!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief CPFEM engine !-------------------------------------------------------------------------------------------------- module CPFEM use prec, only: & pReal, & pInt implicit none private real(pReal), parameter, private :: & CPFEM_odd_stress = 1e15_pReal, & !< return value for stress in case of ping pong dummy cycle CPFEM_odd_jacobian = 1e50_pReal !< return value for jacobian in case of ping pong dummy cycle real(pReal), dimension (:,:,:), allocatable, private :: & CPFEM_cs !< Cauchy stress real(pReal), dimension (:,:,:,:), allocatable, private :: & CPFEM_dcsdE !< Cauchy stress tangent real(pReal), dimension (:,:,:,:), allocatable, private :: & CPFEM_dcsdE_knownGood !< known good tangent integer(pInt), public :: & cycleCounter = 0_pInt, & !< needs description theInc = -1_pInt, & !< needs description lastLovl = 0_pInt, & !< lovl in previous call to marc hypela2 lastStep = 0_pInt !< kstep in previous call to abaqus umat real(pReal), public :: & theTime = 0.0_pReal, & !< needs description theDelta = 0.0_pReal logical, public :: & outdatedFFN1 = .false., & !< needs description lastIncConverged = .false., & !< needs description outdatedByNewInc = .false. !< needs description logical, public, protected :: & CPFEM_init_done = .false. !< remember whether init has been done already logical, private :: & CPFEM_calc_done = .false. !< remember whether first ip has already calced the results integer(pInt), parameter, public :: & CPFEM_COLLECT = 2_pInt**0_pInt, & CPFEM_CALCRESULTS = 2_pInt**1_pInt, & CPFEM_AGERESULTS = 2_pInt**2_pInt, & CPFEM_BACKUPJACOBIAN = 2_pInt**3_pInt, & CPFEM_RESTOREJACOBIAN = 2_pInt**4_pInt public :: & CPFEM_general, & CPFEM_initAll contains !-------------------------------------------------------------------------------------------------- !> @brief call (thread safe) all module initializations !-------------------------------------------------------------------------------------------------- subroutine CPFEM_initAll(el,ip) use prec, only: & prec_init use numerics, only: & numerics_init use debug, only: & debug_init use config, only: & config_init use FEsolving, only: & FE_init use math, only: & math_init use mesh, only: & mesh_init use material, only: & material_init use lattice, only: & lattice_init use constitutive, only: & constitutive_init use crystallite, only: & crystallite_init use homogenization, only: & homogenization_init use IO, only: & IO_init use DAMASK_interface implicit none integer(pInt), intent(in) :: el, & !< FE el number ip !< FE integration point number !$OMP CRITICAL (init) if (.not. CPFEM_init_done) then call DAMASK_interface_init ! Spectral and FEM interface to commandline call prec_init call IO_init call numerics_init call debug_init call config_init call math_init call FE_init call mesh_init(ip, el) call lattice_init call material_init call constitutive_init call crystallite_init call homogenization_init call CPFEM_init CPFEM_init_done = .true. endif !$OMP END CRITICAL (init) end subroutine CPFEM_initAll !-------------------------------------------------------------------------------------------------- !> @brief allocate the arrays defined in module CPFEM and initialize them !