import sys
from io import StringIO
import multiprocessing
from functools import partial

import numpy as np
from scipy import ndimage,spatial

from . import VTK
from . import util
from . import Environment
from . import grid_filters


class Geom:
    """Geometry definition for grid solvers."""

    def __init__(self,microstructure,size,origin=[0.0,0.0,0.0],homogenization=1,comments=[]):
        """
        New geometry definition from array of microstructures and size.

        Parameters
        ----------
        microstructure : numpy.ndarray
            microstructure array (3D)
        size : list or numpy.ndarray
            physical size of the microstructure in meter.
        origin : list or numpy.ndarray, optional
            physical origin of the microstructure in meter.
        homogenization : integer, optional
            homogenization index.
        comments : list of str, optional
            comments lines.

        """
        self.set_microstructure(microstructure)
        self.set_size(size)
        self.set_origin(origin)
        self.set_homogenization(homogenization)
        self.set_comments(comments)


    def __repr__(self):
        """Basic information on geometry definition."""
        return util.srepr([
               'grid     a b c:      {}'.format(' x '.join(map(str,self.get_grid  ()))),
               'size     x y z:      {}'.format(' x '.join(map(str,self.get_size  ()))),
               'origin   x y z:      {}'.format('   '.join(map(str,self.get_origin()))),
               'homogenization:      {}'.format(self.get_homogenization()),
               '# microstructures:   {}'.format(len(np.unique(self.microstructure))),
               'max microstructure:  {}'.format(np.nanmax(self.microstructure)),
              ])


    def update(self,microstructure=None,size=None,origin=None,rescale=False):
        """
        Update microstructure and size.

        Parameters
        ----------
        microstructure : numpy.ndarray, optional
            microstructure array (3D).
        size : list or numpy.ndarray, optional
            physical size of the microstructure in meter.
        origin : list or numpy.ndarray, optional
            physical origin of the microstructure in meter.
        rescale : bool, optional
            ignore size parameter and rescale according to change of grid points.

        """
        grid_old    = self.get_grid()
        size_old    = self.get_size()
        origin_old  = self.get_origin()
        unique_old  = len(np.unique(self.microstructure))
        max_old     = np.nanmax(self.microstructure)

        if size is not None and rescale:
            raise ValueError('Either set size explicitly or rescale automatically')

        self.set_microstructure(microstructure)
        self.set_origin(origin)

        if size is not None:
            self.set_size(size)
        elif rescale:
            self.set_size(self.get_grid()/grid_old*self.size)

        message = ['grid     a b c:      {}'.format(' x '.join(map(str,grid_old)))]
        if np.any(grid_old != self.get_grid()):
            message[-1] = util.delete(message[-1])
            message.append(util.emph('grid     a b c:      {}'.format(' x '.join(map(str,self.get_grid())))))

        message.append('size     x y z:      {}'.format(' x '.join(map(str,size_old))))
        if np.any(size_old != self.get_size()):
            message[-1] = util.delete(message[-1])
            message.append(util.emph('size     x y z:      {}'.format(' x '.join(map(str,self.get_size())))))

        message.append('origin   x y z:      {}'.format('   '.join(map(str,origin_old))))
        if np.any(origin_old != self.get_origin()):
            message[-1] = util.delete(message[-1])
            message.append(util.emph('origin   x y z:      {}'.format('   '.join(map(str,self.get_origin())))))

        message.append('homogenization:      {}'.format(self.get_homogenization()))

        message.append('# microstructures:   {}'.format(unique_old))
        if unique_old != len(np.unique(self.microstructure)):
            message[-1] = util.delete(message[-1])
            message.append(util.emph('# microstructures:   {}'.format(len(np.unique(self.microstructure)))))

        message.append('max microstructure:  {}'.format(max_old))
        if max_old != np.nanmax(self.microstructure):
            message[-1] = util.delete(message[-1])
            message.append(util.emph('max microstructure:  {}'.format(np.nanmax(self.microstructure))))

        return util.return_message(message)


    def set_comments(self,comments):
        """
        Replace all existing comments.

        Parameters
        ----------
        comments : list of str
            new comments.

        """
        self.comments = []
        self.add_comments(comments)


    def add_comments(self,comments):
        """
        Append comments to existing comments.

