!-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Utilities used by the different spectral solver variants !-------------------------------------------------------------------------------------------------- module DAMASK_spectral_utilities use, intrinsic :: iso_c_binding use prec, only: & pReal, & pInt implicit none private #ifdef PETSc #include #endif include 'fftw3-mpi.f03' logical, public :: cutBack =.false. !< cut back of BVP solver in case convergence is not achieved or a material point is terminally ill integer(pInt), public, parameter :: maxPhaseFields = 2_pInt !-------------------------------------------------------------------------------------------------- ! grid related information information real(pReal), public :: wgt !< weighting factor 1/Nelems !-------------------------------------------------------------------------------------------------- ! variables storing information for spectral method and FFTW integer(pInt), public :: grid1Red !< grid(1)/2 real (C_DOUBLE), public, dimension(:,:,:,:,:), pointer :: field_realMPI !< real representation (some stress or deformation) of field_fourier complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:,:), pointer :: field_fourierMPI !< field on which the Fourier transform operates real(pReal), private, dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat !< gamma operator (field) for spectral method real(pReal), private, dimension(:,:,:,:), allocatable :: xi !< wave vector field for divergence and for gamma operator real(pReal), private, dimension(3,3,3,3) :: C_ref !< reference stiffness real(pReal), private, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence (Basic, Basic PETSc) !-------------------------------------------------------------------------------------------------- ! debug fftw real(C_DOUBLE), private, dimension(:,:,:), pointer :: scalarField_realMPI !< scalar field real representation for debugging fftw complex(C_DOUBLE_COMPLEX),private, dimension(:,:,:), pointer :: scalarField_fourierMPI !< scalar field fourier representation for debugging fftw !-------------------------------------------------------------------------------------------------- ! geometry reconstruction real(C_DOUBLE), private, dimension(:,:,:,:), pointer :: coords_realMPI !< vector field real representation for geometry reconstruction complex(C_DOUBLE_COMPLEX),private, dimension(:,:,:,:), pointer :: coords_fourierMPI !< vector field fourier representation for geometry reconstruction !-------------------------------------------------------------------------------------------------- ! debug divergence real(C_DOUBLE), private, dimension(:,:,:,:), pointer :: divRealMPI !< vector field real representation for debugging divergence calculation complex(C_DOUBLE_COMPLEX),private, dimension(:,:,:,:), pointer :: divFourierMPI !< vector field fourier representation for debugging divergence calculation !-------------------------------------------------------------------------------------------------- ! plans for FFTW type(C_PTR), private :: & planForthMPI, & !< FFTW MPI plan P(x) to P(k) planBackMPI, & !< FFTW MPI plan F(k) to F(x) planDebugForthMPI, & !< FFTW MPI plan for scalar field planDebugBackMPI, & !< FFTW MPI plan for scalar field inverse planDivMPI, & !< FFTW MPI plan for FFTW in case of debugging divergence calculation planCoordsMPI !< FFTW MPI plan for geometry reconstruction !-------------------------------------------------------------------------------------------------- ! variables controlling debugging logical, private :: & debugGeneral, & !< general debugging of spectral solver debugDivergence, & !< debugging of divergence calculation (comparison to function used for post processing) debugFFTW, & !< doing additional FFT on scalar field and compare to results of strided 3D FFT debugRotation, & !< also printing out results in lab frame debugPETSc !< use some in debug defined options for more verbose PETSc solution !-------------------------------------------------------------------------------------------------- ! derived types type, public :: tSolutionState !< return type of solution from spectral solver variants logical :: converged = .true. logical :: regrid = .false. logical :: termIll = .false. integer(pInt) :: iterationsNeeded = 0_pInt end type tSolutionState type, public :: tBoundaryCondition !