-------------------------------------------------------------------------------------------------- subroutine CPFEM_init use IO, only: & IO_error use debug, only: & debug_level, & debug_CPFEM, & debug_levelBasic, & debug_levelExtensive use FEsolving, only: & symmetricSolver, & restartRead, & modelName use mesh, only: & theMesh use material, only: & material_phase, & homogState, & phase_plasticity, & plasticState use config, only: & material_Nhomogenization use crystallite, only: & crystallite_F0, & crystallite_Fp0, & crystallite_Lp0, & crystallite_Fi0, & crystallite_Li0, & crystallite_S0 implicit none integer :: k,l,m,ph,homog write(6,'(/,a)') ' <<<+- CPFEM init -+>>>' flush(6) allocate(CPFEM_cs( 6,theMesh%elem%nIPs,theMesh%Nelems), source= 0.0_pReal) allocate(CPFEM_dcsdE( 6,6,theMesh%elem%nIPs,theMesh%Nelems), source= 0.0_pReal) allocate(CPFEM_dcsdE_knownGood(6,6,theMesh%elem%nIPs,theMesh%Nelems), source= 0.0_pReal) ! *** restore the last converged values of each essential variable from the binary file !if (restartRead) then ! if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) then ! write(6,'(a)') '<< CPFEM >> restored state variables of last converged step from binary files' ! flush(6) ! endif ! call IO_read_intFile(777,'recordedPhase'//trim(rankStr),modelName,size(material_phase)) ! read (777,rec=1) material_phase ! close (777) ! call IO_read_realFile(777,'convergedF'//trim(rankStr),modelName,size(crystallite_F0)) ! read (777,rec=1) crystallite_F0 ! close (777) ! call IO_read_realFile(777,'convergedFp'//trim(rankStr),modelName,size(crystallite_Fp0)) ! read (777,rec=1) crystallite_Fp0 ! close (777) ! call IO_read_realFile(777,'convergedFi'//trim(rankStr),modelName,size(crystallite_Fi0)) ! read (777,rec=1) crystallite_Fi0 ! close (777) ! call IO_read_realFile(777,'convergedLp'//trim(rankStr),modelName,size(crystallite_Lp0)) ! read (777,rec=1) crystallite_Lp0 ! close (777) ! call IO_read_realFile(777,'convergedLi'//trim(rankStr),modelName,size(crystallite_Li0)) ! read (777,rec=1) crystallite_Li0 ! close (777) ! call IO_read_realFile(777,'convergedTstar'//trim(rankStr),modelName,size(crystallite_Tstar0_v)) ! read (777,rec=1) crystallite_Tstar0_v ! close (777) ! call IO_read_realFile(777,'convergedStateConst'//trim(rankStr),modelName) ! m = 0_pInt ! readPlasticityInstances: do ph = 1_pInt, size(phase_plasticity) ! do k = 1_pInt, plasticState(ph)%sizeState ! do l = 1, size(plasticState(ph)%state0(1,:)) ! m = m+1_pInt ! read(777,rec=m) plasticState(ph)%state0(k,l) ! enddo; enddo ! enddo readPlasticityInstances ! close (777) ! call IO_read_realFile(777,'convergedStateHomog'//trim(rankStr),modelName) ! m = 0_pInt ! readHomogInstances: do homog = 1_pInt, material_Nhomogenization ! do k = 1_pInt, homogState(homog)%sizeState ! do l = 1, size(homogState(homog)%state0(1,:)) ! m = m+1_pInt ! read(777,rec=m) homogState(homog)%state0(k,l) ! enddo; enddo ! enddo readHomogInstances ! close (777) ! call IO_read_realFile(777,'convergeddcsdE',modelName,size(CPFEM_dcsdE)) ! read (777,rec=1) CPFEM_dcsdE ! close (777) ! restartRead = .false. !endif if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0) then write(6,'(a32,1x,6(i8,1x))') 'CPFEM_cs: ', shape(CPFEM_cs) write(6,'(a32,1x,6(i8,1x))') 'CPFEM_dcsdE: ', shape(CPFEM_dcsdE) write(6,'(a32,1x,6(i8,1x),/)') 'CPFEM_dcsdE_knownGood: ', shape(CPFEM_dcsdE_knownGood) write(6,'(a32,l1)') 'symmetricSolver: ', symmetricSolver flush(6) endif end subroutine CPFEM_init !-------------------------------------------------------------------------------------------------- !> @brief perform initialization at first call, update variables and call the actual material model !