!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Michigan State University !> @brief material subroutine for variable heat source !-------------------------------------------------------------------------------------------------- submodule(phase:thermal) externalheat integer, dimension(:), allocatable :: & source_thermal_externalheat_offset !< which source is my current thermal dissipation mechanism? type :: tParameters !< container type for internal constitutive parameters real(pReal), dimension(:), allocatable :: & t_n, & f_T integer :: & nIntervals end type tParameters type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstances) contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function externalheat_init(source_length) result(mySources) integer, intent(in) :: source_length logical, dimension(:,:), allocatable :: mySources type(tDict), pointer :: & phases, & phase, & thermal, & src type(tList), pointer :: & sources integer :: so,Nmembers,ph mySources = thermal_active('externalheat',source_length) if(count(mySources) == 0) return print'(/,1x,a)', '<<<+- phase:thermal:externalheat init -+>>>' print'(/,a,i2)', ' # phases: ',count(mySources); flush(IO_STDOUT) phases => config_material%get_dict('phase') allocate(param(phases%length)) allocate(source_thermal_externalheat_offset (phases%length), source=0) do ph = 1, phases%length phase => phases%get_dict(ph) if (count(mySources(:,ph)) == 0) cycle thermal => phase%get_dict('thermal') sources => thermal%get_list('source') do so = 1, sources%length if (mySources(so,ph)) then source_thermal_externalheat_offset(ph) = so associate(prm => param(ph)) src => sources%get_dict(so) prm%t_n = src%get_as1dFloat('t_n') prm%nIntervals = size(prm%t_n) - 1 prm%f_T = src%get_as1dFloat('f_T',requiredSize = size(prm%t_n)) Nmembers = count(material_phaseID == ph) call phase_allocateState(thermalState(ph)%p(so),Nmembers,1,1,0) end associate end if end do end do end function externalheat_init !-------------------------------------------------------------------------------------------------- !> @brief rate of change of state !> @details state only contains current time to linearly interpolate given heat powers !-------------------------------------------------------------------------------------------------- module subroutine externalheat_dotState(ph, en) integer, intent(in) :: & ph, & en integer :: & so so = source_thermal_externalheat_offset(ph) thermalState(ph)%p(so)%dotState(1,en) = 1.0_pReal ! state is current time end subroutine externalheat_dotState !-------------------------------------------------------------------------------------------------- !> @brief returns local heat generation rate !-------------------------------------------------------------------------------------------------- module function externalheat_f_T(ph,en) result(f_T) integer, intent(in) :: & ph, & en real(pReal) :: & f_T integer :: & so, interval real(pReal) :: & frac_time so = source_thermal_externalheat_offset(ph) associate(prm => param(ph)) do interval = 1, prm%nIntervals ! scan through all rate segments frac_time = (thermalState(ph)%p(so)%state(1,en) - prm%t_n(interval)) & / (prm%t_n(interval+1) - prm%t_n(interval)) ! fractional time within segment if ( (frac_time < 0.0_pReal .and. interval == 1) & .or. (frac_time >= 1.0_pReal .and. interval == prm%nIntervals) & .or. (frac_time >= 0.0_pReal .and. frac_time < 1.0_pReal) ) & f_T = prm%f_T(interval ) * (1.0_pReal - frac_time) + & prm%f_T(interval+1) * frac_time ! interpolate heat rate between segment boundaries... ! ...or extrapolate if outside of bounds end do end associate end function externalheat_f_T end submodule externalheat