< set of parameters defining a boundary condition real(pReal), dimension(3,3) :: values = 0.0_pReal real(pReal), dimension(3,3) :: maskFloat = 0.0_pReal logical, dimension(3,3) :: maskLogical = .false. character(len=64) :: myType = 'None' end type tBoundaryCondition type, public :: phaseFieldDataBin !< set of parameters defining a phase field real(pReal) :: diffusion = 0.0_pReal, & !< thermal conductivity mobility = 0.0_pReal, & !< thermal mobility phaseField0 = 0.0_pReal !< homogeneous damage field starting condition logical :: active = .false. character(len=64) :: label = '' end type phaseFieldDataBin public :: & utilities_init, & utilities_updateGamma, & utilities_FFTforward, & utilities_FFTbackward, & utilities_fourierConvolution, & utilities_inverseLaplace, & utilities_divergenceRMS, & utilities_curlRMS, & utilities_maskedCompliance, & utilities_constitutiveResponse, & utilities_calculateRate, & utilities_forwardField, & utilities_destroy, & utilities_updateIPcoords private :: & utilities_getFilter contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all neccessary fields, sets debug flags, create plans for FFTW !> @details Sets the debug levels for general, divergence, restart and FFTW from the biwise coding !> provided by the debug module to logicals. !> Allocates all fields used by FFTW and create the corresponding plans depending on the debug !> level chosen. !> Initializes FFTW. !-------------------------------------------------------------------------------------------------- subroutine utilities_init() use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment) use DAMASK_interface, only: & geometryFile use IO, only: & IO_error, & IO_warning, & IO_timeStamp, & IO_open_file use numerics, only: & DAMASK_NumThreadsInt, & fftw_planner_flag, & fftw_timelimit, & memory_efficient, & petsc_options, & divergence_correction, & worldrank use debug, only: & debug_level, & debug_SPECTRAL, & debug_LEVELBASIC, & debug_SPECTRALDIVERGENCE, & debug_SPECTRALFFTW, & debug_SPECTRALPETSC, & debug_SPECTRALROTATION #ifdef PETSc use debug, only: & PETSCDEBUG #endif use math use mesh, only: & gridGlobal, & gridLocal, & gridOffset, & geomSizeGlobal, & geomSizeLocal, & geomSizeOffset implicit none #ifdef PETSc external :: & PETScOptionsClear, & PETScOptionsInsertString, & MPI_Abort PetscErrorCode :: ierr #endif integer(pInt) :: i, j, k integer(pInt), parameter :: fileUnit = 228_pInt integer(pInt), dimension(3) :: k_s type(C_PTR) :: & tensorFieldMPI, & !< field cotaining data for FFTW in real and fourier space (in place) scalarFieldMPI, & !< field cotaining data for FFTW in real space when debugging FFTW (no in place) div, & !< field cotaining data for FFTW in real and fourier space when debugging divergence (in place) coordsMPI integer(C_INTPTR_T) :: gridFFTW(3), alloc_local, local_K, local_K_offset integer(C_INTPTR_T), parameter :: & scalarSize = 1_C_INTPTR_T, & vecSize = 3_C_INTPTR_T, & tensorSize = 9_C_INTPTR_T mainProcess: if (worldrank == 0) then write(6,'(/,a)') ' <<<+- DAMASK_spectral_utilities init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" endif mainProcess !-------------------------------------------------------------------------------------------------- ! set debugging parameters debugGeneral = iand(debug_level(debug_SPECTRAL),debug_LEVELBASIC) /= 0 debugDivergence = iand(debug_level(debug_SPECTRAL),debug_SPECTRALDIVERGENCE) /= 0 debugFFTW = iand(debug_level(debug_SPECTRAL),debug_SPECTRALFFTW) /= 0 debugRotation = iand(debug_level(debug_SPECTRAL),debug_SPECTRALROTATION) /= 0 debugPETSc = iand(debug_level(debug_SPECTRAL),debug_SPECTRALPETSC) /= 0 if(debugPETSc .and. worldrank == 0_pInt) write(6,'(3(/,a),/)') & ' Initializing PETSc with debug options: ', & trim(PETScDebug), & ' add more using the PETSc_Options keyword in numerics.config ' flush(6) call PetscOptionsClear(ierr); CHKERRQ(ierr) if(debugPETSc) call PetscOptionsInsertString(trim(PETSCDEBUG),ierr); CHKERRQ(ierr) call PetscOptionsInsertString(trim(petsc_options),ierr); CHKERRQ(ierr) grid1Red = gridLocal(1)/2_pInt + 1_pInt wgt = 1.0/real(product(gridGlobal),pReal) if (worldrank == 0) then write(6,'(a,3(i12 ))') ' grid a b c: ', gridGlobal write(6,'(a,3(es12.5))') ' size x y z: ', geomSizeGlobal endif !