-------------------------------------------------------------------------------------------------- subroutine CPFEM_general(mode, parallelExecution, ffn, ffn1, temperature_inp, dt, elFE, ip, cauchyStress, jacobian) use numerics, only: & defgradTolerance, & iJacoStiffness use debug, only: & debug_level, & debug_CPFEM, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_stressMaxLocation, & debug_stressMinLocation, & debug_jacobianMaxLocation, & debug_jacobianMinLocation, & debug_stressMax, & debug_stressMin, & debug_jacobianMax, & debug_jacobianMin, & debug_e, & debug_i use FEsolving, only: & terminallyIll, & FEsolving_execElem, & FEsolving_execIP, & restartWrite use math, only: & math_identity2nd, & math_det33, & math_delta, & math_sym3333to66, & math_66toSym3333, & math_sym33to6, & math_6toSym33 use mesh, only: & mesh_FEasCP, & theMesh, & mesh_element use material, only: & microstructure_elemhomo, & plasticState, & sourceState, & homogState, & thermalState, & damageState, & phaseAt, phasememberAt, & material_phase, & phase_plasticity, & temperature, & thermalMapping, & thermal_type, & THERMAL_conduction_ID, & phase_Nsources, & material_homogenizationAt use config, only: & material_Nhomogenization use crystallite, only: & crystallite_partionedF,& crystallite_F0, & crystallite_Fp0, & crystallite_Fp, & crystallite_Fi0, & crystallite_Fi, & crystallite_Lp0, & crystallite_Lp, & crystallite_Li0, & crystallite_Li, & crystallite_dPdF, & crystallite_S0, & crystallite_S use homogenization, only: & materialpoint_F, & materialpoint_F0, & materialpoint_P, & materialpoint_dPdF, & materialpoint_results, & materialpoint_sizeResults, & materialpoint_stressAndItsTangent, & materialpoint_postResults use IO, only: & IO_warning use DAMASK_interface implicit none integer(pInt), intent(in) :: elFE, & !< FE element number ip !< integration point number real(pReal), intent(in) :: dt !< time increment real(pReal), dimension (3,3), intent(in) :: ffn, & !< deformation gradient for t=t0 ffn1 !< deformation gradient for t=t1 integer(pInt), intent(in) :: mode !< computation mode 1: regular computation plus aging of results real(pReal), intent(in) :: temperature_inp !< temperature logical, intent(in) :: parallelExecution !< flag indicating parallel computation of requested IPs real(pReal), dimension(6), intent(out) :: cauchyStress !< stress as 6 vector real(pReal), dimension(6,6), intent(out) :: jacobian !< jacobian as 66 tensor (Consistent tangent dcs/dE) real(pReal) J_inverse, & ! inverse of Jacobian rnd real(pReal), dimension (3,3) :: Kirchhoff, & ! Piola-Kirchhoff stress in Matrix notation cauchyStress33 ! stress vector in Matrix notation real(pReal), dimension (3,3,3,3) :: H_sym, & H, & jacobian3333 ! jacobian in Matrix notation integer(pInt) elCP, & ! crystal plasticity element number i, j, k, l, m, n, ph, homog, mySource logical updateJaco ! flag indicating if JAcobian has to be updated elCP = mesh_FEasCP('elem',elFE) if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt & .and. elCP == debug_e .and. ip == debug_i) then write(6,'(/,a)') '#############################################' write(6,'(a1,a22,1x,i8,a13)') '#','element', elCP, '#' write(6,'(a1,a22,1x,i8,a13)') '#','ip', ip, '#' write(6,'(a1,a22,1x,f15.7,a6)') '#','theTime', theTime, '#' write(6,'(a1,a22,1x,f15.7,a6)') '#','theDelta', theDelta, '#' write(6,'(a1,a22,1x,i8,a13)') '#','theInc', theInc, '#' write(6,'(a1,a22,1x,i8,a13)') '#','cycleCounter', cycleCounter, '#' write(6,'(a1,a22,1x,i8,a13)') '#','computationMode',mode, '#' if (terminallyIll) & write(6,'(a,/)') '# --- terminallyIll --- #' write(6,'(a,/)') '#############################################'; flush (6) endif if (iand(mode, CPFEM_BACKUPJACOBIAN) /= 0_pInt) & CPFEM_dcsde_knownGood = CPFEM_dcsde if (iand(mode, CPFEM_RESTOREJACOBIAN) /= 0_pInt) & CPFEM_dcsde = CPFEM_dcsde_knownGood !