!* $Id$ !############################################################## MODULE CPFEM !############################################################## ! *** CPFEM engine *** ! use prec, only: pReal, & pInt implicit none real(pReal), parameter :: CPFEM_odd_stress = 1e15_pReal, & CPFEM_odd_jacobian = 1e50_pReal real(pReal), dimension (:,:,:), allocatable :: CPFEM_cs ! Cauchy stress real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_dcsdE ! Cauchy stress tangent real(pReal), dimension (:,:,:,:), allocatable :: CPFEM_dcsdE_knownGood ! known good tangent logical :: CPFEM_init_done = .false., & ! remember whether init has been done already CPFEM_init_inProgress = .false., & ! remember whether first IP is currently performing init CPFEM_calc_done = .false. ! remember whether first IP has already calced the results CONTAINS !********************************************************* !*** call (thread safe) all module initializations *** !********************************************************* subroutine CPFEM_initAll(Temperature,element,IP) use prec, only: pReal, & prec_init use numerics, only: numerics_init use debug, only: debug_init use FEsolving, only: FE_init use math, only: math_init use mesh, only: mesh_init use lattice, only: lattice_init use material, only: material_init use constitutive, only: constitutive_init use crystallite, only: crystallite_init use homogenization, only: homogenization_init use IO, only: IO_init use mpie_interface implicit none integer(pInt), intent(in) :: element, & ! FE element number IP ! FE integration point number real(pReal), intent(in) :: Temperature ! temperature real(pReal) rnd integer(pInt) i,n ! initialization step (three dimensional stress state check missing?) if (.not. CPFEM_init_done) then call random_number(rnd) do i=1,int(256.0*rnd) n = n+1_pInt ! wasting random amount of time... enddo ! ...to break potential race in multithreading n = n+1_pInt if (.not. CPFEM_init_inProgress) then ! yes my thread won! CPFEM_init_inProgress = .true. call prec_init() call IO_init() call numerics_init() call debug_init() call math_init() call FE_init() call mesh_init(IP, element) ! pass on coordinates to alter calcMode of first ip call lattice_init() call material_init() call constitutive_init() call crystallite_init(Temperature) ! (have to) use temperature of first IP for whole model call homogenization_init(Temperature) call CPFEM_init() call mpie_interface_init() CPFEM_init_done = .true. CPFEM_init_inProgress = .false. else ! loser, loser... do while (CPFEM_init_inProgress) enddo endif endif end subroutine !********************************************************* !*** allocate the arrays defined in module CPFEM *** !*** and initialize them *** !********************************************************* subroutine CPFEM_init() use prec, only: pInt use debug, only: debugger use IO, only: IO_read_jobBinaryFile use FEsolving, only: parallelExecution, & symmetricSolver, & restartRead, & restartJob use mesh, only: mesh_NcpElems, & mesh_maxNips use material, only: homogenization_maxNgrains, & material_phase use constitutive, only: constitutive_state0 use crystallite, only: crystallite_F0, & crystallite_Fp0, & crystallite_Lp0, & crystallite_dPdF0, & crystallite_Tstar0_v use homogenization, only: homogenization_sizeState, & homogenization_state0, & materialpoint_F, & materialpoint_F0 implicit none integer(pInt) i,j,k,l,m ! initialize stress and jacobian to zero allocate(CPFEM_cs(6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_cs = 0.0_pReal allocate(CPFEM_dcsdE(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsdE = 0.0_pReal allocate(CPFEM_dcsdE_knownGood(6,6,mesh_maxNips,mesh_NcpElems)) ; CPFEM_dcsdE_knownGood = 0.0_pReal ! *** restore the last converged values of each essential variable from the binary file if (restartRead) then if (debugger) then !