-------------------------------------------------------------------------------------------------- ! scale dimension to calculate either uncorrected, dimension-independent, or dimension- and reso- ! lution-independent divergence if (divergence_correction == 1_pInt) then do j = 1_pInt, 3_pInt if (j /= minloc(geomSizeGlobal,1) .and. j /= maxloc(geomSizeGlobal,1)) & scaledGeomSize = geomSizeGlobal/geomSizeGlobal(j) enddo elseif (divergence_correction == 2_pInt) then do j = 1_pInt, 3_pInt if (j /= minloc(geomSizeGlobal/gridGlobal,1) .and. j /= maxloc(geomSizeGlobal/gridGlobal,1)) & scaledGeomSize = geomSizeGlobal/geomSizeGlobal(j)*gridGlobal(j) enddo else scaledGeomSize = geomSizeGlobal endif !-------------------------------------------------------------------------------------------------- ! MPI allocation gridFFTW = int(gridGlobal,C_INTPTR_T) alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, & MPI_COMM_WORLD, local_K, local_K_offset) tensorFieldMPI = fftw_alloc_complex(9*alloc_local) call c_f_pointer(tensorFieldMPI, field_realMPI, [3_C_INTPTR_T,3_C_INTPTR_T, & 2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) call c_f_pointer(tensorFieldMPI, field_fourierMPI, [3_C_INTPTR_T,3_C_INTPTR_T, & gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T , gridFFTW(2),local_K]) allocate (xi(3,grid1Red,gridLocal(2),gridLocal(3)),source = 0.0_pReal) ! frequencies, only half the size for first dimension coordsMPI = fftw_alloc_complex(3*alloc_local) call c_f_pointer(coordsMPI, coords_realMPI, [3_C_INTPTR_T,& 2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real representation on coords_fftw call c_f_pointer(coordsMPI, coords_fourierMPI,[3_C_INTPTR_T,& gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K]) ! place a pointer for a real representation on coords_fftw !-------------------------------------------------------------------------------------------------- ! MPI fftw plans planForthMPI = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], tensorSize, & ! dimension, logical length in each dimension in reversed order, no. of transforms FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! default iblock and oblock field_realMPI, field_fourierMPI, & ! input data, output data MPI_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision planBackMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], tensorSize, & ! dimension, logical length in each dimension in reversed order, no. of transforms FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! default iblock and oblock field_fourierMPI,field_realMPI, & ! input data, output data MPI_COMM_WORLD, fftw_planner_flag) ! all processors, planer precision !-------------------------------------------------------------------------------------------------- ! Coordinates MPI fftw plans planCoordsMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], vecSize, & ! dimension, logical length in each dimension in reversed order, no. of transforms FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! default iblock and oblock coords_fourierMPI,coords_realMPI, & ! input data, output data MPI_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision !-------------------------------------------------------------------------------------------------- ! depending on debug options, allocate more memory and create additional plans if (debugDivergence) then div = fftw_alloc_complex(3*alloc_local) call c_f_pointer(div,divRealMPI, [3_C_INTPTR_T,& 2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) call c_f_pointer(div,divFourierMPI,[3_C_INTPTR_T,& gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K]) planDivMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2) ,gridFFTW(1)],vecSize, & FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & divFourierMPI, divRealMPI, & MPI_COMM_WORLD, fftw_planner_flag) endif if (debugFFTW) then scalarFieldMPI = fftw_alloc_complex(alloc_local) ! allocate data for real representation (no in place transform) call c_f_pointer(scalarFieldMPI, scalarField_realMPI, & [2*(gridFFTW(1)/2 + 1),gridFFTW(2),local_K]) ! place a pointer for a real representation call c_f_pointer(scalarFieldMPI, scalarField_fourierMPI, & [ gridFFTW(1)/2 + 1 ,gridFFTW(2),local_K]) ! place a pointer for a fourier representation planDebugForthMPI = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & scalarField_realMPI, scalarField_fourierMPI, & MPI_COMM_WORLD, fftw_planner_flag) planDebugBackMPI = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & scalarField_fourierMPI,scalarField_realMPI, & MPI_COMM_WORLD, fftw_planner_flag) endif !