
ParaView Visualization Course

Data formats, data types, data statistics

Dr. Jean M. Favre
Chief Scientist

Visualization Group Leader

13/5/2009

Motivations for Data Archiving

From the point of view of the application code
 Provide an archiving method which maps the

application (memory footprint, i.e semantics) as
close as possible

– If data are stored in parallel, save to disk in parallel
– If data are stored in 5D array, save to disk as a 5D array

 Requires the least amount of supplemental coding
 Allow compilation on heterogeneous platforms

13/5/2009

Motivations for Data Archiving

From the point of view of the data
 Allow human reading (a.k.a. ASCII)
 Allow portable (heterogeneous platforms) reading
 Allow partial read, sub-setting read/write
 Browsing/editing without developing code

13/5/2009

Motivations for Data Archiving

From the point of view of the Visualization Tools
 Ingest data “as-is”
 Allow random access (don’t read all, be selective)

–Get to the meta-data easily

 Parallel/distributed/streaming read
–Display without discontinuities

13/5/2009

ParaView/VTK data formats

 ParaView supports
gridded and mesh-less
data and has support
for time-dependent
results.

 VTK File formats
 What file formats does

ParaView support?

http://www.vtk.org/VTK/img/file-formats.pdf�
http://www.cmake.org/Wiki/ParaView:FAQ�
http://www.cmake.org/Wiki/ParaView:FAQ�

13/5/2009

ParaView/VTK data types

3 structured grid types
Curvilinear =>

Rectilinear =>

Uniform Rectilinear =>

13/5/2009

ParaView/VTK data types

2 unstructured grid types

1. PolyData (for geometry)

2. UnstructuredGrid

13/5/2009

ParaView/VTK data types

Data values can be stored at the
nodes, at the cells, using all
available types (int, char, float,
double, etc.)

Timestep indices and associated
values will be shown if present

13/5/2009

ParaView “Data Object Generator”

13/5/2009

Use ExtractSubset

Parallel processing will
enable requests for
any subsets, including
ghost-cells

Structured grids are split by IJK Extents

13/5/2009

Structured grids can become unstructured…

 many
visualization
filters transform
stuctured grid
data into
unstructured data

 The memory
footprint and cpu
load turns into a
titanic task

 4003 clipped to
156 million cells
in 1h27 minutes

13/5/2009

 Use D3 to divide data

 D3 has 3 options
– Assign cells uniquely
– Duplicate cells
– Divide cells

 For volume rendering, cells
on the boundaries are copied
to all regions and then
clipped by the bounds of
each region

Unstructured grids are split by XYZ Extents

13/5/2009

Composite datasets: Multi-block

 Can be nested

 Sub-blocks can
be selected for
other processing

13/5/2009

Composite datasets: Hierachical

 Hyper-octree or AMR dataset

13/5/2009

 VTK does not support spherical grids natively, but
curvilinear grids can be used (with explicit x,y,z
coordinates)

 Read the spherical axis data (phi, radius, theta) and
create a curvilinear grid

Spherical [or cylindrical] Grids?

 [Phi, Theta, R] is transformed into [I, J, K]
I-surfaces J-surfaces K-surfaces

13/5/2009

Time series

 Animating_legacy_VTK_file_series

 ParaView recognizes file series named using
certain patterns including fooN.vtk, foo-N.vtk,
foo.N.vtk, Nfoo.vtk, N.foo.vtk where N is an integer
(with any number of leading zeros)

 paraview --data=/project/F9999.hdf/F..vtk

http://www.paraview.org/Wiki/Animating_legacy_VTK_file_series�

13/5/2009

VTK native formats

 “Legacy” file format

 “XML”-based formats support many more features
to facilitate data streaming and parallel I/O. Some
features of the format include support for
compression, portable binary encoding, random
access, big endian and little endian byte order,
multiple file representation of piece data, and new
file extensions for different VTK dataset types.