*** age results and write restart data if requested if (iand(mode, CPFEM_AGERESULTS) /= 0_pInt) then crystallite_F0 = crystallite_partionedF ! crystallite deformation (_subF is perturbed...) crystallite_Fp0 = crystallite_Fp ! crystallite plastic deformation crystallite_Lp0 = crystallite_Lp ! crystallite plastic velocity crystallite_Fi0 = crystallite_Fi ! crystallite intermediate deformation crystallite_Li0 = crystallite_Li ! crystallite intermediate velocity crystallite_S0 = crystallite_S ! crystallite 2nd Piola Kirchhoff stress forall ( i = 1:size(plasticState )) plasticState(i)%state0 = plasticState(i)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array do i = 1, size(sourceState) do mySource = 1,phase_Nsources(i) sourceState(i)%p(mySource)%state0 = sourceState(i)%p(mySource)%state ! copy state in this lenghty way because: A component cannot be an array if the encompassing structure is an array enddo; enddo if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) then write(6,'(a)') '<< CPFEM >> aging states' if (debug_e <= theMesh%Nelems .and. debug_i <= theMesh%elem%nIPs) then write(6,'(a,1x,i8,1x,i2,1x,i4,/,(12x,6(e20.8,1x)),/)') & '<< CPFEM >> aged state of elFE ip grain',debug_e, debug_i, 1, & plasticState(phaseAt(1,debug_i,debug_e))%state(:,phasememberAt(1,debug_i,debug_e)) endif endif do homog = 1_pInt, material_Nhomogenization homogState (homog)%state0 = homogState (homog)%state thermalState (homog)%state0 = thermalState (homog)%state damageState (homog)%state0 = damageState (homog)%state enddo ! * dump the last converged values of each essential variable to a binary file !if (restartWrite) then ! if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) & ! write(6,'(a)') '<< CPFEM >> writing state variables of last converged step to binary files' ! ! call IO_write_jobRealFile(777,'recordedPhase'//trim(rankStr),size(material_phase)) ! write (777,rec=1) material_phase ! close (777) ! call IO_write_jobRealFile(777,'convergedF'//trim(rankStr),size(crystallite_F0)) ! write (777,rec=1) crystallite_F0 ! close (777) ! call IO_write_jobRealFile(777,'convergedFp'//trim(rankStr),size(crystallite_Fp0)) ! write (777,rec=1) crystallite_Fp0 ! close (777) ! call IO_write_jobRealFile(777,'convergedFi'//trim(rankStr),size(crystallite_Fi0)) ! write (777,rec=1) crystallite_Fi0 ! close (777) ! call IO_write_jobRealFile(777,'convergedLp'//trim(rankStr),size(crystallite_Lp0)) ! write (777,rec=1) crystallite_Lp0 ! close (777) ! call IO_write_jobRealFile(777,'convergedLi'//trim(rankStr),size(crystallite_Li0)) ! write (777,rec=1) crystallite_Li0 ! close (777) ! call IO_write_jobRealFile(777,'convergedTstar'//trim(rankStr),size(crystallite_Tstar0_v)) ! write (777,rec=1) crystallite_Tstar0_v ! close (777) ! call IO_write_jobRealFile(777,'convergedStateConst'//trim(rankStr)) ! m = 0_pInt ! writePlasticityInstances: do ph = 1_pInt, size(phase_plasticity) ! do k = 1_pInt, plasticState(ph)%sizeState ! do l = 1, size(plasticState(ph)%state0(1,:)) ! m = m+1_pInt ! write(777,rec=m) plasticState(ph)%state0(k,l) ! enddo; enddo ! enddo writePlasticityInstances ! close (777) ! call IO_write_jobRealFile(777,'convergedStateHomog'//trim(rankStr)) ! m = 0_pInt ! writeHomogInstances: do homog = 1_pInt, material_Nhomogenization ! do k = 1_pInt, homogState(homog)%sizeState ! do l = 1, size(homogState(homog)%state0(1,:)) ! m = m+1_pInt ! write(777,rec=m) homogState(homog)%state0(k,l) ! enddo; enddo ! enddo writeHomogInstances ! close (777) ! call IO_write_jobRealFile(777,'convergeddcsdE',size(CPFEM_dcsdE)) ! write (777,rec=1) CPFEM_dcsdE ! close (777) !endif endif !