-------------------------------------------------------------------------------------------------- ! general initialization of FFTW (see manual on fftw.org for more details) if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(0_pInt,ext_msg='Fortran to C') ! check for correct precision in C call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation if (debugGeneral .and. worldrank == 0_pInt) write(6,'(/,a)') ' FFTW initialized' flush(6) !-------------------------------------------------------------------------------------------------- ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around) do k = gridOffset+1_pInt, gridOffset+gridLocal(3) k_s(3) = k - 1_pInt if(k > gridGlobal(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - gridGlobal(3) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 do j = 1_pInt, gridLocal(2) k_s(2) = j - 1_pInt if(j > gridGlobal(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - gridGlobal(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1 do i = 1_pInt, grid1Red k_s(1) = i - 1_pInt ! symmetry, junst running from 0,1,...,N/2,N/2+1 xi(1:3,i,j,k-gridOffset) = real(k_s, pReal)/scaledGeomSize ! if divergence_correction is set, frequencies are calculated on unit length enddo; enddo; enddo if(memory_efficient) then ! allocate just single fourth order tensor allocate (gamma_hat(3,3,3,3,1,1,1), source = 0.0_pReal) else ! precalculation of gamma_hat field allocate (gamma_hat(3,3,3,3,grid1Red,gridLocal(2),gridLocal(3)), source = 0.0_pReal) endif end subroutine utilities_init !-------------------------------------------------------------------------------------------------- !> @brief updates references stiffness and potentially precalculated gamma operator !> @details Sets the current reference stiffness to the stiffness given as an argument. !> If the gamma operator is precalculated, it is calculated with this stiffness. !> In case of a on-the-fly calculation, only the reference stiffness is updated. !> The gamma operator is filtered depening on the filter selected in numerics. !> Also writes out the current reference stiffness for restart. !-------------------------------------------------------------------------------------------------- subroutine utilities_updateGamma(C,saveReference) use IO, only: & IO_write_jobRealFile use numerics, only: & memory_efficient, & worldrank use mesh, only: & gridOffset, & gridLocal use math, only: & math_inv33 use mesh, only: & gridLocal implicit none real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness logical , intent(in) :: saveReference !< save reference stiffness to file for restart real(pReal), dimension(3,3) :: temp33_Real, xiDyad integer(pInt) :: & i, j, k, & l, m, n, o C_ref = C if (saveReference) then if (worldrank == 0_pInt) then write(6,'(/,a)') ' writing reference stiffness to file' flush(6) call IO_write_jobRealFile(777,'C_ref',size(C_ref)) write (777,rec=1) C_ref close(777) endif endif if(.not. memory_efficient) then do k = gridOffset+1_pInt, gridOffset+gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt, grid1Red if (any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & xiDyad(l,m) = xi(l, i,j,k-gridOffset)*xi(m, i,j,k-gridOffset) forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Real(l,m) = sum(C_ref(l,1:3,m,1:3)*xiDyad) temp33_Real = math_inv33(temp33_Real) forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt)& gamma_hat(l,m,n,o,i,j,k-gridOffset) = temp33_Real(l,n)*xiDyad(m,o) endif enddo; enddo; enddo endif end subroutine utilities_updateGamma !-------------------------------------------------------------------------------------------------- !> @brief forward FFT of data in field_real to field_fourier with highest freqs. removed !> @details Does an unweighted FFT transform from real to complex. !> In case of debugging the FFT, also one component of the tensor (specified by row and column) !> is independetly transformed complex to complex and compared to the whole tensor transform !