 Conversion utility in VTK/Utilities/vtk2xml.py

 ./bin/vtkpython vtk2xml.py legacy.vtk

13/5/2009

XML format example with 4 partitions

<VTKFile type="UnstructuredGrid" version="0.1" byte_order="LittleEndian">
<PUnstructuredGrid GhostLevel="0">
<PPointData Scalars="velocity">

<PDataArray type="Float32" Name="velocity" NumberOfComponents="3"/>
</PPointData>
<PPoints>

<PDataArray type="Float32" NumberOfComponents="3“ format="appended"/>
</PPoints>
<Piece Source="upperleft.vtu"/> <Piece Source="upperright.vtu"/>
<Piece Source=“bottomleft.vtu"/> <Piece Source=“bottomright.vtu"/>

</PUnstructuredGrid>
</VTKFile>

13/5/2009

XML format example with 4 partitions

13/5/2009

XML format example with 4 partitions

Each piece uses
its own internal
node numbering.

No need for
global
renumbering

Each piece is a
100% compliant
dataset. Can be
read stand-alone

13/5/2009

XML format example with ghost cells

<VTKFile type="PStructuredGrid" version="0.1">
<PStructuredGrid WholeExtent="0 65 0 65 0 65" GhostLevel="1">
<Piece Extent=" 0 17 0 17 0 65" Source="d0372_00.vts"/>
<Piece Extent="16 33 0 17 0 65" Source="d0372_01.vts"/>
<Piece Extent="32 49 0 17 0 65" Source="d0372_02.vts"/>
<Piece Extent="48 65 0 17 0 65" Source="d0372_03.vts"/>
<Piece Extent=" 0 17 16 33 0 65" Source="d0372_04.vts"/>
<Piece Extent="16 33 16 33 0 65" Source="d0372_05.vts"/>
<Piece Extent="32 49 16 33 0 65" Source="d0372_06.vts"/>

….
</PStructuredGrid>
</VTKFile>

13/5/2009

How to write partitioned files? Structured Grids
// Use vtkXMLP*Writer with a serial program
int N = 4;

vtkXMLPImageDataWriter piw =
vtkXMLPImageDataWriter::New();

piw->SetInputConnection(reader->GetOutputPort());
piw->SetFileName("/pathtofilename/file.pvti");
piw->SetNumberOfPieces(N);
piw->SetStartPiece(0);
piw->SetEndPiece(N-1);
piw->WriteSummaryFileOn();
piw->Write()

13/5/2009

How to write partitioned files? Unstructured Grids
running pvpython with a parallel pvserver

from paraview import servermanager as sm
sm.Connect("name") # with the name of your host running pvserver
reader =

sm.sources.XMLUnstructuredGridReader(FileName="mesh.vtu")

d3 = sm.filters.D3()
d3.Input = reader
d3.BoundaryMode = 0 #Assign cells uniquely

writer =
sm.writers.XMLPUnstructuredGridWriter(FileName="umesh.pvtu")

writer.NumberOfPieces = 4
writer.Input = d3
writer.UpdatePipeline()

13/5/2009

Distributed Data Archiving

 Distributed archiving allows two different data
processing methods:
–Parallel visualization (previous example)
–Piece-wise visualization

 The VTK format is just one example. We can use
other data formats and still use distributed
reading/processing in ParaView.

 => for example, HDF5 and Xdmf

13/5/2009

Xdmf (eXtensible Data Model and Format)

Data Format refers to the raw data to be manipulated.

Information like number type (float, integer, etc.),
precision, location, rank, and dimensions

Light data: description of the data (using XML)
Heavy data: the values themselves (using HDF5)

Light data is small and can be shared between modules
Heavy data may be potentially enormous; copying

needs to be kept to a minimum.

http://www.xdmf.org/�

13/5/2009

Xdmf (eXtensible Data Model and Format)
Data Model refers to the intended use of the data.

For example, a three dimensional array of floating point values may
be the X,Y,Z geometry for a grid or calculated vector values.

A data model only describes the data, it is purely light data and
thus stored using XML.

It is targeted at scientific simulation concentrating on scalars,
vectors, and tensors defined on some computational grid.

Structured and Unstructured grids are described via their topology
and geometry.

Calculated, time varying data values are described as attributes.
Actual values for the grid geometry, connectivity, and attribute

values are contained in the data format.

13/5/2009

Advantages of Xdmf

 Raw HDF5
 Some of the HDF5 paradigms are percolated to the

XML model (striding, interlacing, on-the-fly data
conversion)

 The model allows for a richer definition of the
intended use (even if visualization softwares cannot,
today, handle the data as advertised). E.g. storing
data at the cells centers, faces, edges….