$OMP CRITICAL (write2out) write(6,'(a)') '<<< cpfem >>> Restored state variables of last converged step from binary files' !$OMP END CRITICAL (write2out) endif if (IO_read_jobBinaryFile(777,'recordedPhase',restartJob,size(material_phase))) then read (777,rec=1) material_phase close (777) endif if (IO_read_jobBinaryFile(777,'convergedF',restartJob,size(crystallite_F0))) then read (777,rec=1) crystallite_F0 close (777) endif if (IO_read_jobBinaryFile(777,'convergedFp',restartJob,size(crystallite_Fp0))) then read (777,rec=1) crystallite_Fp0 close (777) endif if (IO_read_jobBinaryFile(777,'convergedLp',restartJob,size(crystallite_Lp0))) then read (777,rec=1) crystallite_Lp0 close (777) endif if (IO_read_jobBinaryFile(777,'convergeddPdF',restartJob,size(crystallite_dPdF0))) then read (777,rec=1) crystallite_dPdF0 close (777) endif if (IO_read_jobBinaryFile(777,'convergedTstar',restartJob,size(crystallite_Tstar0_v))) then read (777,rec=1) crystallite_Tstar0_v close (777) endif if (IO_read_jobBinaryFile(777,'convergedStateConst',restartJob)) then m = 0_pInt do i = 1,homogenization_maxNgrains; do j = 1,mesh_maxNips; do k = 1,mesh_NcpElems do l = 1,size(constitutive_state0(i,j,k)%p) m = m+1_pInt read(777,rec=m) constitutive_state0(i,j,k)%p(l) enddo enddo; enddo; enddo close (777) endif if (IO_read_jobBinaryFile(777,'convergedStateHomog',restartJob)) then m = 0_pInt do k = 1,mesh_NcpElems; do j = 1,mesh_maxNips do l = 1,homogenization_sizeState(j,k) m = m+1_pInt read(777,rec=m) homogenization_state0(j,k)%p(l) enddo enddo; enddo close (777) endif if (IO_read_jobBinaryFile(777,'convergeddcsdE',restartJob,size(CPFEM_dcsdE))) then read (777,rec=1) CPFEM_dcsdE close (777) endif restartRead = .false. endif ! *** end of restoring !$OMP CRITICAL (write2out) write(6,*) write(6,*) '<<<+- cpfem init -+>>>' write(6,*) '$Id$' write(6,*) write(6,'(a32,x,6(i5,x))') 'CPFEM_cs: ', shape(CPFEM_cs) write(6,'(a32,x,6(i5,x))') 'CPFEM_dcsdE: ', shape(CPFEM_dcsdE) write(6,'(a32,x,6(i5,x))') 'CPFEM_dcsdE_knownGood: ', shape(CPFEM_dcsdE_knownGood) write(6,*) write(6,*) 'parallelExecution: ', parallelExecution write(6,*) 'symmetricSolver: ', symmetricSolver call flush(6) !$OMP END CRITICAL (write2out) return endsubroutine !*********************************************************************** !*** perform initialization at first call, update variables and *** !*** call the actual material model *** !*********************************************************************** subroutine CPFEM_general(mode, ffn, ffn1, Temperature, dt, element, IP, cauchyStress,& & jacobian, pstress, dPdF) ! note: cauchyStress = Cauchy stress cs(6) and jacobian = Consistent tangent dcs/dE !*** variables and functions from other modules ***! use prec, only: pReal, & pInt use numerics, only: relevantStrain, & defgradTolerance, & iJacoStiffness use debug, only: debug_g, & debug_i, & debug_e, & debugger, & selectiveDebugger, & verboseDebugger use FEsolving, only: parallelExecution, & outdatedFFN1, & terminallyIll, & cycleCounter, & theInc, & theTime, & theDelta, & FEsolving_execElem, & FEsolving_execIP, & restartWrite use math, only: math_identity2nd, & math_mul33x33, & math_det3x3, & math_I3, & math_Mandel3333to66, & math_Mandel33to6 use mesh, only: mesh_FEasCP, & mesh_NcpElems, & mesh_maxNips, & mesh_element, & FE_Nips use material, only: homogenization_maxNgrains, & microstructure_elemhomo, & material_phase