
Technische Universität München

Performance Analysis with Periscope

M. Gerndt, V. Petkov, Y. Oleynik
Technische Universität München

periscope@lrr.in.tum.de

September 2011

Technische Universität München

Outline

• Motivation

• Periscope overview

• Periscope performance analysis model

• Performance analysis automation

• Periscope GUI

Technische Universität München

Motivation

• Performance analysis procedure on POWER6 as a example:
– Use Tprof to pinpoint time consuming subroutines

– Use Xprofiler (GUI for gprof) to understand call graph

– Use hpmcount (libhpm) to measure Hardware Counters

– Use mpitrace to investigate mpi communication

• Problems:
– Time consuming

– Error prone

– Not scalable

– Requires deep hardware knowledge

• Solution:
– Performance analysis automation

Technische Universität München

Periscope

• Iterative online analysis
– Measurements are configured, obtained and evaluated on the fly

– no tracing!

• Distributed architecture
– Analysis performed by multiple distributed hierarchical agents

• Automatic bottlenecks search
– Based on performance optimization experts' knowledge

• Enhanced GUI
– Eclipse based integrated development and performance analysis

environment

• Instrumentation
– Fortran, C/C++

Technische Universität München

Distributed Architecture

Graphical User Interface

Application

Interactive frontend

Eclipse-based GUI

Analysis control

Agents network

Monitoring Request Interface

Technische Universität München

Candidate Properties

Proven Properties

Analysis

Performance

Measurements
Refinement

Raw Performance Data

Instrumented Application Analysis Agents GUI

Precision

Location

Monitoring

Requests
Start

Final

Properties

Report

Technische Universität München

● Periscope performs multiple iterative performance measurement

experiments on the basis of Phases:

■ All measurements are performed inside phase

■ Begin and end of phase are global synchronization points

● By default phase is the whole program

■ Needs restart if multiple experiments required (single core performance analysis

strategies require multiple experiments)

■ Unnecessary code parts also measured

● User specified region in Fortran files that is marked with !$MON USER

REGION and !$MON END USER REGION will be used as phase:

■ Typically main loop of application → no need for restart, faster analysis

■ Unnecessary code parts are not measured → less measurements overhead

■ Severity value is normalized on the main loop iteration time → more precise

performance impact estimation

Initialization

Measurement
phase

Finalization

Analysis

Main loop
iteration

Periscope Phases

Technische Universität München

Automatic search for bottlenecks

• Automation based on formalized expert knowledge
– Potential performance problems → properties

– Efficient search algorithm → search strategies

• Performance property
– Condition

– Confidence

– Severity

• Performance analysis strategies
– Itanium2 Stall Cycle Analysis

– IBM POWER6 Single Core Performance Analysis

– MPI Communication Pattern Analysis

– Generic Memory Strategy

– OpenMP-based Performance Analysis

– Scalability Analysis – OpenMP codes

Technische Universität München

Example Properties

• StallCycles (Region, Rank, Thread, Metric, Phase)
– Condition

• Percentage of lost cycles >30%

– Severity

• Percentage of lost cycles

• MPI Late Sender
– Automatic detection of wait patterns

– Measurement on the fly

– No tracing required!

• OpenMP Synchronization properties
– Critical section overhead property

– Frequent atomic property

MPI_Recv

MPI_Send

p1

p2

Technische Universität München

Scalability Analysis – OpenMP codes

• Identifies the OpenMP code regions that do not scale well

• Scalability Analysis is done by the frontend / restarts the application /

• No need to manually configure the runs and find the speedup!

Frontend initialization

Frontend.run()
i. Starts application
ii.Starts analysis agents
iii.Receives found

properties

Configuration 1,2, …, 2n

Extracts information from the
found properties

Does Scalability Analysis

Exports the Properties

GUI-based Analysis

After
n

runs

Technische Universität München

Project view

Source code

view

Properties

view

SIR outline

view

Technische Universität München

Thank you for your attention!

• Current version 1.4

 Available under: http://www.lrr.in.tum.de/periscope/Download

• Supported architectures

 SGI Altix 4700 Itanium2

 IBM Power575 POWER6

 IBM BlueGene/P

 x86-based architectures

• Further information:

 Periscope web page: http://www.lrr.in.tum.de/periscope

 Contact us directly at: periscope@lrr.in.tum.de