 The model facilitates data sharing (hyperlinks, array
indexing, etc…)

13/5/2009

Some practical examples at CSCS

 Existing HDF5 encoding. We write the XML wrapper
and ParaView can read the data.

 Derived quantities can be calculated and added
lightly to the data model. The Xdmf model can
reference multiple HDF5 files

 Each node of a running simulation can write its own
HDF5 datafile (Not worrying about gathering data,
or mpi-io). An Xdmf wrapper can concatenate all
pieces.

 Fixed geometry and transient data. The geometry
can be shared with lightweight links.

13/5/2009

ParaView can read
the data on any
number of
processors

1. ParaView can
read any subsets
(hyperslabs)

2. pvpython will read
only the hyperslab
necessary

Example for a Rectilinear Grid

13/5/2009

Example of HDF5 & XML encoding

<Xdmf><Domain Name="Data">
<Grid GridType="Collection“ CollectionType="Temporal">

<Grid Name="dns"> <Time Value="0.000"/>
<Topology Type="3DRECTMESH" Dimensions="595 1049 1900">

</Topology>
<Geometry Type="VXVYVZ">

<DataStructure NumberType="Float" Rank="1" Name="X"
Precision="4" Dimensions="1900" Format="HDF">

full.000.h5:/coords/X </DataStructure>
<DataStructure NumberType="Float" Rank="1" Name="Y"
Precision="4" Dimensions="1049" Format="HDF">

full.000.h5:/coords/Y </DataStructure>
<DataStructure NumberType="Float" Rank="1" Name="Z"
Precision="4" Dimensions="595" Format="HDF">

full.000.h5:/coords/Z </DataStructure>
</Geometry>

13/5/2009

Example of HDF5 & XML encoding

<Attribute
Active="1"
Type="Scalar"
Center="Node"
Name="lambda_2">
<DataStructure DataType="Float“ Precision="4"

Dimensions="595 1049 1900"
Format="HDF">
full.000.h5:/data/lambda_2

</DataStructure>
</Attribute>

13/5/2009

Running on 8 pvservers

Optimizing the reading order (X, Y or Z)

13/05/2009

Reading 15 Gb of data with 12 cpus, with
HDF5 hyperslabs

X hyperslabs: average read: 430 secs

Y hyperslabs: average read: 142 secs

Z hyperslabs: average read: 36 secs

Parallel Visualization is ALL about file I/O


13/5/2009

Zooming in to the interesting zone

How much data was read, isosurfaced, and never displayed in this picture?

13/5/2009

Adjusting the Data Extents…

Reading much
less data

display only
1/40-th of the
data volume

25 millions
instead of one
billion cells

13/5/2009

Summary

 VTK data types and data formats offer all standard
grid shapes.

 Beware that the VTK XML formats are limited by
some 32-bit pointers.

 Many engineering formats are supported, some
very well, some less efficiently

 Custom formats readers can be added but a
thorough knowledge of internal data structures is
required.

 Extensions are coming (SQL databases, Tables, …)

	ParaView Visualization Course��Data formats, data types, data statistics
	Motivations for Data Archiving
	Motivations for Data Archiving
	Motivations for Data Archiving
	ParaView/VTK data formats
	ParaView/VTK data types
	ParaView/VTK data types
	ParaView/VTK data types
	ParaView “Data Object Generator”
	Slide Number 10
	Structured grids can become unstructured…
	Slide Number 12
	Composite datasets: Multi-block
	Composite datasets: Hierachical
	Spherical [or cylindrical] Grids?
	Time series
	VTK native formats
	XML format example with 4 partitions
	XML format example with 4 partitions
	XML format example with 4 partitions
	XML format example with ghost cells
	How to write partitioned files? Structured Grids
	How to write partitioned files? Unstructured Grids
	Distributed Data Archiving
	Xdmf (eXtensible Data Model and Format)
	Xdmf (eXtensible Data Model and Format)
	Advantages of Xdmf
	Some practical examples at CSCS
	Example for a Rectilinear Grid
	Example of HDF5 & XML encoding
	Example of HDF5 & XML encoding
	Running on 8 pvservers
	Optimizing the reading order (X, Y or Z)
	Zooming in to the interesting zone
	Adjusting the Data Extents…
	Summary