use constitutive, only: constitutive_state0,constitutive_state use crystallite, only: crystallite_F0, & crystallite_partionedF, & crystallite_Fp0, & crystallite_Fp, & crystallite_Lp0, & crystallite_Lp, & crystallite_dPdF0, & crystallite_dPdF, & crystallite_Tstar0_v, & crystallite_Tstar_v use homogenization, only: homogenization_sizeState, & homogenization_state, & homogenization_state0, & materialpoint_F, & materialpoint_F0, & materialpoint_P, & materialpoint_dPdF, & materialpoint_results, & materialpoint_Temperature, & materialpoint_stressAndItsTangent, & materialpoint_postResults use IO, only: IO_write_jobBinaryFile use mpie_interface implicit none !*** input variables ***! integer(pInt), intent(in) :: element, & ! FE element number IP ! FE integration point number real(pReal), intent(inout) :: Temperature ! temperature real(pReal), intent(in) :: dt ! time increment real(pReal), dimension (3,3), intent(in) :: ffn, & ! deformation gradient for t=t0 ffn1 ! deformation gradient for t=t1 integer(pInt), intent(in) :: mode ! computation mode 1: regular computation plus aging of results ! 2: regular computation ! 3: collection of FEM data ! 4: backup tangent from former converged inc ! 5: restore tangent from former converged inc ! 6: recycling of former results (MARC speciality) !*** output variables ***! real(pReal), dimension(6), intent(out) :: cauchyStress ! stress vector in Mandel notation real(pReal), dimension(6,6), intent(out) :: jacobian ! jacobian in Mandel notation real(pReal), dimension (3,3), intent(out) :: pstress ! Piola-Kirchhoff stress in Matrix notation real(pReal), dimension (3,3,3,3), intent(out) :: dPdF ! !*** local variables ***! real(pReal) J_inverse, & ! inverse of Jacobian rnd real(pReal), dimension (3,3) :: Kirchhoff ! Piola-Kirchhoff stress in Matrix notation real(pReal), dimension (3,3,3,3) :: H_sym, & H integer(pInt) cp_en, & ! crystal plasticity element number i, & j, & k, & l, & m, & n, & e logical updateJaco ! flag indicating if JAcobian has to be updated !*** global variables ***! ! CPFEM_cs, & ! CPFEM_dcsdE, & ! CPFEM_dcsdE_knownGood, & ! CPFEM_init_done, & ! CPFEM_calc_done, & ! CPFEM_odd_stress, & ! CPFEM_odd_jacobian cp_en = mesh_FEasCP('elem',element) if (selectiveDebugger .and. cp_en == debug_e .and. IP == debug_i) then !$OMP CRITICAL (write2out) write(6,*) write(6,'(a)') '#######################################################' write(6,'(a32,x,i5,x,i2)') 'reporting for element, ip:',cp_en,IP write(6,'(a32,x,f15.7)') 'theTime',theTime write(6,'(a32,x,f15.7)') 'theDelta',theDelta write(6,'(a32,x,i8)') 'theInc',theInc write(6,'(a32,x,i8)') 'cycleCounter',cycleCounter write(6,'(a32,x,i8)') 'computationMode',mode write(6,'(a)') '#######################################################' call flush (6) !$OMP END CRITICAL (write2out) endif ! according to our "mode" we decide what to do select case (mode) ! --+>> REGULAR COMPUTATION (WITH AGING OF RESULTS IF MODE == 1) <<+-- case (1,2,8,9) ! age results if mode == 1 if (mode == 1 .or. mode == 8) then crystallite_F0 = crystallite_partionedF ! crystallite deformation (_subF is perturbed...) crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity crystallite_dPdF0 = crystallite_dPdF ! crystallite stiffness crystallite_Tstar0_v = crystallite_Tstar_v ! crystallite 2nd Piola Kirchhoff stress forall ( i = 1:homogenization_maxNgrains, & j = 1:mesh_maxNips, & k = 1:mesh_NcpElems ) & constitutive_state0(i,j,k)%p = constitutive_state(i,j,k)%p ! microstructure of crystallites if (selectiveDebugger .and. cp_en == debug_e .and. IP == debug_i) then !