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTforward() use math use numerics, only: & worldrank use mesh, only: & gridOffset, & gridLocal implicit none integer(pInt) :: row, column ! if debug FFTW, compare 3D array field of row and column real(pReal), dimension(2) :: myRand, maxScalarField ! random numbers integer(pInt) :: i, j, k PetscErrorCode :: ierr !-------------------------------------------------------------------------------------------------- ! copy one component of the stress field to to a single FT and check for mismatch if (debugFFTW) then if (worldrank == 0_pInt) then call random_number(myRand) ! two numbers: 0 <= x < 1 row = nint(myRand(1)*2_pReal + 1_pReal,pInt) column = nint(myRand(2)*2_pReal + 1_pReal,pInt) endif call MPI_Bcast(row ,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr) call MPI_Bcast(column,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr) scalarField_realMPI = 0.0_pReal scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = & field_realMPI(row,column,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) ! store the selected component endif !-------------------------------------------------------------------------------------------------- ! doing the FFT call fftw_mpi_execute_dft_r2c(planForthMPI,field_realMPI,field_fourierMPI) !-------------------------------------------------------------------------------------------------- ! comparing 1 and 3x3 FT results if (debugFFTW) then call fftw_mpi_execute_dft_r2c(planDebugForthMPI,scalarField_realMPI,scalarField_fourierMPI) where(abs(scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3))) > tiny(1.0_pReal)) ! avoid division by zero scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3)) = & (scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3))-& field_fourierMPI(row,column,1:grid1Red,1:gridLocal(2),1:gridLocal(3)))/& scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3)) else where scalarField_realMPI = cmplx(0.0,0.0,pReal) end where maxScalarField(1) = maxval(real (scalarField_fourierMPI(1:grid1Red,1:gridLocal(2), & 1:gridLocal(3)))) maxScalarField(2) = maxval(aimag(scalarField_fourierMPI(1:grid1Red,1:gridLocal(2), & 1:gridLocal(3)))) call MPI_reduce(MPI_IN_PLACE,maxScalarField,2,MPI_DOUBLE,MPI_MAX,0,PETSC_COMM_WORLD,ierr) if (worldrank == 0_pInt) then write(6,'(/,a,i1,1x,i1,a)') ' .. checking FT results of compontent ', row, column, ' ..' write(6,'(/,a,2(es11.4,1x))') ' max FT relative error = ',& ! print real and imaginary part seperately maxScalarField(1),maxScalarField(2) flush(6) endif endif !-------------------------------------------------------------------------------------------------- ! applying filter do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red field_fourierMPI(1:3,1:3,i,j,k) = utilities_getFilter(xi(1:3,i,j,k))* & field_fourierMPI(1:3,1:3,i,j,k) enddo; enddo; enddo end subroutine utilities_FFTforward !-------------------------------------------------------------------------------------------------- !> @brief backward FFT of data in field_fourier to field_real !> @details Does an inverse FFT transform from complex to real !> In case of debugging the FFT, also one component of the tensor (specified by row and column) !> is independetly transformed complex to complex and compared to the whole tensor transform !> results is weighted by number of points stored in wgt !-------------------------------------------------------------------------------------------------- subroutine utilities_FFTbackward() use math use numerics, only: & worldrank use mesh, only: & gridLocal implicit none integer(pInt) :: row, column !< if debug FFTW, compare 3D array field of row and column real(pReal), dimension(2) :: myRand real(pReal) :: maxScalarField PetscErrorCode :: ierr !-------------------------------------------------------------------------------------------------- ! unpack FFT data for conj complex symmetric part. This data is not transformed when using c2r if (debugFFTW) then if (worldrank == 0_pInt) then call random_number(myRand) ! two numbers: 0 <= x < 1 row = nint(myRand(1)*2_pReal + 1_pReal,pInt) column = nint(myRand(2)*2_pReal + 1_pReal,pInt) endif call MPI_Bcast(row ,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr) call MPI_Bcast(column,1,MPI_INTEGER,0,PETSC_COMM_WORLD,ierr) scalarField_fourierMPI(1:grid1Red,1:gridLocal(2),1:gridLocal(3)) = & field_fourierMPI(row,column,1:grid1Red,1:gridLocal(2),1:gridLocal(3)) endif !