import numpy,math,random # ****************************************************************************************** class Rodrigues: # ****************************************************************************************** def __init__(self, vector = numpy.zeros(3)): self.vector = vector def asQuaternion(self): norm = numpy.linalg.norm(self.vector) halfAngle = numpy.arctan(norm) return Quaternion(numpy.cos(halfAngle),numpy.sin(halfAngle)*self.vector/norm) def asAngleAxis(self): norm = numpy.linalg.norm(self.vector) halfAngle = numpy.arctan(norm) return (2.0*halfAngle,self.vector/norm) # ****************************************************************************************** class Quaternion: # ****************************************************************************************** # All methods and naming conventions based off # http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions # w is the real part, (x, y, z) are the imaginary parts def __init__(self, quatArray=[1.0,0.0,0.0,0.0]): self.w, \ self.x, \ self.y, \ self.z = quatArray self = self.homomorph() def __iter__(self): return iter([self.w,self.x,self.y,self.z]) def __copy__(self): Q = Quaternion([self.w,self.x,self.y,self.z]) return Q copy = __copy__ def __repr__(self): return 'Quaternion(real=%+.4f, imag=<%+.4f, %+.4f, %+.4f>)' % \ (self.w, self.x, self.y, self.z) def __mul__(self, other): try: # quaternion Ax = self.x Ay = self.y Az = self.z Aw = self.w Bx = other.x By = other.y Bz = other.z Bw = other.w Q = Quaternion() Q.x = + Ax * Bw + Ay * Bz - Az * By + Aw * Bx Q.y = - Ax * Bz + Ay * Bw + Az * Bx + Aw * By Q.z = + Ax * By - Ay * Bx + Az * Bw + Aw * Bz Q.w = - Ax * Bx - Ay * By - Az * Bz + Aw * Bw return Q except: pass try: # vector (perform active rotation, i.e. q*v*q.conjugated) w = self.w x = self.x y = self.y z = self.z Vx = other[0] Vy = other[1] Vz = other[2] return numpy.array([\ w * w * Vx + 2 * y * w * Vz - 2 * z * w * Vy + \ x * x * Vx + 2 * y * x * Vy + 2 * z * x * Vz - \ z * z * Vx - y * y * Vx, 2 * x * y * Vx + y * y * Vy + 2 * z * y * Vz + \ 2 * w * z * Vx - z * z * Vy + w * w * Vy - \ 2 * x * w * Vz - x * x * Vy, 2 * x * z * Vx + 2 * y * z * Vy + \ z * z * Vz - 2 * w * y * Vx - y * y * Vz + \ 2 * w * x * Vy - x * x * Vz + w * w * Vz ]) except: pass try: # scalar Q = self.copy() Q.w *= other Q.x *= other Q.y *= other Q.z *= other return Q except: return self.copy() def __imul__(self, other): try: # Quaternion Ax = self.x Ay = self.y Az = self.z Aw = self.w Bx = other.x By = other.y Bz = other.z Bw = other.w self.x = Ax * Bw + Ay * Bz - Az * By + Aw * Bx self.y = -Ax * Bz + Ay * Bw + Az * Bx + Aw * By self.z = Ax * By - Ay * Bx + Az * Bw + Aw * Bz self.w = -Ax * Bx - Ay * By - Az * Bz + Aw * Bw except: pass return self def __div__(self, other): if isinstance(other, (int,float,long)): w = self.w / other x = self.x / other y = self.y / other z = self.z / other return self.__class__([w,x,y,z]) else: return NotImplemented def __idiv__(self, other): if isinstance(other, (int,float,long)): self.w /= other self.x /= other self.y /= other self.z /= other return self def __add__(self, other): if isinstance(other, Quaternion): w = self.w + other.w x = self.x + other.x y = self.y + other.y z = self.z + other.z return self.