$OMP CRITICAL (write2out) write(6,'(a,x,i8,x,i2,/,4(3(e20.8,x),/))') '<< cpfem >> AGED state of grain 1, element ip',& cp_en,IP, constitutive_state(1,IP,cp_en)%p !$OMP END CRITICAL (write2out) endif do k = 1,mesh_NcpElems do j = 1,mesh_maxNips if (homogenization_sizeState(j,k) > 0_pInt) & homogenization_state0(j,k)%p = homogenization_state(j,k)%p ! internal state of homogenization scheme enddo enddo ! *** dump the last converged values of each essential variable to a binary file if (restartWrite) then if (debugger) then !$OMP CRITICAL (write2out) write(6,'(a)') '<<< cpfem >>> Writing state variables of last converged step to binary files' !$OMP END CRITICAL (write2out) endif if (IO_write_jobBinaryFile(777,'recordedPhase',size(material_phase))) then write (777,rec=1) material_phase close (777) endif if (IO_write_jobBinaryFile(777,'convergedF',size(crystallite_F0))) then write (777,rec=1) crystallite_F0 close (777) endif if (IO_write_jobBinaryFile(777,'convergedFp',size(crystallite_Fp0))) then write (777,rec=1) crystallite_Fp0 close (777) endif if (IO_write_jobBinaryFile(777,'convergedLp',size(crystallite_Lp0))) then write (777,rec=1) crystallite_Lp0 close (777) endif if (IO_write_jobBinaryFile(777,'convergeddPdF',size(crystallite_dPdF0))) then write (777,rec=1) crystallite_dPdF0 close (777) endif if (IO_write_jobBinaryFile(777,'convergedTstar',size(crystallite_Tstar0_v))) then write (777,rec=1) crystallite_Tstar0_v close (777) endif if (IO_write_jobBinaryFile(777,'convergedStateConst')) then m = 0_pInt do i = 1,homogenization_maxNgrains; do j = 1,mesh_maxNips; do k = 1,mesh_NcpElems do l = 1,size(constitutive_state0(i,j,k)%p) m = m+1_pInt write(777,rec=m) constitutive_state0(i,j,k)%p(l) enddo enddo; enddo; enddo close (777) endif if (IO_write_jobBinaryFile(777,'convergedStateHomog')) then m = 0_pInt do k = 1,mesh_NcpElems; do j = 1,mesh_maxNips do l = 1,homogenization_sizeState(j,k) m = m+1_pInt write(777,rec=m) homogenization_state0(j,k)%p(l) enddo enddo; enddo close (777) endif if (IO_write_jobBinaryFile(777,'convergeddcsdE',size(CPFEM_dcsdE))) then write (777,rec=1) CPFEM_dcsdE close (777) endif endif ! *** end of dumping endif if (mode == 8 .or. mode == 9) then ! Abaqus explicit skips collect materialpoint_Temperature(IP,cp_en) = Temperature materialpoint_F0(:,:,IP,cp_en) = ffn materialpoint_F(:,:,IP,cp_en) = ffn1 endif ! deformation gradient outdated or any actual deformation gradient differs more than relevantStrain from the stored one if (terminallyIll .or. outdatedFFN1 .or. any(abs(ffn1 - materialpoint_F(:,:,IP,cp_en)) > defgradTolerance)) then if (.not. terminallyIll .and. .not. outdatedFFN1) then !$OMP CRITICAL (write2out) write(6,'(a,x,i5,x,i2)') '<< cpfem >> OUTDATED at element ip',cp_en,IP write(6,'(a,/,3(3(f10.6,x),/))') ' FFN1 old:',materialpoint_F(1:3,:,IP,cp_en) write(6,'(a,/,3(3(f10.6,x),/))') ' FFN1 now:',ffn1(1:3,:) !$OMP END CRITICAL (write2out) outdatedFFN1 = .true. endif call random_number(rnd) rnd = 2.0_pReal * rnd - 1.0_pReal CPFEM_cs(:,IP,cp_en) = rnd*CPFEM_odd_stress CPFEM_dcsde(:,:,IP,cp_en) = CPFEM_odd_jacobian*math_identity2nd(6) ! deformation gradient is not outdated else ! set flag for Jacobian update updateJaco = mod(cycleCounter,iJacoStiffness) == 0 ! no parallel computation if (.not. parallelExecution) then ! we just take one single element and IP FEsolving_execElem(1) = cp_en FEsolving_execElem(2) = cp_en FEsolving_execIP(1,cp_en) = IP FEsolving_execIP(2,cp_en) = IP call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent call materialpoint_postResults(dt) ! post results ! parallel computation and calulation not