*** collection of FEM input with returning of randomize odd stress and jacobian !* If no parallel execution is required, there is no need to collect FEM input if (.not. parallelExecution) then chosenThermal1: select case (thermal_type(mesh_element(3,elCP))) case (THERMAL_conduction_ID) chosenThermal1 temperature(material_homogenizationAt(elCP))%p(thermalMapping(material_homogenizationAt(elCP))%p(ip,elCP)) = & temperature_inp end select chosenThermal1 materialpoint_F0(1:3,1:3,ip,elCP) = ffn materialpoint_F(1:3,1:3,ip,elCP) = ffn1 elseif (iand(mode, CPFEM_COLLECT) /= 0_pInt) then call random_number(rnd) if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6) chosenThermal2: select case (thermal_type(mesh_element(3,elCP))) case (THERMAL_conduction_ID) chosenThermal2 temperature(material_homogenizationAt(elCP))%p(thermalMapping(material_homogenizationAt(elCP))%p(ip,elCP)) = & temperature_inp end select chosenThermal2 materialpoint_F0(1:3,1:3,ip,elCP) = ffn materialpoint_F(1:3,1:3,ip,elCP) = ffn1 CPFEM_calc_done = .false. endif ! collection !*** calculation of stress and jacobian if (iand(mode, CPFEM_CALCRESULTS) /= 0_pInt) then !*** deformation gradient outdated or any actual deformation gradient differs more than relevantStrain from the stored one validCalculation: if (terminallyIll & .or. outdatedFFN1 & .or. any(abs(ffn1 - materialpoint_F(1:3,1:3,ip,elCP)) > defgradTolerance)) then if (any(abs(ffn1 - materialpoint_F(1:3,1:3,ip,elCP)) > defgradTolerance)) then if (iand(debug_level(debug_CPFEM), debug_levelBasic) /= 0_pInt) then write(6,'(a,1x,i8,1x,i2)') '<< CPFEM >> OUTDATED at elFE ip',elFE,ip write(6,'(a,/,3(12x,3(f10.6,1x),/))') '<< CPFEM >> FFN1 old:',& transpose(materialpoint_F(1:3,1:3,ip,elCP)) write(6,'(a,/,3(12x,3(f10.6,1x),/))') '<< CPFEM >> FFN1 now:',transpose(ffn1) endif outdatedFFN1 = .true. endif call random_number(rnd) if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal CPFEM_cs(1:6,ip,elCP) = rnd*CPFEM_odd_stress CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian*math_identity2nd(6) !*** deformation gradient is not outdated else validCalculation updateJaco = mod(cycleCounter,iJacoStiffness) == 0 !* no parallel computation, so we use just one single elFE and ip for computation if (.not. parallelExecution) then FEsolving_execElem(1) = elCP FEsolving_execElem(2) = elCP if (.not. microstructure_elemhomo(mesh_element(4,elCP)) .or. & ! calculate unless homogeneous (microstructure_elemhomo(mesh_element(4,elCP)) .and. ip == 1_pInt)) then ! and then only first ip FEsolving_execIP(1,elCP) = ip FEsolving_execIP(2,elCP) = ip if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) & write(6,'(a,i8,1x,i2)') '<< CPFEM >> calculation for elFE ip ',elFE,ip call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent call materialpoint_postResults() endif !* parallel computation and calulation not yet done elseif (.not. CPFEM_calc_done) then if (iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) & write(6,'(a,i8,a,i8)') '<< CPFEM >> calculation for elements ',FEsolving_execElem(1),& ' to ',FEsolving_execElem(2) call materialpoint_stressAndItsTangent(updateJaco, dt) ! calculate stress and its tangent (parallel execution inside) call materialpoint_postResults() CPFEM_calc_done = .true. endif !