__class__([w,x,y,z]) else: return NotImplemented def __iadd__(self, other): if isinstance(other, Quaternion): self.w += other.w self.x += other.x self.y += other.y self.z += other.z return self def __sub__(self, other): if isinstance(other, Quaternion): Q = self.copy() Q.w -= other.w Q.x -= other.x Q.y -= other.y Q.z -= other.z return Q else: return self.copy() def __isub__(self, other): if isinstance(other, Quaternion): self.w -= other.w self.x -= other.x self.y -= other.y self.z -= other.z return self def __neg__(self): self.w = -self.w self.x = -self.x self.y = -self.y self.z = -self.z return self def __abs__(self): return math.sqrt(self.w ** 2 + \ self.x ** 2 + \ self.y ** 2 + \ self.z ** 2) magnitude = __abs__ def __eq__(self,other): return (abs(self.w-other.w) < 1e-8 and \ abs(self.x-other.x) < 1e-8 and \ abs(self.y-other.y) < 1e-8 and \ abs(self.z-other.z) < 1e-8) \ or \ (abs(-self.w-other.w) < 1e-8 and \ abs(-self.x-other.x) < 1e-8 and \ abs(-self.y-other.y) < 1e-8 and \ abs(-self.z-other.z) < 1e-8) def __ne__(self,other): return not __eq__(self,other) def __cmp__(self,other): return cmp(self.Rodrigues(),other.Rodrigues()) def magnitude_squared(self): return self.w ** 2 + \ self.x ** 2 + \ self.y ** 2 + \ self.z ** 2 def identity(self): self.w = 1. self.x = 0. self.y = 0. self.z = 0. return self def rotateBy_angleaxis(self, angle, axis): self *= Quaternion.fromAngleAxis(angle, axis) return self def rotateBy_Eulers(self, heading, attitude, bank): self *= Quaternion.fromEulers(eulers, type) return self def rotateBy_matrix(self, m): self *= Quaternion.fromMatrix(m) return self def normalize(self): d = self.magnitude() if d > 0.0: self /= d return self def conjugate(self): self.x = -self.x self.y = -self.y self.z = -self.z return self def inverse(self): d = self.magnitude() if d > 0.0: self.conjugate() self /= d return self def homomorph(self): if self.w < 0.0: self.w = -self.w self.x = -self.x self.y = -self.y self.z = -self.z return self def normalized(self): return self.copy().normalize() def conjugated(self): return self.copy().conjugate() def inversed(self): return self.copy().inverse() def homomorphed(self): return self.copy().homomorph() def asList(self): return [i for i in self] def asMatrix(self): return numpy.array([[1.0-2.0*(self.y*self.y+self.z*self.z), 2.0*(self.x*self.y-self.z*self.w), 2.0*(self.x*self.z+self.y*self.w)], [ 2.0*(self.x*self.y+self.z*self.w), 1.0-2.0*(self.x*self.x+self.z*self.z), 2.0*(self.y*self.z-self.x*self.w)], [ 2.0*(self.x*self.z-self.y*self.w), 2.0*(self.x*self.w+self.y*self.z), 1.0-2.0*(self.x*self.x+self.y*self.y)]]) def asAngleAxis(self): if self.w > 1: self.normalize() angle = 2 * math.acos(self.w) s = math.sqrt(1 - self.w ** 2) if s < 0.001: return angle, nunmpy.array([1.0, 0.0, 0.0]) else: return angle, numpy.array([self.x / s, self.y / s, self.z / s]) def asRodrigues(self): if self.w != 0.0: return numpy.array([self.x, self.y, self.z])/self.w else: return numpy.array([float('inf')]*3) def asEulers(self,type='bunge'): angles = [0.0,0.0,0.0] if type.lower() == 'bunge' or type.lower() == 'zxz': angles[0] = math.atan2( self.x*self.z+self.y*self.w, -self.y*self.z+self.x*self.w) # angles[1] = math.acos(-self.x**2-self.y**2+self.z**2+self.w**2) angles[1] = math.acos(1.0 - 2*(self.x**2+self.y**2)) angles[2] = math.atan2( self.x*self.z-self.y*self.w, +self.y*self.z+self.x*self.w) if angles[0] < 0.0: angles[0] += 2*math.pi if angles[1] < 0.0: angles[1] += math.pi