!-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Polarisation scheme solver !-------------------------------------------------------------------------------------------------- module spectral_mech_Polarisation #include #include use PETScdmda use PETScsnes use prec, only: & pInt, & pReal use math, only: & math_I3 use spectral_utilities, only: & tSolutionState, & tSolutionParams implicit none private character (len=*), parameter, public :: & DAMASK_spectral_solverPolarisation_label = 'polarisation' !-------------------------------------------------------------------------------------------------- ! derived types type(tSolutionParams), private :: params !-------------------------------------------------------------------------------------------------- ! PETSc data DM, private :: da SNES, private :: snes Vec, private :: solution_vec !-------------------------------------------------------------------------------------------------- ! common pointwise data real(pReal), private, dimension(:,:,:,:,:), allocatable :: & F_lastInc, & !< field of previous compatible deformation gradients F_tau_lastInc, & !< field of previous incompatible deformation gradient Fdot, & !< field of assumed rate of compatible deformation gradient F_tauDot !< field of assumed rate of incopatible deformation gradient !-------------------------------------------------------------------------------------------------- ! stress, stiffness and compliance average etc. real(pReal), private, dimension(3,3) :: & F_aimDot = 0.0_pReal, & !< assumed rate of average deformation gradient F_aim = math_I3, & !< current prescribed deformation gradient F_aim_lastInc = math_I3, & !< previous average deformation gradient F_av = 0.0_pReal, & !< average incompatible def grad field P_av = 0.0_pReal, & !< average 1st Piola--Kirchhoff stress P_avLastEval = 0.0_pReal !< average 1st Piola--Kirchhoff stress last call of CPFEM_general character(len=1024), private :: incInfo !< time and increment information real(pReal), private, dimension(3,3,3,3) :: & C_volAvg = 0.0_pReal, & !< current volume average stiffness C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness C_minMaxAvgLastInc = 0.0_pReal, & !< previous (min+max)/2 stiffness S = 0.0_pReal, & !< current compliance (filled up with zeros) C_scale = 0.0_pReal, & S_scale = 0.0_pReal real(pReal), private :: & err_BC, & !< deviation from stress BC err_curl, & !< RMS of curl of F err_div !< RMS of div of P integer(pInt), private :: & totalIter = 0_pInt !< total iteration in current increment public :: & Polarisation_init, & Polarisation_solution, & Polarisation_forward external :: & PETScErrorF ! is called in the CHKERRQ macro contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all necessary fields and fills them with data, potentially from restart info !> @todo use sourced allocation, e.g. allocate(Fdot,source = F_lastInc) !-------------------------------------------------------------------------------------------------- subroutine Polarisation_init #if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800 use, intrinsic :: iso_fortran_env, only: & compiler_version, & compiler_options #endif use IO, only: & IO_intOut, & IO_read_realFile, & IO_timeStamp use debug, only: & debug_level, & debug_spectral, & debug_spectralRestart use FEsolving, only: & restartInc use numerics, only: & worldrank, & worldsize use homogenization, only: & materialpoint_F0 use DAMASK_interface, only: & getSolverJobName use spectral_utilities, only: & Utilities_constitutiveResponse, & Utilities_updateGamma, & Utilities_updateIPcoords, & wgt use mesh, only: & grid, & grid3 use math, only: & math_invSym3333 implicit none real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: P real(pReal), dimension(3,3) :: & temp33_Real = 0.0_pReal PetscErrorCode :: ierr PetscScalar, pointer, dimension(:,:,:,:) :: & FandF_tau, & ! overall pointer to solution data F, & ! specific (sub)pointer F_tau ! specific (sub)pointer PetscInt, dimension(:), allocatable :: localK integer(pInt) :: proc character(len=1024) :: rankStr external :: & SNESSetOptionsPrefix, & SNESSetConvergenceTest, & DMDASNESsetFunctionLocal write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverPolarisation init -+>>>' write(6,'(/,a)') ' Shanthraj et al., International Journal of Plasticity, 66:31–45, 2015' write(6,'(a,/)') ' https://doi.org/10.1016/j.ijplas.2014.02.006' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" !