#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string,re,math,numpy from optparse import OptionParser, OptionGroup, Option, SUPPRESS_HELP from scipy import ndimage #-------------------------------------------------------------------------------------------------- class extendedOption(Option): #-------------------------------------------------------------------------------------------------- # used for definition of new option parser action 'extend', which enables to take multiple option arguments # taken from online tutorial http://docs.python.org/library/optparse.html ACTIONS = Option.ACTIONS + ("extend",) STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",) TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",) ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",) def take_action(self, action, dest, opt, value, values, parser): if action == "extend": lvalue = value.split(",") values.ensure_value(dest, []).extend(lvalue) else: Option.take_action(self, action, dest, opt, value, values, parser) #-------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------- identifiers = { 'grid': ['a','b','c'], 'size': ['x','y','z'], 'origin': ['x','y','z'], } mappings = { 'grid': lambda x: int(x), 'size': lambda x: float(x), 'origin': lambda x: float(x), 'homogenization': lambda x: int(x), } parser = OptionParser(option_class=extendedOption, usage='%prog options [file[s]]', description = """ Smoothens out interface roughness by simulated curvature flow. This is achieved by the diffusion of each initially sharply bounded grain volume within the periodic domain for a given time, i.e. up to a diffusion distance of sqrt(t) voxels. The final geometry is assembled by selecting at each voxel that grain index for which the concentration is largest. """ + string.replace('$Id$','\n','\\n') ) parser.add_option('-t', '--time', dest='t', type='int', \ help='time for curvature flow [%default]') parser.add_option('-b', '--black', dest='black', action='extend', type='string', \ help='indices of stationary microstructures', metavar='') parser.add_option('-2', '--twodimensional', dest='twoD', action='store_true', \ help='output geom file with two-dimensional data arrangement [%default]') parser.set_defaults(t = 1) parser.set_defaults(black = []) parser.set_defaults(twoD = False) (options, filenames) = parser.parse_args() options.black = map(int,options.black) #--- setup file handles -------------------------------------------------------------------------- files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr, }) else: for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stdout, }) #--- loop over input files ------------------------------------------------------------------------ for file in files: if file['name'] != 'STDIN': file['croak'].write(file['name']+'\n') firstline = file['input'].readline() m = re.search('(\d+)\s*head', firstline.lower()) if m: headerlines = int(m.group(1)) headers = [file['input'].readline() for i in range(headerlines)] else: headerlines = 1 headers = firstline content = file['input'].readlines() file['input'].close() #--- interprete header ---------------------------------------------------------------------------- info = { 'grid': numpy.zeros(3,'i'), 'size': numpy.zeros(3,'d'), 'origin': numpy.zeros(3,'d'), 'microstructures': 0, 'homogenization': 0, } new_header = [] for header in headers: headitems = map(str.lower,header.split()) if headitems[0] == 'resolution': headitems[0] = 'grid' if headitems[0] == 'dimension': headitems[0] = 'size' if headitems[0] in mappings.keys(): if headitems[0] in identifiers.keys(): for i in xrange(len(identifiers[headitems[0]])): info[headitems[0]][i] = \ mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1]) else: info[headitems[0]] = mappings[headitems[0]](headitems[1]) file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \ 'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \ 'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \ 'homogenization: %i\n'%info['homogenization'] + \ 'microstructures: %i\n'%info['microstructures']) if numpy.any(info['grid'] < 1): file['croak'].write('invalid grid a b c.\n') sys.exit() if numpy.any(info['size'] <= 0.0): file['croak'].write('invalid size x y z.\n') sys.exit() #--- read data ------------------------------------------------------------------------------------ microstructure = numpy.zeros(info['grid'],'i') i = 0 for line in content: items = line.split() if len(items) > 2: if items[1].lower() == 'of': items = [int(items[2])]*int(items[0]) elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2])) else: items = map(int,items) else: items = map(int,items) for item in items: microstructure[i%info['grid'][0], (i/info['grid'][0])%info['grid'][1], i/info['grid'][0] /info['grid'][1]] = item i += 1 #--- initialize helper data ----------------------------------------------------------------------- winner = numpy.zeros(info['grid'],'i') diffusedMax = numpy.zeros(info['grid']) #--- diffuse each grain separately ---------------------------------------------------------------- for theGrain in xrange(1,1+numpy.amax(microstructure)): diffused = ndimage.filters.gaussian_filter((microstructure == theGrain).astype(float),\ {True:0.0,False:numpy.sqrt(options.t)}[theGrain in options.black],\ mode='wrap') winner = numpy.where(diffused > diffusedMax, theGrain, winner) diffusedMax = numpy.where(diffused > diffusedMax, diffused, diffusedMax) microstructure = winner # --- assemble header ----------------------------------------------------------------------------- formatwidth = int(math.floor(math.log10(microstructure.max())+1)) new_header.append('$Id$\n') new_header.append("grid\ta %i\tb %i\tc %i\n"%( info['grid'][0],info['grid'][1],info['grid'][2])) new_header.append("size\tx %f\ty %f\tz %f\n"%( info['size'][0],info['size'][1],info['size'][2])) new_header.append("origin\tx %f\ty %f\tz %f\n"%( info['origin'][0],info['origin'][1],info['origin'][2])) new_header.append("homogenization\t%i\n"%info['homogenization']) new_header.append("microstructures\t%i\n"%info['microstructures']) file['output'].write('%i\theader\n'%(len(new_header))+''.join(new_header)) # --- write microstructure information ------------------------------------------------------------ for z in xrange(info['grid'][2]): for y in xrange(info['grid'][1]): file['output'].write({True:' ',False:'\n'}[options.twoD].join(map(lambda x: \ ('%%%ii'%formatwidth)%x, microstructure[:,y,z])) + '\n') #--- output finalization -------------------------------------------------------------------------- if file['name'] != 'STDIN': file['output'].close() os.rename(file['name']+'_tmp',file['name'])