        Parameters
        ----------
        comments : list of str
            new comments.

        """
        self.comments += [str(c) for c in comments] if isinstance(comments,list) else [str(comments)]


    def set_microstructure(self,microstructure):
        """
        Replace the existing microstructure representation.

        Parameters
        ----------
        microstructure : numpy.ndarray
            microstructure array (3D).

        """
        if microstructure is not None:
            if len(microstructure.shape) != 3:
                raise ValueError('Invalid microstructure shape {}'.format(microstructure.shape))
            elif microstructure.dtype not in np.sctypes['float'] + np.sctypes['int']:
                raise TypeError('Invalid data type {} for microstructure'.format(microstructure.dtype))
            else:
                self.microstructure = np.copy(microstructure)


    def set_size(self,size):
        """
        Replace the existing size information.

        Parameters
        ----------
        size : list or numpy.ndarray
            physical size of the microstructure in meter.

        """
        if size is None:
            grid = np.asarray(self.microstructure.shape)
            self.size = grid/np.max(grid)
        else:
            if len(size) != 3 or any(np.array(size)<=0):
                raise ValueError('Invalid size {}'.format(size))
            else:
                self.size = np.array(size)


    def set_origin(self,origin):
        """
        Replace the existing origin information.

        Parameters
        ----------
        origin : list or numpy.ndarray
            physical origin of the microstructure in meter

        """
        if origin is not None:
            if len(origin) != 3:
                raise ValueError('Invalid origin {}'.format(origin))
            else:
                self.origin = np.array(origin)


    def set_homogenization(self,homogenization):
        """
        Replace the existing homogenization index.

        Parameters
        ----------
        homogenization : integer
            homogenization index

        """
        if homogenization is not None:
            if not isinstance(homogenization,int) or homogenization < 1:
                raise TypeError('Invalid homogenization {}'.format(homogenization))
            else:
                self.homogenization = homogenization


    @property
    def grid(self):
        return self.get_grid()


    @property
    def N_microstructure(self):
        return len(np.unique(self.microstructure))


    def get_microstructure(self):
        """Return the microstructure representation."""
        return np.copy(self.microstructure)


    def get_size(self):
        """Return the physical size in meter."""
        return np.copy(self.size)


    def get_origin(self):
        """Return the origin in meter."""
        return np.copy(self.origin)


    def get_grid(self):
        """Return the grid discretization."""
        return np.array(self.microstructure.shape)


    def get_homogenization(self):
        """Return the homogenization index."""
        return self.homogenization


    def get_comments(self):
        """Return the comments."""
        return self.comments[:]


    def get_header(self):
        """Return the full header (grid, size, origin, homogenization, comments)."""
        header =  ['{} header'.format(len(self.comments)+4)] + self.comments
        header.append('grid   a {} b {} c {}'.format(*self.get_grid()))
        header.append('size   x {} y {} z {}'.format(*self.get_size()))
        header.append('origin x {} y {} z {}'.format(*self.get_origin()))
        header.append('homogenization {}'.format(self.get_homogenization()))
        return header


    @staticmethod
    def from_file(fname):
        """
        Read a geom file.

        Parameters
        ----------
        fname : str or file handle
            geometry file to read.

        """
        try:
            f = open(fname)
        except TypeError:
            f = fname

        f.seek(0)
        header_length,keyword = f.readline().split()[:2]
        header_length = int(header_length)
        content = f.readlines()

        if not keyword.startswith('head') or header_length < 3:
            raise TypeError('Header length information missing or invalid')

        comments = []
        for i,line in enumerate(content[:header_length]):
            items = line.split('#')[0].lower().strip().split()
            key = items[0] if items else ''
            if   key == 'grid':
                grid   = np.array([  int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']])
            elif key == 'size':
                size   = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
            elif key == 'origin':
                origin = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
            elif key == 'homogenization':
                homogenization = int(items[1])
            else:
                comments.append(line.strip())

        microstructure = np.empty(grid.prod())                                                      # initialize as flat array
        i = 0
        for line in content[header_length:]:
            items = line.split('#')[0].split()
            if len(items) == 3:
                if   items[1].lower() == 'of':
                    items = np.ones(int(items[0]))*float(items[2])
                elif items[1].lower() == 'to':
                    items = np.linspace(int(items[0]),int(items[2]),
                                        abs(int(items[2])-int(items[0]))+1,dtype=float)
                else:                        items = list(map(float,items))
            else:                            items = list(map(float,items))
            microstructure[i:i+len(items)] = items
            i += len(items)

        if i != grid.prod():
            raise TypeError('Invalid file: expected {} entries, found {}'.format(grid.prod(),i))

        if not np.any(np.mod(microstructure,1) != 0.0):                                             # no float present
            microstructure = microstructure.astype('int')

        return Geom(microstructure.reshape(grid,order='F'),size,origin,homogenization,comments)