-------------------------------------------------------------------------------------------------- ! allocate global fields allocate (F_lastInc (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) allocate (Fdot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) allocate (F_tau_lastInc(3,3,grid(1),grid(2),grid3),source = 0.0_pReal) allocate (F_tauDot (3,3,grid(1),grid(2),grid3),source = 0.0_pReal) !-------------------------------------------------------------------------------------------------- ! initialize solver specific parts of PETSc call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr) call SNESSetOptionsPrefix(snes,'mech_',ierr);CHKERRQ(ierr) allocate(localK(worldsize), source = 0); localK(worldrank+1) = grid3 do proc = 1, worldsize call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr) enddo call DMDACreate3d(PETSC_COMM_WORLD, & DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point grid(1),grid(2),grid(3), & ! global grid 1 , 1, worldsize, & 18, 0, & ! #dof (F tensor), ghost boundary width (domain overlap) [grid(1)],[grid(2)],localK, & ! local grid da,ierr) ! handle, error CHKERRQ(ierr) call SNESSetDM(snes,da,ierr); CHKERRQ(ierr) ! connect snes to da call DMsetFromOptions(da,ierr); CHKERRQ(ierr) call DMsetUp(da,ierr); CHKERRQ(ierr) call DMcreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr) ! global solution vector (grid x 18, i.e. every def grad tensor) call DMDASNESsetFunctionLocal(da,INSERT_VALUES,Polarisation_formResidual,PETSC_NULL_SNES,ierr) ! residual vector of same shape as solution vector CHKERRQ(ierr) call SNESsetConvergenceTest(snes,Polarisation_converged,PETSC_NULL_SNES,PETSC_NULL_FUNCTION,ierr) ! specify custom convergence check function "_converged" CHKERRQ(ierr) call SNESsetFromOptions(snes,ierr); CHKERRQ(ierr) ! pull it all together with additional CLI arguments !-------------------------------------------------------------------------------------------------- ! init fields call DMDAVecGetArrayF90(da,solution_vec,FandF_tau,ierr); CHKERRQ(ierr) ! places pointer on PETSc data F => FandF_tau( 0: 8,:,:,:) F_tau => FandF_tau( 9:17,:,:,:) restart: if (restartInc > 0_pInt) then if (iand(debug_level(debug_spectral),debug_spectralRestart) /= 0) then write(6,'(/,a,'//IO_intOut(restartInc)//',a)') & 'reading values of increment ', restartInc, ' from file' flush(6) endif write(rankStr,'(a1,i0)')'_',worldrank call IO_read_realFile(777,'F'//trim(rankStr),trim(getSolverJobName()),size(F)) read (777,rec=1) F; close (777) call IO_read_realFile(777,'F_lastInc'//trim(rankStr),trim(getSolverJobName()),size(F_lastInc)) read (777,rec=1) F_lastInc; close (777) call IO_read_realFile(777,'F_tau'//trim(rankStr),trim(getSolverJobName()),size(F_tau)) read (777,rec=1) F_tau; close (777) call IO_read_realFile(777,'F_tau_lastInc'//trim(rankStr),trim(getSolverJobName()),size(F_tau_lastInc)) read (777,rec=1) F_tau_lastInc; close (777) call IO_read_realFile(777,'F_aimDot',trim(getSolverJobName()),size(F_aimDot)) read (777,rec=1) F_aimDot; close (777) F_aim = reshape(sum(sum(sum(F,dim=4),dim=3),dim=2) * wgt, [3,3]) ! average of F F_aim_lastInc = sum(sum(sum(F_lastInc,dim=5),dim=4),dim=3) * wgt ! average of F_lastInc elseif (restartInc == 0_pInt) then restart F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid3) ! initialize to identity F = reshape(F_lastInc,[9,grid(1),grid(2),grid3]) F_tau = 2.0_pReal*F F_tau_lastInc = 2.0_pReal*F_lastInc endif restart materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent call Utilities_updateIPcoords(reshape(F,shape(F_lastInc))) call Utilities_constitutiveResponse(P,temp33_Real,C_volAvg,C_minMaxAvg, & ! stress field, stress avg, global average of stiffness and (min+max)/2 reshape(F,shape(F_lastInc)), & ! target F 0.0_pReal, & ! time increment math_I3) ! no rotation of boundary condition nullify(F) nullify(F_tau) call DMDAVecRestoreArrayF90(da,solution_vec,FandF_tau,ierr); CHKERRQ(ierr) ! write data back to PETSc