!-------------------------------------------------------------------------------------------------- !> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incorporating kinematics resulting from opening of slip planes !> @details to be done !-------------------------------------------------------------------------------------------------- submodule(phase:eigen) slipplaneopening integer, dimension(:), allocatable :: kinematics_slipplane_opening_instance type :: tParameters !< container type for internal constitutive parameters integer :: & sum_N_sl !< total number of cleavage planes real(pReal) :: & dot_o, & !< opening rate of cleavage planes q !< damage rate sensitivity real(pReal), dimension(:), allocatable :: & g_crit real(pReal), dimension(:,:,:), allocatable :: & P_d, & P_t, & P_n end type tParameters type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstances) contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- module function kinematics_slipplane_opening_init() result(myKinematics) logical, dimension(:), allocatable :: myKinematics integer :: p,i character(len=pStringLen) :: extmsg = '' integer, dimension(:), allocatable :: N_sl real(pReal), dimension(:,:), allocatable :: d,n,t class(tNode), pointer :: & phases, & phase, & mech, & pl, & kinematics, & kinematic_type myKinematics = kinematics_active2('isoductile') if(count(myKinematics) == 0) return print'(/,a)', ' <<<+- phase:mechanical:eigen:slipplaneopening init -+>>>' print'(a,i2)', ' # phases: ',count(myKinematics); flush(IO_STDOUT) phases => config_material%get('phase') allocate(param(phases%length)) do p = 1, phases%length if(myKinematics(p)) then phase => phases%get(p) mech => phase%get('mechanical') pl => mech%get('plastic') kinematics => phase%get('damage') associate(prm => param(p)) kinematic_type => kinematics%get(1) prm%dot_o = kinematic_type%get_asFloat('dot_o') prm%q = kinematic_type%get_asFloat('q') N_sl = pl%get_as1dInt('N_sl') prm%sum_N_sl = sum(abs(N_sl)) d = lattice_slip_direction (N_sl,phase%get_asString('lattice'),& phase%get_asFloat('c/a',defaultVal=0.0_pReal)) t = lattice_slip_transverse(N_sl,phase%get_asString('lattice'),& phase%get_asFloat('c/a',defaultVal=0.0_pReal)) n = lattice_slip_normal (N_sl,phase%get_asString('lattice'),& phase%get_asFloat('c/a',defaultVal=0.0_pReal)) allocate(prm%P_d(3,3,size(d,2)),prm%P_t(3,3,size(t,2)),prm%P_n(3,3,size(n,2))) do i=1, size(n,2) prm%P_d(1:3,1:3,i) = math_outer(d(1:3,i), n(1:3,i)) prm%P_t(1:3,1:3,i) = math_outer(t(1:3,i), n(1:3,i)) prm%P_n(1:3,1:3,i) = math_outer(n(1:3,i), n(1:3,i)) enddo prm%g_crit = kinematic_type%get_as1dFloat('g_crit',requiredSize=size(N_sl)) ! expand: family => system prm%g_crit = math_expand(prm%g_crit,N_sl) ! sanity checks if (prm%q <= 0.0_pReal) extmsg = trim(extmsg)//' anisoDuctile_n' if (prm%dot_o <= 0.0_pReal) extmsg = trim(extmsg)//' anisoDuctile_sdot0' if (any(prm%g_crit < 0.0_pReal)) extmsg = trim(extmsg)//' anisoDuctile_critLoad' !-------------------------------------------------------------------------------------------------- ! exit if any parameter is out of range if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(slipplane_opening)') end associate endif enddo end function kinematics_slipplane_opening_init !-------------------------------------------------------------------------------------------------- !> @brief contains the constitutive equation for calculating the velocity gradient !-------------------------------------------------------------------------------------------------- module subroutine kinematics_slipplane_opening_LiAndItsTangent(Ld, dLd_dTstar, S, ph,me) integer, intent(in) :: & ph, me real(pReal), intent(in), dimension(3,3) :: & S real(pReal), intent(out), dimension(3,3) :: & Ld !< damage velocity gradient real(pReal), intent(out), dimension(3,3,3,3) :: & dLd_dTstar !< derivative of Ld with respect to Tstar (4th-order tensor) integer :: & i, k, l, m, n real(pReal) :: & traction_d, traction_t, traction_n, traction_crit, & udotd, dudotd_dt, udott, dudott_dt, udotn, dudotn_dt associate(prm => param(ph)) Ld = 0.0_pReal dLd_dTstar = 0.0_pReal do i = 1, prm%sum_N_sl traction_d = math_tensordot(S,prm%P_d(1:3,1:3,i)) traction_t = math_tensordot(S,prm%P_t(1:3,1:3,i)) traction_n = math_tensordot(S,prm%P_n(1:3,1:3,i)) traction_crit = prm%g_crit(i)* damage_phi(ph,me) udotd = sign(1.0_pReal,traction_d)* prm%dot_o* ( abs(traction_d)/traction_crit & - abs(traction_d)/prm%g_crit(i))**prm%q udott = sign(1.0_pReal,traction_t)* prm%dot_o* ( abs(traction_t)/traction_crit & - abs(traction_t)/prm%g_crit(i))**prm%q udotn = prm%dot_o* ( max(0.0_pReal,traction_n)/traction_crit & - max(0.0_pReal,traction_n)/prm%g_crit(i))**prm%q if (dNeq0(traction_d)) then dudotd_dt = udotd*prm%q/traction_d else dudotd_dt = 0.0_pReal endif if (dNeq0(traction_t)) then dudott_dt = udott*prm%q/traction_t else dudott_dt = 0.0_pReal endif if (dNeq0(traction_n)) then dudotn_dt = udotn*prm%q/traction_n else dudotn_dt = 0.0_pReal endif forall (k=1:3,l=1:3,m=1:3,n=1:3) & dLd_dTstar(k,l,m,n) = dLd_dTstar(k,l,m,n) & + dudotd_dt*prm%P_d(k,l,i)*prm%P_d(m,n,i) & + dudott_dt*prm%P_t(k,l,i)*prm%P_t(m,n,i) & + dudotn_dt*prm%P_n(k,l,i)*prm%P_n(m,n,i) Ld = Ld & + udotd*prm%P_d(1:3,1:3,i) & + udott*prm%P_t(1:3,1:3,i) & + udotn*prm%P_n(1:3,1:3,i) enddo end associate end subroutine kinematics_slipplane_opening_LiAndItsTangent end submodule slipplaneopening