* map stress and stiffness (or return odd values if terminally ill) terminalIllness: if ( terminallyIll ) then call random_number(rnd) if (rnd < 0.5_pReal) rnd = rnd - 1.0_pReal CPFEM_cs(1:6,ip,elCP) = rnd * CPFEM_odd_stress CPFEM_dcsde(1:6,1:6,ip,elCP) = CPFEM_odd_jacobian * math_identity2nd(6) else terminalIllness if (microstructure_elemhomo(mesh_element(4,elCP)) .and. ip > 1_pInt) then ! me homogenous? --> copy from first ip materialpoint_P(1:3,1:3,ip,elCP) = materialpoint_P(1:3,1:3,1,elCP) materialpoint_F(1:3,1:3,ip,elCP) = materialpoint_F(1:3,1:3,1,elCP) materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,elCP) = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,elCP) materialpoint_results(1:materialpoint_sizeResults,ip,elCP) = & materialpoint_results(1:materialpoint_sizeResults,1,elCP) endif ! translate from P to CS Kirchhoff = matmul(materialpoint_P(1:3,1:3,ip,elCP), transpose(materialpoint_F(1:3,1:3,ip,elCP))) J_inverse = 1.0_pReal / math_det33(materialpoint_F(1:3,1:3,ip,elCP)) CPFEM_cs(1:6,ip,elCP) = math_sym33to6(J_inverse * Kirchhoff,weighted=.false.) ! translate from dP/dF to dCS/dE H = 0.0_pReal do i=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3; do n=1,3 H(i,j,k,l) = H(i,j,k,l) & + materialpoint_F(j,m,ip,elCP) * materialpoint_F(l,n,ip,elCP) & * materialpoint_dPdF(i,m,k,n,ip,elCP) & - math_delta(j,l) * materialpoint_F(i,m,ip,elCP) * materialpoint_P(k,m,ip,elCP) & + 0.5_pReal * ( Kirchhoff(j,l)*math_delta(i,k) + Kirchhoff(i,k)*math_delta(j,l) & + Kirchhoff(j,k)*math_delta(i,l) + Kirchhoff(i,l)*math_delta(j,k)) enddo; enddo; enddo; enddo; enddo; enddo forall(i=1:3, j=1:3,k=1:3,l=1:3) & H_sym(i,j,k,l) = 0.25_pReal * (H(i,j,k,l) + H(j,i,k,l) + H(i,j,l,k) + H(j,i,l,k)) CPFEM_dcsde(1:6,1:6,ip,elCP) = math_sym3333to66(J_inverse * H_sym,weighted=.false.) endif terminalIllness endif validCalculation !* report stress and stiffness if ((iand(debug_level(debug_CPFEM), debug_levelExtensive) /= 0_pInt) & .and. ((debug_e == elCP .and. debug_i == ip) & .or. .not. iand(debug_level(debug_CPFEM), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,/,12x,6(f10.3,1x)/)') & '<< CPFEM >> stress/MPa at elFE ip ', elFE, ip, CPFEM_cs(1:6,ip,elCP)*1.0e-6_pReal write(6,'(a,i8,1x,i2,/,6(12x,6(f10.3,1x)/))') & '<< CPFEM >> Jacobian/GPa at elFE ip ', elFE, ip, transpose(CPFEM_dcsdE(1:6,1:6,ip,elCP))*1.0e-9_pReal flush(6) endif endif !*** warn if stiffness close to zero if (all(abs(CPFEM_dcsdE(1:6,1:6,ip,elCP)) < 1e-10_pReal)) call IO_warning(601,elCP,ip) !*** copy to output if using commercial FEM solver cauchyStress = CPFEM_cs (1:6, ip,elCP) jacobian = CPFEM_dcsdE(1:6,1:6,ip,elCP) !*** remember extreme values of stress ... cauchyStress33 = math_6toSym33(CPFEM_cs(1:6,ip,elCP),weighted=.false.) if (maxval(cauchyStress33) > debug_stressMax) then debug_stressMaxLocation = [elCP, ip] debug_stressMax = maxval(cauchyStress33) endif if (minval(cauchyStress33) < debug_stressMin) then debug_stressMinLocation = [elCP, ip] debug_stressMin = minval(cauchyStress33) endif !*** ... and Jacobian jacobian3333 = math_66toSym3333(CPFEM_dcsdE(1:6,1:6,ip,elCP),weighted=.false.) if (maxval(jacobian3333) > debug_jacobianMax) then debug_jacobianMaxLocation = [elCP, ip] debug_jacobianMax = maxval(jacobian3333) endif if (minval(jacobian3333) < debug_jacobianMin) then debug_jacobianMinLocation = [elCP, ip] debug_jacobianMin = minval(jacobian3333) endif end subroutine CPFEM_general end module CPFEM