angles[2] *= -1 if angles[2] < 0.0: angles[2] += 2*math.pi return angles # # Static constructors @classmethod def fromIdentity(cls): return cls() @classmethod def fromRandom(cls): r1 = random.random() r2 = random.random() r3 = random.random() w = math.cos(2.0*math.pi*r1)*math.sqrt(r3) x = math.sin(2.0*math.pi*r2)*math.sqrt(1.0-r3) y = math.cos(2.0*math.pi*r2)*math.sqrt(1.0-r3) z = math.sin(2.0*math.pi*r1)*math.sqrt(r3) return cls([w,x,y,z]) @classmethod def fromRodrigues(cls, rodrigues): if not isinstance(rodrigues, numpy.ndarray): rodrigues = numpy.array(rodrigues) halfangle = math.atan(numpy.linalg.norm(rodrigues)) c = math.cos(halfangle) w = c x,y,z = c*rodrigues return cls([w,x,y,z]) @classmethod def fromAngleAxis(cls, angle, axis): if not isinstance(axis, numpy.ndarray): axis = numpy.array(axis) axis /= numpy.linalg.norm(axis) s = math.sin(angle / 2.0) w = math.cos(angle / 2.0) x = axis[0] * s y = axis[1] * s z = axis[2] * s return cls([w,x,y,z]) @classmethod def fromEulers(cls, eulers, type = 'Bunge'): c1 = math.cos(eulers[0] / 2.0) s1 = math.sin(eulers[0] / 2.0) c2 = math.cos(eulers[1] / 2.0) s2 = math.sin(eulers[1] / 2.0) c3 = math.cos(eulers[2] / 2.0) s3 = math.sin(eulers[2] / 2.0) if type.lower() == 'bunge' or type.lower() == 'zxz': w = c1 * c2 * c3 - s1 * c2 * s3 x = c1 * s2 * c3 + s1 * s2 * s3 y = - c1 * s2 * s3 + s1 * s2 * c3 z = c1 * c2 * s3 + s1 * c2 * c3 else: print 'unknown Euler convention' w = c1 * c2 * c3 - s1 * s2 * s3 x = s1 * s2 * c3 + c1 * c2 * s3 y = s1 * c2 * c3 + c1 * s2 * s3 z = c1 * s2 * c3 - s1 * c2 * s3 return cls([w,x,y,z]) @classmethod def fromMatrix(cls, m): if m[0,0] + m[1,1] + m[2,2] > 0.00000001: t = m[0,0] + m[1,1] + m[2,2] + 1.0 s = 0.5/math.sqrt(t) return cls( [ s*t, (m[1,2] - m[2,1])*s, (m[2,0] - m[0,2])*s, (m[0,1] - m[1,0])*s, ]) elif m[0,0] > m[1,1] and m[0,0] > m[2,2]: t = m[0,0] - m[1,1] - m[2,2] + 1.0 s = 0.5/math.sqrt(t) return cls( [ (m[1,2] - m[2,1])*s, s*t, (m[0,1] + m[1,0])*s, (m[2,0] + m[0,2])*s, ]) elif m[1,1] > m[2,2]: t = -m[0,0] + m[1,1] - m[2,2] + 1.0 s = 0.5/math.sqrt(t) return cls( [ (m[2,0] - m[0,2])*s, (m[0,1] + m[1,0])*s, s*t, (m[1,2] + m[2,1])*s, ]) else: t = -m[0,0] - m[1,1] + m[2,2] + 1.0 s = 0.5/math.sqrt(t) return cls( [ (m[0,1] - m[1,0])*s, (m[2,0] + m[0,2])*s, (m[1,2] + m[2,1])*s, s*t, ]) @classmethod def new_interpolate(cls, q1, q2, t): assert isinstance(q1, Quaternion) and isinstance(q2, Quaternion) Q = cls() costheta = q1.w * q2.w + q1.x * q2.x + q1.y * q2.y + q1.z * q2.z if costheta < 0.: costheta = -costheta q1 = q1.conjugated() elif costheta > 1: costheta = 1 theta = math.acos(costheta) if abs(theta) < 0.01: Q.w = q2.w Q.x = q2.x Q.y = q2.y Q.z = q2.z return Q sintheta = math.sqrt(1.0 - costheta * costheta) if abs(sintheta) < 0.01: Q.w = (q1.w + q2.w) * 0.5 Q.x = (q1.x + q2.x) * 0.5 Q.y = (q1.y + q2.y) * 0.5 Q.z = (q1.z + q2.z) * 0.5 return Q ratio1 = math.sin((1 - t) * theta) / sintheta ratio2 = math.sin(t * theta) / sintheta Q.w = q1.w * ratio1 + q2.w * ratio2 Q.x = q1.x * ratio1 + q2.x * ratio2 Q.y = q1.y * ratio1 + q2.y * ratio2 Q.z = q1.z * ratio1 + q2.z * ratio2 return Q # ****************************************************************************************** class Symmetry: # ****************************************************************************************** lattices = [None,'orthorhombic','tetragonal','hexagonal','cubic',] def __init__(self, symmetry = None): if isinstance(symmetry, basestring) and symmetry.lower() in Symmetry.lattices: self.lattice = symmetry.lower() else: self.lattice = None def __copy__(self): return self.