    @staticmethod
    def _find_closest_seed(seeds, weights, point):
        return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
    @staticmethod
    def from_Laguerre_tessellation(grid,size,seeds,weights,periodic=True):
        """
        Generate geometry from Laguerre tessellation.

        Parameters
        ----------
        grid : numpy.ndarray of shape (3)
            number of grid points in x,y,z direction.
        size : list or numpy.ndarray of shape (3)
            physical size of the microstructure in meter.
        seeds : numpy.ndarray of shape (:,3)
            position of the seed points in meter. All points need to lay within the box.
        weights : numpy.ndarray of shape (seeds.shape[0])
            weights of the seeds. Setting all weights to 1.0 gives a standard Voronoi tessellation.
        periodic : Boolean, optional
            perform a periodic tessellation. Defaults to True.

        """
        if periodic:
            weights_p = np.tile(weights,27)                                                         # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
            seeds_p = np.vstack((seeds  -np.array([size[0],0.,0.]),seeds,  seeds  +np.array([size[0],0.,0.])))
            seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
            seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
            coords  = grid_filters.cell_coord0(grid*3,size*3,-size).reshape(-1,3)
        else:
            weights_p = weights
            seeds_p   = seeds
            coords    = grid_filters.cell_coord0(grid,size).reshape(-1,3)

        pool = multiprocessing.Pool(processes = int(Environment().options['DAMASK_NUM_THREADS']))
        result = pool.map_async(partial(Geom._find_closest_seed,seeds_p,weights_p), [coord for coord in coords])
        pool.close()
        pool.join()
        microstructure = np.array(result.get())

        if periodic:
            microstructure = microstructure.reshape(grid*3)
            microstructure = microstructure[grid[0]:grid[0]*2,grid[1]:grid[1]*2,grid[2]:grid[2]*2]%seeds.shape[0]
        else:
            microstructure = microstructure.reshape(grid)

        #comments = 'geom.py:from_Laguerre_tessellation v{}'.format(version)
        return Geom(microstructure+1,size,homogenization=1)


    @staticmethod
    def from_Voronoi_tessellation(grid,size,seeds,periodic=True):
        """
        Generate geometry from Voronoi tessellation.

        Parameters
        ----------
        grid : numpy.ndarray of shape (3)
            number of grid points in x,y,z direction.
        size : list or numpy.ndarray of shape (3)
            physical size of the microstructure in meter.
        seeds : numpy.ndarray of shape (:,3)
            position of the seed points in meter. All points need to lay within the box.
        periodic : Boolean, optional
            perform a periodic tessellation. Defaults to True.

        """
        coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
        KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
        devNull,microstructure = KDTree.query(coords)

        #comments = 'geom.py:from_Voronoi_tessellation v{}'.format(version)
        return Geom(microstructure.reshape(grid)+1,size,homogenization=1)


    def to_file(self,fname,pack=None):
        """
        Writes a geom file.

        Parameters
        ----------
        fname : str or file handle
            geometry file to write.
        pack : bool, optional
            compress geometry with 'x of y' and 'a to b'.

        """
        header = self.get_header()
        grid   = self.get_grid()

        if pack is None:
            plain = grid.prod()/np.unique(self.microstructure).size < 250
        else:
            plain = not pack

        if plain:
            format_string = '%g' if self.microstructure.dtype in np.sctypes['float'] else \
                            '%{}i'.format(1+int(np.floor(np.log10(np.nanmax(self.microstructure)))))
            np.savetxt(fname,
                       self.microstructure.reshape([grid[0],np.prod(grid[1:])],order='F').T,
                       header='\n'.join(header), fmt=format_string, comments='')
        else:
            try:
                f = open(fname,'w')
            except TypeError:
                f = fname