yet done elseif (.not. CPFEM_calc_done) then call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent (parallel execution inside) call materialpoint_postResults(dt) ! post results do e = FEsolving_execElem(1),FEsolving_execElem(2) ! loop over all parallely processed elements if (microstructure_elemhomo(mesh_element(4,e))) then ! dealing with homogeneous element? forall (i = 2:FE_Nips(mesh_element(2,e))) ! copy results of first IP to all others materialpoint_P(:,:,i,e) = materialpoint_P(:,:,1,e) materialpoint_F(:,:,i,e) = materialpoint_F(:,:,1,e) materialpoint_dPdF(:,:,:,:,i,e) = materialpoint_dPdF(:,:,:,:,1,e) materialpoint_results(:,i,e) = materialpoint_results(:,1,e) end forall endif enddo CPFEM_calc_done = .true. endif if ( terminallyIll ) then call random_number(rnd) rnd = 2.0_pReal * rnd - 1.0_pReal CPFEM_cs(:,IP,cp_en) = rnd*CPFEM_odd_stress CPFEM_dcsde(:,:,IP,cp_en) = CPFEM_odd_jacobian*math_identity2nd(6) else ! translate from P to CS Kirchhoff = math_mul33x33(materialpoint_P(:,:,IP, cp_en),transpose(materialpoint_F(:,:,IP, cp_en))) J_inverse = 1.0_pReal/math_det3x3(materialpoint_F(:,:,IP, cp_en)) CPFEM_cs(:,IP,cp_en) = math_Mandel33to6(J_inverse*Kirchhoff) ! translate from dP/dF to dCS/dE H = 0.0_pReal do i=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3; do n=1,3 H(i,j,k,l) = H(i,j,k,l) + & materialpoint_F(j,m,IP,cp_en) * & materialpoint_F(l,n,IP,cp_en) * & materialpoint_dPdF(i,m,k,n,IP,cp_en) - & math_I3(j,l)*materialpoint_F(i,m,IP,cp_en)*materialpoint_P(k,m,IP,cp_en) + & 0.5_pReal*(math_I3(i,k)*Kirchhoff(j,l) + math_I3(j,l)*Kirchhoff(i,k) + & math_I3(i,l)*Kirchhoff(j,k) + math_I3(j,k)*Kirchhoff(i,l)) enddo; enddo; enddo; enddo; enddo; enddo do i=1,3; do j=1,3; do k=1,3; do l=1,3 H_sym(i,j,k,l) = 0.25_pReal*(H(i,j,k,l)+H(j,i,k,l)+H(i,j,l,k)+H(j,i,l,k)) enddo; enddo; enddo; enddo CPFEM_dcsde(:,:,IP,cp_en) = math_Mandel3333to66(J_inverse*H_sym) endif endif ! --+>> COLLECTION OF FEM INPUT WITH RETURNING OF RANDOMIZED ODD STRESS AND JACOBIAN <<+-- case (3,4,5) if (mode == 4) then CPFEM_dcsde_knownGood = CPFEM_dcsde ! --+>> BACKUP JACOBIAN FROM FORMER CONVERGED INC else if (mode == 5) then CPFEM_dcsde = CPFEM_dcsde_knownGood ! --+>> RESTORE CONSISTENT JACOBIAN FROM FORMER CONVERGED INC end if call random_number(rnd) rnd = 2.0_pReal * rnd - 1.0_pReal materialpoint_Temperature(IP,cp_en) = Temperature materialpoint_F0(:,:,IP,cp_en) = ffn materialpoint_F(:,:,IP,cp_en) = ffn1 CPFEM_cs(:,IP,cp_en) = rnd*CPFEM_odd_stress CPFEM_dcsde(:,:,IP,cp_en) = CPFEM_odd_jacobian*math_identity2nd(6) CPFEM_calc_done = .false. ! --+>> RECYCLING OF FORMER RESULTS (MARC SPECIALTY) <<+-- case (6) ! do nothing ! --+>> RESTORE CONSISTENT JACOBIAN FROM FORMER CONVERGED INC case (7) CPFEM_dcsde = CPFEM_dcsde_knownGood end select ! return the local stress and the jacobian from storage cauchyStress(:) = CPFEM_cs(:,IP,cp_en) jacobian(:,:) = CPFEM_dcsdE(:,:,IP,cp_en) ! copy P and dPdF to the output variables pstress(:,:) = materialpoint_P(:,:,IP,cp_en) dPdF(:,:,:,:) = materialpoint_dPdF(:,:,:,:,IP,cp_en) if (selectiveDebugger .and. cp_en == debug_e .and. IP == debug_i .and. mode < 6) then !$OMP CRITICAL (write2out) write(6,'(a,x,i2,x,a,x,i4,/,6(f10.3,x)/)') 'stress/MPa at ip', IP, 'el', cp_en, cauchyStress/1e6 write(6,'(a,x,i2,x,a,x,i4,/,6(6(f10.3,x)/))') 'jacobian/GPa at ip', IP, 'el', cp_en, jacobian/1e9 call flush(6) !$OMP END CRITICAL (write2out) endif ! return temperature if (theTime > 0.0_pReal) Temperature = materialpoint_Temperature(IP,cp_en) ! homogenized result except for potentially non-isothermal starting condition. return end subroutine END MODULE CPFEM