restartRead: if (restartInc > 0_pInt) then if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0 .and. worldrank == 0_pInt) & write(6,'(/,a,'//IO_intOut(restartInc)//',a)') & 'reading more values of increment ', restartInc, ' from file' flush(6) call IO_read_realFile(777,'C_volAvg',trim(getSolverJobName()),size(C_volAvg)) read (777,rec=1) C_volAvg; close (777) call IO_read_realFile(777,'C_volAvgLastInc',trim(getSolverJobName()),size(C_volAvgLastInc)) read (777,rec=1) C_volAvgLastInc; close (777) call IO_read_realFile(777,'C_ref',trim(getSolverJobName()),size(C_minMaxAvg)) read (777,rec=1) C_minMaxAvg; close (777) endif restartRead call Utilities_updateGamma(C_minMaxAvg,.true.) C_scale = C_minMaxAvg S_scale = math_invSym3333(C_minMaxAvg) end subroutine Polarisation_init !-------------------------------------------------------------------------------------------------- !> @brief solution for the Polarisation scheme with internal iterations !-------------------------------------------------------------------------------------------------- type(tSolutionState) function Polarisation_solution(incInfoIn,timeinc,timeinc_old,stress_BC,rotation_BC) use IO, only: & IO_error use numerics, only: & update_gamma use math, only: & math_invSym3333 use spectral_utilities, only: & tBoundaryCondition, & Utilities_maskedCompliance, & Utilities_updateGamma use FEsolving, only: & restartWrite, & terminallyIll implicit none !-------------------------------------------------------------------------------------------------- ! input data for solution character(len=*), intent(in) :: & incInfoIn real(pReal), intent(in) :: & timeinc, & !< increment time for current solution timeinc_old !< increment time of last successful increment type(tBoundaryCondition), intent(in) :: & stress_BC real(pReal), dimension(3,3), intent(in) :: rotation_BC !-------------------------------------------------------------------------------------------------- ! PETSc Data PetscErrorCode :: ierr SNESConvergedReason :: reason external :: & SNESSolve incInfo = incInfoIn !-------------------------------------------------------------------------------------------------- ! update stiffness (and gamma operator) S = Utilities_maskedCompliance(rotation_BC,stress_BC%maskLogical,C_volAvg) if (update_gamma) then call Utilities_updateGamma(C_minMaxAvg,restartWrite) C_scale = C_minMaxAvg S_scale = math_invSym3333(C_minMaxAvg) endif !-------------------------------------------------------------------------------------------------- ! set module wide availabe data params%stress_mask = stress_BC%maskFloat params%stress_BC = stress_BC%values params%rotation_BC = rotation_BC params%timeinc = timeinc params%timeincOld = timeinc_old !-------------------------------------------------------------------------------------------------- ! solve BVP call SNESsolve(snes,PETSC_NULL_VEC,solution_vec,ierr); CHKERRQ(ierr) !-------------------------------------------------------------------------------------------------- ! check convergence call SNESGetConvergedReason(snes,reason,ierr); CHKERRQ(ierr) Polarisation_solution%converged = reason > 0 Polarisation_solution%iterationsNeeded = totalIter Polarisation_solution%termIll = terminallyIll terminallyIll = .false. if (reason == -4) call IO_error(893_pInt) ! MPI error end function Polarisation_solution !-------------------------------------------------------------------------------------------------- !> @brief forms the Polarisation residual vector !-------------------------------------------------------------------------------------------------- subroutine Polarisation_formResidual(in, & ! DMDA info (needs to be named "in" for XRANGE, etc. macros to work) FandF_tau, & ! defgrad fields on grid residuum, & ! residuum fields on grid dummy, & ierr) use numerics, only: & itmax, & itmin, & polarAlpha, & polarBeta use mesh, only: & grid, & grid3 use IO, only: & IO_intOut use math, only: & math_rotate_backward33, & math_mul3333xx33, & math_invSym3333, & math_mul33x33 use debug, only: & debug_level, & debug_spectral, & debug_spectralRotation use spectral_utilities, only: & wgt, & tensorField_real, & utilities_FFTtensorForward, & utilities_fourierGammaConvolution, & utilities_FFTtensorBackward, & Utilities_constitutiveResponse, & Utilities_divergenceRMS, & Utilities_curlRMS use homogenization, only: & materialpoint_dPdF use FEsolving, only: & terminallyIll implicit none DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: in PetscScalar, & target, dimension(3,3,2, XG_RANGE,YG_RANGE,ZG_RANGE), intent(in) :: FandF_tau PetscScalar, & target, dimension(3,3,2, X_RANGE, Y_RANGE, Z_RANGE), intent(out) :: residuum PetscScalar, pointer, dimension(:,:,:,:,:) :: & F, & F_tau, & residual_F, & residual_F_tau PetscInt :: & PETScIter, & nfuncs PetscObject :: dummy PetscErrorCode :: ierr integer(pInt) :: & i, j, k, e F => FandF_tau(1:3,1:3,1,& XG_RANGE,YG_RANGE,ZG_RANGE) F_tau => FandF_tau(1:3,1:3,2,& XG_RANGE,YG_RANGE,ZG_RANGE) residual_F => residuum(1:3,1:3,1,& X_RANGE, Y_RANGE, Z_RANGE) residual_F_tau => residuum(1:3,1:3,2,& X_RANGE, Y_RANGE, Z_RANGE) F_av = sum(sum(sum(F,dim=5),dim=4),dim=3) * wgt call MPI_Allreduce(MPI_IN_PLACE,F_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) call SNESGetNumberFunctionEvals(snes,nfuncs,ierr); CHKERRQ(ierr) call SNESGetIterationNumber(snes,PETScIter,ierr); CHKERRQ(ierr) if (nfuncs == 0 .and. PETScIter == 0) totalIter = -1_pInt ! new increment !-------------------------------------------------------------------------------------------------- ! begin of new iteration newIteration: if (totalIter <= PETScIter) then totalIter = totalIter + 1_pInt write(6,'(1x,a,3(a,'//IO_intOut(itmax)//'))') & trim(incInfo), ' @ Iteration ', itmin, '≤',totalIter, '≤', itmax if (iand(debug_level(debug_spectral),debug_spectralRotation) /= 0) & write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') & ' deformation gradient aim (lab) =', transpose(math_rotate_backward33(F_aim,params%rotation_BC)) write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') & ' deformation gradient aim =', transpose(F_aim) flush(6) endif newIteration !-------------------------------------------------------------------------------------------------- ! tensorField_real = 0.0_pReal do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1) tensorField_real(1:3,1:3,i,j,k) = & polarBeta*math_mul3333xx33(C_scale,F(1:3,1:3,i,j,k) - math_I3) -& polarAlpha*math_mul33x33(F(1:3,1:3,i,j,k), & math_mul3333xx33(C_scale,F_tau(1:3,1:3,i,j,k) - F(1:3,1:3,i,j,k) - math_I3)) enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! doing convolution in Fourier space call utilities_FFTtensorForward() call utilities_fourierGammaConvolution(math_rotate_backward33(polarBeta*F_aim,params%rotation_BC)) call utilities_FFTtensorBackward() !-------------------------------------------------------------------------------------------------- ! constructing residual residual_F_tau = polarBeta*F - tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) !-------------------------------------------------------------------------------------------------- ! evaluate constitutive response P_avLastEval = P_av call Utilities_constitutiveResponse(residual_F,P_av,C_volAvg,C_minMaxAvg, & F - residual_F_tau/polarBeta,params%timeinc,params%rotation_BC) call MPI_Allreduce(MPI_IN_PLACE,terminallyIll,1,MPI_LOGICAL,MPI_LOR,PETSC_COMM_WORLD,ierr) !-------------------------------------------------------------------------------------------------- ! calculate divergence tensorField_real = 0.0_pReal tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = residual_F !< stress field in disguise call utilities_FFTtensorForward() err_div = Utilities_divergenceRMS() !< root mean squared error in divergence of stress !-------------------------------------------------------------------------------------------------- ! constructing residual e = 0_pInt do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1) e = e + 1_pInt residual_F(1:3,1:3,i,j,k) = & math_mul3333xx33(math_invSym3333(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,e) + C_scale), & residual_F(1:3,1:3,i,j,k) - math_mul33x33(F(1:3,1:3,i,j,k), & math_mul3333xx33(C_scale,F_tau(1:3,1:3,i,j,k) - F(1:3,1:3,i,j,k) - math_I3))) & + residual_F_tau(1:3,1:3,i,j,k) enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! calculating curl tensorField_real = 0.0_pReal tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = F call utilities_FFTtensorForward() err_curl = Utilities_curlRMS() nullify(F) nullify(F_tau) nullify(residual_F) nullify(residual_F_tau) end subroutine Polarisation_formResidual !