destroy routine !-------------------------------------------------------------------------------------------------- subroutine Polarisation_destroy() use DAMASK_spectral_Utilities, only: & Utilities_destroy implicit none PetscErrorCode :: ierr call VecDestroy(solution_vec,ierr); CHKERRQ(ierr) call SNESDestroy(snes,ierr); CHKERRQ(ierr) call DMDestroy(da,ierr); CHKERRQ(ierr) call PetscFinalize(ierr); CHKERRQ(ierr) call Utilities_destroy() end subroutine Polarisation_destroy end module DAMASK_spectral_SolverPolarisation