__class__(self.lattice) copy = __copy__ def __repr__(self): return '%s' % (self.lattice) def __eq__(self, other): return self.lattice == other.lattice def __neq__(self, other): return not self.__eq__(other) def __cmp__(self,other): return cmp(Symmetry.lattices.index(self.lattice),Symmetry.lattices.index(other.lattice)) def equivalentQuaternions(self,quaternion): ''' List of symmetrically equivalent quaternions based on own symmetry. ''' if self.lattice == 'cubic': symQuats = [ [ 1.0,0.0,0.0,0.0 ], [ 0.0,1.0,0.0,0.0 ], [ 0.0,0.0,1.0,0.0 ], [ 0.0,0.0,0.0,1.0 ], [ 0.0, 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2) ], [ 0.0, 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2) ], [ 0.0, 0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2) ], [ 0.0, 0.5*math.sqrt(2), 0.0,-0.5*math.sqrt(2) ], [ 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ], [ 0.0,-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ], [ 0.5, 0.5, 0.5, 0.5 ], [-0.5, 0.5, 0.5, 0.5 ], [-0.5, 0.5, 0.5,-0.5 ], [-0.5, 0.5,-0.5, 0.5 ], [-0.5,-0.5, 0.5, 0.5 ], [-0.5,-0.5, 0.5,-0.5 ], [-0.5,-0.5,-0.5, 0.5 ], [-0.5, 0.5,-0.5,-0.5 ], [-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ], [ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ], [-0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2), 0.0 ], [-0.5*math.sqrt(2), 0.0,-0.5*math.sqrt(2), 0.0 ], [-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0, 0.0 ], [-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0, 0.0 ], ] elif self.lattice == 'hexagonal': symQuats = [ [ 1.0,0.0,0.0,0.0 ], [ 0.0,1.0,0.0,0.0 ], [ 0.0,0.0,1.0,0.0 ], [ 0.0,0.0,0.0,1.0 ], [-0.5*math.sqrt(3), 0.0, 0.0, 0.5 ], [-0.5*math.sqrt(3), 0.0, 0.0,-0.5 ], [ 0.0, 0.5*math.sqrt(3), 0.5, 0.0 ], [ 0.0,-0.5*math.sqrt(3), 0.5, 0.0 ], [ 0.0, 0.5,-0.5*math.sqrt(3), 0.0 ], [ 0.0,-0.5,-0.5*math.sqrt(3), 0.0 ], [ 0.5, 0.0, 0.0, 0.5*math.sqrt(3) ], [-0.5, 0.0, 0.0, 0.5*math.sqrt(3) ], ] elif self.lattice == 'tetragonal': symQuats = [ [ 1.0,0.0,0.0,0.0 ], [ 0.0,1.0,0.0,0.0 ], [ 0.0,0.0,1.0,0.0 ], [ 0.0,0.0,0.0,1.0 ], [ 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ], [ 0.0,-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ], [ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ], [-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ], ] elif self.lattice == 'orthorhombic': symQuats = [ [ 1.0,0.0,0.0,0.0 ], [ 0.0,1.0,0.0,0.0 ], [ 0.0,0.0,1.0,0.0 ], [ 0.0,0.0,0.0,1.0 ], ] else: symQuats = [ [ 1.0,0.0,0.0,0.0 ], ] return [quaternion*Quaternion(q) for q in symQuats] def inFZ(self,R): ''' Check whether given Rodrigues vector falls into fundamental zone of own symmetry. ''' if isinstance(R, Quaternion): R = R.asRodrigues() # translate accidentially passed quaternion R = abs(R) # fundamental zone in Rodrigues space is point symmetric around origin if self.lattice == 'cubic': return math.sqrt(2.0)-1.0 >= R[0] \ and math.sqrt(2.0)-1.0 >= R[1] \ and math.sqrt(2.0)-1.0 >= R[2] \ and 1.0 >= R[0] + R[1] + R[2] elif self.lattice == 'hexagonal': return 1.0 >= R[0] and 1.0 >= R[1] and 1.0 >= R[2] \ and 2.0 >= math.sqrt(3)*R[0] + R[1] \ and 2.0 >= math.sqrt(3)*R[1] + R[0] \ and 2.0 >= math.sqrt(3) + R[2] elif self.lattice == 'tetragonal': return 1.0 >= R[0] and 1.0 >= R[1] \ and math.sqrt(2.0) >= R[0] + R[1] \ and math.sqrt(2.0) >= R[2] + 1.0 elif self.lattice == 'orthorhombic': return 1.0 >= R[0] and 1.0 >= R[1] and 1.0 >= R[2] else: return True def inDisorientationSST(self,R): ''' Check whether given Rodrigues vector (of misorientation) falls into standard stereographic triangle of own symmetry. Determination of disorientations follow the work of A. Heinz and P. Neumann: Representation of Orientation and Disorientation Data for Cubic, Hexagonal, Tetragonal and Orthorhombic Crystals Acta Cryst. (1991). A47, 780-789 ''' if isinstance(R, Quaternion): R = R.asRodrigues() # translate accidentially passed quaternion epsilon = 0.0 if self.lattice == 'cubic': return R[0] >= R[1]+epsilon and R[1] >= R[2]+epsilon and R[2] >= epsilon and self.inFZ(R) elif self.lattice == 'hexagonal': return R[0] >= math.sqrt(3)*(R[1]+epsilon) and R[1] >= epsilon and R[2] >= epsilon and self.inFZ(R) elif self.lattice == 'tetragonal': return R[0] >= R[1]+epsilon and R[1] >= epsilon and R[2] >= epsilon and self.inFZ(R) elif self.lattice == 'orthorhombic': return R[0] >= epsilon and R[1] >= epsilon and R[2] >= epsilon and self.inFZ(R) else: return True def inSST(self,vector,color = False): ''' Check whether given vector falls into standard stereographic triangle of own symmetry. Return inverse pole figure color if requested. ''' # basis = {'cubic' : numpy.linalg.inv(numpy.array([[0.,0.,1.], # direction of red # [1.,0.,1.]/numpy.sqrt(2.), # direction of green # [1.,1.,1.]/numpy.sqrt(3.)]).transpose()), # direction of blue # 'hexagonal' : numpy.linalg.inv(numpy.array([[0.,0.,1.], # direction of red # [1.,0.,0.], # direction of green # [numpy.sqrt(3.),1.,0.]/numpy.sqrt(4.)]).transpose()), # direction of blue # 'tetragonal' : numpy.linalg.inv(numpy.array([[0.,0.,1.], # direction of red # [1.,0.,0.], # direction of green # [1.,1.,0.]/numpy.sqrt(2.)]).transpose()), # direction of blue # 'orthorhombic' : numpy.linalg.inv(numpy.array([[0.,0.,1.], # direction of red # [1.,0.,0.], # direction of green # [0.,1.,0.]]).transpose()), # direction of blue # } if self.lattice == 'cubic': basis = numpy.array([ [-1. , 0. , 1. ], [ numpy.sqrt(2.), -numpy.sqrt(2.), 0. ], [ 0. , numpy.sqrt(3.), 0. ] ]) elif self.lattice == 'hexagonal': basis = numpy.array([ [ 0. , 0. , 1. ], [ 1. , -numpy.sqrt(3.), 0. ], [ 0. , 2. , 0. ] ]) elif self.lattice == 'tetragonal': basis = numpy.array([ [ 0. , 0. , 1. ], [ 1. , -1. , 0. ], [ 0. , numpy.sqrt(2.), 0. ] ]) elif self.lattice == 'orthorhombic': basis = numpy.array([ [ 0., 0., 1.], [ 1., 0., 0.], [ 0., 1., 0.] ]) else: basis = None if basis == None: theComponents = -numpy.ones(3,'d') else: theComponents = numpy.dot(basis,numpy.array([vector[0],vector[1],abs(vector[2])])) inSST = numpy.all(theComponents >= 0.0) if color: # have to return color array if inSST: rgb = numpy.power(theComponents/numpy.linalg.norm(theComponents),0.5) # smoothen color ramps rgb = numpy.minimum(numpy.ones(3,'d'),rgb) # limit to maximum intensity rgb /= max(rgb) # normalize to (HS)V = 1 else: rgb = numpy.zeros(3,'d') return (inSST,rgb) else: return inSST # code derived from http://pyeuclid.googlecode.com/svn/trunk/euclid.py # suggested reading: http://web.mit.edu/2.998/www/QuaternionReport1.pdf # ****************************************************************************************** class Orientation: # ****************************************************************************************** __slots__ = ['quaternion','symmetry'] def __init__(self, quaternion = Quaternion.fromIdentity(), Rodrigues = None, angleAxis = None, matrix = None, Eulers = None, random = False, symmetry = None, ): if random: # produce random orientation self.quaternion = Quaternion.fromRandom() elif isinstance(Eulers, numpy.ndarray) and Eulers.shape == (3,): # based on given Euler angles self.quaternion = Quaternion.fromEulers(Eulers,'bunge') elif isinstance(matrix, numpy.ndarray) and matrix.shape == (3,3): # based on given rotation matrix self.quaternion = Quaternion.fromMatrix(matrix) elif isinstance(angleAxis, numpy.ndarray) and angleAxis.shape == (4,): # based on given angle and rotation axis self.quaternion = Quaternion.fromAngleAxis(angleAxis[0],angleAxis[1:4]) elif isinstance(Rodrigues, numpy.ndarray) and Rodrigues.shape == (3,): # based on given Rodrigues vector self.quaternion = Quaternion.fromRodrigues(Rodrigues) elif isinstance(quaternion, Quaternion): # based on given quaternion self.quaternion = quaternion.homomorphed() elif isinstance(quaternion, numpy.ndarray) and quaternion.shape == (4,): # based on given quaternion self.quaternion = Quaternion(quaternion).homomorphed() self.symmetry = Symmetry(symmetry) def __copy__(self): return self.__class__(quaternion=self.quaternion,symmetry=self.symmetry.lattice) copy = __copy__ def __repr__(self): return 'Symmetry: %s\n' % (self.symmetry) + \ 'Quaternion: %s\n' % (self.quaternion) + \ 'Matrix:\n%s\n' % ( '\n'.join(['\t'.join(map(str,self.asMatrix()[i,:])) for i in range(3)]) ) + \ 'Bunge Eulers: %s' % ('\t'.join(map(lambda x:str(numpy.degrees(x)),self.asEulers('Bunge'))) ) def asQuaternion(self): return self.quaternion.asList() def asEulers(self,type): return self.quaternion.asEulers(type) def asRodrigues(self): return self.quaternion.asRodrigues() def asMatrix(self): return self.quaternion.asMatrix() def reduced(self): ''' Transform orientation to fall into fundamental zone according to own (or given) symmetry ''' for me in self.symmetry.equivalentQuaternions(self.quaternion): if self.symmetry.inFZ(me.asRodrigues()): break return Orientation(quaternion=me,symmetry=self.symmetry.lattice) def disorientation(self,other): ''' Disorientation between myself and given other orientation (either reduced according to my own symmetry or given one) ''' lowerSymmetry = min(self.symmetry,other.symmetry) breaker = False for me in self.symmetry.equivalentQuaternions(self.quaternion): me.conjugate() for they in other.symmetry.equivalentQuaternions(other.quaternion): theQ = (me * they).homomorph() if theQ.x < 0.0 or theQ.y < 0.0 or theQ.z < 0.0: theQ.conjugate() # speed up scanning since minimum angle is usually found for positive x,y,z if lowerSymmetry.inDisorientationSST(theQ.asRodrigues()): breaker = True break if breaker: break return Orientation(quaternion=theQ,symmetry=self.symmetry.lattice) def IPFcolor(self,axis): ''' TSL color of inverse pole figure for given axis ''' color = numpy.zeros(3,'d') for i,q in enumerate(self.symmetry.equivalentQuaternions(self.quaternion)): pole = q.conjugated()*axis # align crystal direction to axis inSST,color = self.symmetry.inSST(pole,color=True) if inSST: break return color