-------------------------------------------------------------------------------------------------- !> @brief convergence check !-------------------------------------------------------------------------------------------------- subroutine Polarisation_converged(snes_local,PETScIter,xnorm,snorm,fnorm,reason,dummy,ierr) use numerics, only: & itmax, & itmin, & err_div_tolRel, & err_div_tolAbs, & err_curl_tolRel, & err_curl_tolAbs, & err_stress_tolRel, & err_stress_tolAbs use math, only: & math_mul3333xx33 use FEsolving, only: & terminallyIll implicit none SNES :: snes_local PetscInt :: PETScIter PetscReal :: & xnorm, & snorm, & fnorm SNESConvergedReason :: reason PetscObject :: dummy PetscErrorCode :: ierr real(pReal) :: & curlTol, & divTol, & BCTol !-------------------------------------------------------------------------------------------------- ! stress BC handling F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%stress_BC))) ! S = 0.0 for no bc err_BC = maxval(abs((1.0_pReal-params%stress_mask) * math_mul3333xx33(C_scale,F_aim-F_av) + & params%stress_mask * (P_av-params%stress_BC))) ! mask = 0.0 for no bc !-------------------------------------------------------------------------------------------------- ! error calculation curlTol = max(maxval(abs(F_aim-math_I3))*err_curl_tolRel ,err_curl_tolAbs) divTol = max(maxval(abs(P_av)) *err_div_tolRel ,err_div_tolAbs) BCTol = max(maxval(abs(P_av)) *err_stress_tolRel,err_stress_tolAbs) converged: if ((totalIter >= itmin .and. & all([ err_div /divTol, & err_curl/curlTol, & err_BC /BCTol ] < 1.0_pReal)) & .or. terminallyIll) then reason = 1 elseif (totalIter >= itmax) then converged reason = -1 else converged reason = 0 endif converged !-------------------------------------------------------------------------------------------------- ! report write(6,'(1/,a)') ' ... reporting .............................................................' write(6,'(/,a,f12.2,a,es8.2,a,es9.2,a)') ' error divergence = ', & err_div/divTol, ' (',err_div, ' / m, tol = ',divTol,')' write(6, '(a,f12.2,a,es8.2,a,es9.2,a)') ' error curl = ', & err_curl/curlTol,' (',err_curl,' -, tol = ',curlTol,')' write(6, '(a,f12.2,a,es8.2,a,es9.2,a)') ' error BC = ', & err_BC/BCTol, ' (',err_BC, ' Pa, tol = ',BCTol,')' write(6,'(/,a)') ' ===========================================================================' flush(6) end subroutine Polarisation_converged !-------------------------------------------------------------------------------------------------- !> @brief forwarding routine !> @details find new boundary conditions and best F estimate for end of current timestep !> possibly writing restart information, triggering of state increment in DAMASK, and updating of IPcoordinates !-------------------------------------------------------------------------------------------------- subroutine Polarisation_forward(guess,timeinc,timeinc_old,loadCaseTime,deformation_BC,stress_BC,rotation_BC) use math, only: & math_mul33x33, & math_mul3333xx33, & math_rotate_backward33 use numerics, only: & worldrank use homogenization, only: & materialpoint_F0 use mesh, only: & grid, & grid3 use CPFEM2, only: & CPFEM_age use spectral_utilities, only: & Utilities_calculateRate, & Utilities_forwardField, & Utilities_updateIPcoords, & tBoundaryCondition, & cutBack use IO, only: & IO_write_JobRealFile use FEsolving, only: & restartWrite implicit none logical, intent(in) :: & guess real(pReal), intent(in) :: & timeinc_old, & timeinc, & loadCaseTime !< remaining time of current load case type(tBoundaryCondition), intent(in) :: & stress_BC, & deformation_BC real(pReal), dimension(3,3), intent(in) ::& rotation_BC PetscErrorCode :: ierr PetscScalar, dimension(:,:,:,:), pointer :: FandF_tau, F, F_tau integer(pInt) :: i, j, k real(pReal), dimension(3,3) :: F_lambda33 character(len=32) :: rankStr !