#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string,re,math,itertools import numpy as np from scipy import ndimage from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] def periodic_3Dpad(array, rimdim=(1,1,1)): rimdim = np.array(rimdim,'i') size = np.array(array.shape,'i') padded = np.empty(size+2*rimdim,array.dtype) padded[rimdim[0]:rimdim[0]+size[0], rimdim[1]:rimdim[1]+size[1], rimdim[2]:rimdim[2]+size[2]] = array p = np.zeros(3,'i') for side in xrange(3): for p[(side+2)%3] in xrange(padded.shape[(side+2)%3]): for p[(side+1)%3] in xrange(padded.shape[(side+1)%3]): for p[side%3] in xrange(rimdim[side%3]): spot = (p-rimdim)%size padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] for p[side%3] in xrange(rimdim[side%3]+size[side%3],size[side%3]+2*rimdim[side%3]): spot = (p-rimdim)%size padded[p[0],p[1],p[2]] = array[spot[0],spot[1],spot[2]] return padded #-------------------------------------------------------------------------------------------------- # MAIN #-------------------------------------------------------------------------------------------------- identifiers = { 'grid': ['a','b','c'], 'size': ['x','y','z'], 'origin': ['x','y','z'], } mappings = { 'grid': lambda x: int(x), 'size': lambda x: float(x), 'origin': lambda x: float(x), 'homogenization': lambda x: int(x), 'microstructures': lambda x: int(x), } features = [ {'aliens': 1, 'names': ['boundary','biplane'],}, {'aliens': 2, 'names': ['tripleline',],}, {'aliens': 3, 'names': ['quadruplepoint',],} ] neighborhoods = { 'neumann':np.array([ [-1, 0, 0], [ 1, 0, 0], [ 0,-1, 0], [ 0, 1, 0], [ 0, 0,-1], [ 0, 0, 1], ]), 'moore':np.array([ [-1,-1,-1], [ 0,-1,-1], [ 1,-1,-1], [-1, 0,-1], [ 0, 0,-1], [ 1, 0,-1], [-1, 1,-1], [ 0, 1,-1], [ 1, 1,-1], # [-1,-1, 0], [ 0,-1, 0], [ 1,-1, 0], [-1, 0, 0], # [ 1, 0, 0], [-1, 1, 0], [ 0, 1, 0], [ 1, 1, 0], # [-1,-1, 1], [ 0,-1, 1], [ 1,-1, 1], [-1, 0, 1], [ 0, 0, 1], [ 1, 0, 1], [-1, 1, 1], [ 0, 1, 1], [ 1, 1, 1], ]) } parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Produce geom files containing Euclidean distance to grain structural features: boundaries, triple lines, and quadruple points. """, version = scriptID) parser.add_option('-t','--type', dest = 'type', action = 'extend', type = 'string', metavar = '', help = 'feature type (%s) '%(', '.join(map(lambda x:'|'.join(x['names']),features))) ) parser.add_option('-n','--neighborhood', dest='neighborhood', choices = neighborhoods.keys(), metavar = 'string', help = 'type of neighborhood (%s) [neumann]'%(', '.join(neighborhoods.keys()))) parser.add_option('-s', '--scale', dest = 'scale', type = 'float', metavar='float', help = 'voxel size [%default]') parser.set_defaults(type = []) parser.set_defaults(neighborhood = 'neumann') parser.set_defaults(scale = 1.0) (options,filenames) = parser.parse_args() if len(options.type) == 0: parser.error('please select a feature type') if not set(options.type).issubset(set(map(lambda x: x['name'],features))): parser.error('type must be chosen from (%s)...'%(', '.join(map(lambda x:', '.join([x['name']]),features)))) if 'biplane' in options.type and 'boundary' in options.type: parser.error("please select only one alias for 'biplane' and 'boundary'") feature_list = [] for i,feature in enumerate(features): for name in feature['names']: for myType in options.type: if name.startswith(myType): feature_list.append(i) # remember valid features break #--- setup file handles --------------------------------------------------------------------------- files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr, }) else: for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':[open(features[feature]['names'][0]+'_'+name,'w') for feature in feature_list], 'croak':sys.stdout, }) #--- loop over input files ------------------------------------------------------------------------ for file in files: file['croak'].write('\033[1m' + scriptName + '\033[0m: ' + (file['name'] if file['name'] != 'STDIN' else '') + '\n') table = damask.ASCIItable(file['input'],file['output'][0],labels = False) table.head_read() #--- interpret header ---------------------------------------------------------------------------- info = { 'grid': np.zeros(3,'i'), 'size': np.zeros(3,'d'), 'origin': np.zeros(3,'d'), 'homogenization': 0, 'microstructures': 0, } newInfo = { 'grid': np.zeros(3,'i'), 'origin': np.zeros(3,'d'), 'microstructures': 0, } extra_header = [] for header in table.info: headitems = map(str.lower,header.split()) if len(headitems) == 0: continue # skip blank lines if headitems[0] in mappings.keys(): if headitems[0] in identifiers.keys(): for i in xrange(len(identifiers[headitems[0]])): info[headitems[0]][i] = \ mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1]) else: info[headitems[0]] = mappings[headitems[0]](headitems[1]) else: extra_header.append(header) file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \ 'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \ 'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \ 'homogenization: %i\n'%info['homogenization'] + \ 'microstructures: %i\n'%info['microstructures']) if np.any(info['grid'] < 1): file['croak'].write('invalid grid a b c.\n') continue if np.any(info['size'] <= 0.0): file['croak'].write('invalid size x y z.\n') continue #--- read data ------------------------------------------------------------------------------------ microstructure = np.zeros(info['grid'].prod(),'i') # initialize as flat array i = 0 while table.data_read(): items = table.data if len(items) > 2: if items[1].lower() == 'of': items = [int(items[2])]*int(items[0]) elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2])) else: items = map(int,items) else: items = map(int,items) s = len(items) microstructure[i:i+s] = items i += s neighborhood = neighborhoods[options.neighborhood] convoluted = np.empty([len(neighborhood)]+list(info['grid']+2),'i') structure = periodic_3Dpad(microstructure.reshape(info['grid'],order='F')) for i,p in enumerate(neighborhood): stencil = np.zeros((3,3,3),'i') stencil[1,1,1] = -1 stencil[p[0]+1, p[1]+1, p[2]+1] = 1 convoluted[i,:,:,:] = ndimage.convolve(structure,stencil) distance = np.ones((len(feature_list),info['grid'][0],info['grid'][1],info['grid'][2]),'d') convoluted = np.sort(convoluted,axis = 0) uniques = np.where(convoluted[0,1:-1,1:-1,1:-1] != 0, 1,0) # initialize unique value counter (exclude myself [= 0]) for i in xrange(1,len(neighborhood)): # check remaining points in neighborhood uniques += np.where(np.logical_and( convoluted[i,1:-1,1:-1,1:-1] != convoluted[i-1,1:-1,1:-1,1:-1], # flip of ID difference detected? convoluted[i,1:-1,1:-1,1:-1] != 0), # not myself? 1,0) # count flip for i,feature_id in enumerate(feature_list): distance[i,:,:,:] = np.where(uniques >= features[feature_id]['aliens'],0.0,1.0) # seed with 0.0 when enough unique neighbor IDs are present for i in xrange(len(feature_list)): distance[i,:,:,:] = ndimage.morphology.distance_transform_edt(distance[i,:,:,:])*[options.scale]*3 for i,feature in enumerate(feature_list): newInfo['microstructures'] = int(math.ceil(distance[i,:,:,:].max())) #--- write header --------------------------------------------------------------------------------- table = damask.ASCIItable(file['input'],file['output'][i],labels = False) table.labels_clear() table.info_clear() table.info_append(extra_header+[ scriptID + ' ' + ' '.join(sys.argv[1:]), "grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],), "size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],), "origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],), "homogenization\t%i"%info['homogenization'], "microstructures\t%i"%(newInfo['microstructures']), ]) table.head_write() table.output_flush() # --- write microstructure information ------------------------------------------------------------ formatwidth = int(math.floor(math.log10(distance[i,:,:,:].max())+1)) table.data = distance[i,:,:,:].reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose() table.data_writeArray('%%%ii'%(formatwidth),delimiter=' ') file['output'][i].close() #--- output finalization -------------------------------------------------------------------------- if file['name'] != 'STDIN': table.input_close()