            compressType = None
            former = start = -1
            reps = 0
            for current in self.microstructure.flatten('F'):
                if abs(current - former) == 1 and (start - current) == reps*(former - current):
                    compressType = 'to'
                    reps += 1
                elif current == former and start == former:
                    compressType = 'of'
                    reps += 1
                else:
                    if   compressType is None:
                        f.write('\n'.join(self.get_header())+'\n')
                    elif compressType == '.':
                        f.write('{}\n'.format(former))
                    elif compressType == 'to':
                        f.write('{} to {}\n'.format(start,former))
                    elif compressType == 'of':
                        f.write('{} of {}\n'.format(reps,former))

                    compressType = '.'
                    start = current
                    reps = 1

                former = current

            if compressType == '.':
                f.write('{}\n'.format(former))
            elif compressType == 'to':
                f.write('{} to {}\n'.format(start,former))
            elif compressType == 'of':
                f.write('{} of {}\n'.format(reps,former))


    def to_vtk(self,fname=None):
        """
        Generates vtk file.

        Parameters
        ----------
        fname : str, optional
            vtk file to write. If no file is given, a string is returned.

        """
        v = VTK.from_rectilinearGrid(self.grid,self.size,self.origin)
        v.add(self.microstructure.flatten(order='F'),'microstructure')

        if fname:
            v.write(fname)
        else:
            sys.stdout.write(v.__repr__())


    def show(self):
        """Show raw content (as in file)."""
        f=StringIO()
        self.to_file(f)
        f.seek(0)
        return ''.join(f.readlines())


    def mirror(self,directions,reflect=False):
        """
        Mirror microstructure along given directions.

        Parameters
        ----------
        directions : iterable containing str
            direction(s) along which the microstructure is mirrored. Valid entries are 'x', 'y', 'z'.
        reflect : bool, optional
            reflect (include) outermost layers.

        """
        valid = {'x','y','z'}
        if not all(isinstance(d, str) for d in directions):
            raise TypeError('Directions are not of type str.')
        elif not set(directions).issubset(valid):
            raise ValueError('Invalid direction specified {}'.format(set(directions).difference(valid)))

        limits = [None,None] if reflect else [-2,0]
        ms = self.get_microstructure()

        if 'z' in directions:
            ms = np.concatenate([ms,ms[:,:,limits[0]:limits[1]:-1]],2)
        if 'y' in directions:
            ms = np.concatenate([ms,ms[:,limits[0]:limits[1]:-1,:]],1)
        if 'x' in directions:
            ms = np.concatenate([ms,ms[limits[0]:limits[1]:-1,:,:]],0)

        #self.add_comments('geom.py:mirror v{}'.format(version)
        return self.update(ms,rescale=True)


    def scale(self,grid):
        """
        Scale microstructure to new grid.

        Parameters
        ----------
        grid : iterable of int
            new grid dimension

        """
        #self.add_comments('geom.py:scale v{}'.format(version)
        return self.update(
                           ndimage.interpolation.zoom(
                                                      self.microstructure,
                                                      grid/self.get_grid(),
                                                      output=self.microstructure.dtype,
                                                      order=0,
                                                      mode='nearest',
                                                      prefilter=False
                                                     )
                          )


    def clean(self,stencil=3):
        """
        Smooth microstructure by selecting most frequent index within given stencil at each location.

        Parameters
        ----------
        stencil : int, optional
            size of smoothing stencil.

        """
        def mostFrequent(arr):
            unique, inverse = np.unique(arr, return_inverse=True)
            return unique[np.argmax(np.bincount(inverse))]

        #self.add_comments('geom.py:clean v{}'.format(version)
        return self.update(ndimage.filters.generic_filter(
                                                          self.microstructure,
                                                          mostFrequent,
                                                          size=(stencil,)*3
                                                         ).astype(self.microstructure.dtype)
                          )


    def renumber(self):
        """Renumber sorted microstructure indices to 1,...,N."""
        renumbered = np.empty(self.get_grid(),dtype=self.microstructure.dtype)
        for i, oldID in enumerate(np.unique(self.microstructure)):
            renumbered = np.where(self.microstructure == oldID, i+1, renumbered)

        #self.add_comments('geom.py:renumber v{}'.format(version)
        return self.update(renumbered)