-------------------------------------------------------------------------------------------------- ! update coordinates and rate and forward last inc call DMDAVecGetArrayF90(da,solution_vec,FandF_tau,ierr); CHKERRQ(ierr) F => FandF_tau( 0: 8,:,:,:) F_tau => FandF_tau( 9:17,:,:,:) if (cutBack) then C_volAvg = C_volAvgLastInc ! QUESTION: where is this required? C_minMaxAvg = C_minMaxAvgLastInc ! QUESTION: where is this required? else !-------------------------------------------------------------------------------------------------- ! restart information for spectral solver if (restartWrite) then ! QUESTION: where is this logical properly set? write(6,'(/,a)') ' writing converged results for restart' flush(6) if (worldrank == 0_pInt) then call IO_write_jobRealFile(777,'C_volAvg',size(C_volAvg)) write (777,rec=1) C_volAvg; close(777) call IO_write_jobRealFile(777,'C_volAvgLastInc',size(C_volAvgLastInc)) write (777,rec=1) C_volAvgLastInc; close(777) call IO_write_jobRealFile(777,'F_aimDot',size(F_aimDot)) write (777,rec=1) F_aimDot; close(777) endif write(rankStr,'(a1,i0)')'_',worldrank call IO_write_jobRealFile(777,'F'//trim(rankStr),size(F)) ! writing deformation gradient field to file write (777,rec=1) F; close (777) call IO_write_jobRealFile(777,'F_lastInc'//trim(rankStr),size(F_lastInc)) ! writing F_lastInc field to file write (777,rec=1) F_lastInc; close (777) call IO_write_jobRealFile(777,'F_tau'//trim(rankStr),size(F_tau)) ! writing deformation gradient field to file write (777,rec=1) F_tau; close (777) call IO_write_jobRealFile(777,'F_tau_lastInc'//trim(rankStr),size(F_tau_lastInc)) ! writing F_tau_lastInc field to file write (777,rec=1) F_tau_lastInc; close (777) endif call CPFEM_age() ! age state and kinematics call utilities_updateIPcoords(F) C_volAvgLastInc = C_volAvg C_minMaxAvgLastInc = C_minMaxAvg F_aimDot = merge(stress_BC%maskFloat*(F_aim-F_aim_lastInc)/timeinc_old, 0.0_pReal, guess) F_aim_lastInc = F_aim !-------------------------------------------------------------------------------------------------- ! calculate rate for aim if (deformation_BC%myType=='l') then ! calculate F_aimDot from given L and current F F_aimDot = & F_aimDot + deformation_BC%maskFloat * math_mul33x33(deformation_BC%values, F_aim_lastInc) elseif(deformation_BC%myType=='fdot') then ! F_aimDot is prescribed F_aimDot = & F_aimDot + deformation_BC%maskFloat * deformation_BC%values elseif (deformation_BC%myType=='f') then ! aim at end of load case is prescribed F_aimDot = & F_aimDot + deformation_BC%maskFloat * (deformation_BC%values - F_aim_lastInc)/loadCaseTime endif Fdot = Utilities_calculateRate(guess, & F_lastInc,reshape(F,[3,3,grid(1),grid(2),grid3]),timeinc_old, & math_rotate_backward33(F_aimDot,rotation_BC)) F_tauDot = Utilities_calculateRate(guess, & F_tau_lastInc,reshape(F_tau,[3,3,grid(1),grid(2),grid3]), timeinc_old, & math_rotate_backward33(F_aimDot,rotation_BC)) F_lastInc = reshape(F, [3,3,grid(1),grid(2),grid3]) ! winding F forward F_tau_lastInc = reshape(F_tau, [3,3,grid(1),grid(2),grid3]) ! winding F_tau forward materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3]) ! set starting condition for materialpoint_stressAndItsTangent endif !-------------------------------------------------------------------------------------------------- ! update average and local deformation gradients F_aim = F_aim_lastInc + F_aimDot * timeinc F = reshape(Utilities_forwardField(timeinc,F_lastInc,Fdot, & ! estimate of F at end of time+timeinc that matches rotated F_aim on average math_rotate_backward33(F_aim,rotation_BC)),& [9,grid(1),grid(2),grid3]) if (guess) then F_tau = reshape(Utilities_forwardField(timeinc,F_tau_lastInc,F_taudot), & [9,grid(1),grid(2),grid3]) ! does not have any average value as boundary condition else do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid(1) F_lambda33 = reshape(F_tau(1:9,i,j,k)-F(1:9,i,j,k),[3,3]) F_lambda33 = math_mul3333xx33(S_scale,math_mul33x33(F_lambda33, & math_mul3333xx33(C_scale,& math_mul33x33(transpose(F_lambda33),& F_lambda33)-math_I3))*0.5_pReal)& + math_I3 F_tau(1:9,i,j,k) = reshape(F_lambda33,[9])+F(1:9,i,j,k) enddo; enddo; enddo endif nullify(F) nullify(F_tau) call DMDAVecRestoreArrayF90(da,solution_vec,FandF_tau,ierr); CHKERRQ(ierr) end subroutine Polarisation_forward end module spectral_mech_Polarisation