-------------------------------------------------------------------------------------------------- ! doing the iFFT call fftw_mpi_execute_dft_c2r(planBackMPI,field_fourierMPI,field_realMPI) ! back transform of fluct deformation gradient !-------------------------------------------------------------------------------------------------- ! comparing 1 and 3x3 inverse FT results if (debugFFTW) then call fftw_mpi_execute_dft_c2r(planDebugBackMPI,scalarField_fourierMPI,scalarField_realMPI) where(abs(real(scalarField_realMPI,pReal)) > tiny(1.0_pReal)) ! avoid division by zero scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = & (scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) & - field_realMPI (row,column,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)))/ & scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) else where scalarField_realMPI = cmplx(0.0,0.0,pReal) end where maxScalarField = maxval(real (scalarField_realMPI(1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)))) call MPI_reduce(MPI_IN_PLACE,maxScalarField,1,MPI_DOUBLE,MPI_MAX,0,PETSC_COMM_WORLD,ierr) if (worldrank == 0_pInt) then write(6,'(/,a,i1,1x,i1,a)') ' ... checking iFT results of compontent ', row, column, ' ..' write(6,'(/,a,es11.4)') ' max iFT relative error = ', maxScalarField flush(6) endif endif field_realMPI = field_realMPI * wgt ! normalize the result by number of elements end subroutine utilities_FFTbackward !-------------------------------------------------------------------------------------------------- !> @brief doing convolution with inverse laplace kernel !-------------------------------------------------------------------------------------------------- subroutine utilities_inverseLaplace() use math, only: & math_inv33, & PI use numerics, only: & worldrank use mesh, only: & gridLocal, & gridOffset, & geomSizeGlobal implicit none integer(pInt) :: i, j, k real(pReal), dimension(3) :: k_s if (worldrank == 0_pInt) then write(6,'(/,a)') ' ... doing inverse laplace .................................................' flush(6) endif do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt, grid1Red k_s = xi(1:3,i,j,k)*scaledGeomSize if (any(k_s /= 0_pInt)) field_fourierMPI(1:3,1:3,i,j,k-gridOffset) = & field_fourierMPI(1:3,1:3,i,j,k-gridOffset)/ & cmplx(-sum((2.0_pReal*PI*k_s/geomSizeGlobal)* & (2.0_pReal*PI*k_s/geomSizeGlobal)),0.0_pReal,pReal) enddo; enddo; enddo if (gridOffset == 0_pInt) & field_fourierMPI(1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal) end subroutine utilities_inverseLaplace !-------------------------------------------------------------------------------------------------- !> @brief doing convolution gamma_hat * field_real, ensuring that average value = fieldAim !-------------------------------------------------------------------------------------------------- subroutine utilities_fourierConvolution(fieldAim) use numerics, only: & memory_efficient use math, only: & math_inv33 use numerics, only: & worldrank use mesh, only: & gridLocal, & gridOffset implicit none real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution real(pReal), dimension(3,3) :: xiDyad, temp33_Real complex(pReal), dimension(3,3) :: temp33_complex integer(pInt) :: & i, j, k, & l, m, n, o if (worldrank == 0_pInt) then write(6,'(/,a)') ' ... doing convolution .....................................................' flush(6) endif !-------------------------------------------------------------------------------------------------- ! do the actual spectral method calculation (mechanical equilibrium) if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2) ;do i = 1_pInt, grid1Red if(any([i,j,k+gridOffset] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & xiDyad(l,m) = xi(l, i,j,k)*xi(m, i,j,k) forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Real(l,m) = sum(C_ref(l,1:3,m,1:3)*xiDyad) temp33_Real = math_inv33(temp33_Real) forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt)& gamma_hat(l,m,n,o, 1,1,1) = temp33_Real(l,n)*xiDyad(m,o) forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3, 1,1,1) * field_fourierMPI(1:3,1:3,i,j,k)) field_fourierMPI(1:3,1:3,i,j,k) = temp33_Complex endif enddo; enddo; enddo else ! use precalculated gamma-operator do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) & temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k) * field_fourierMPI(1:3,1:3,i,j,k)) field_fourierMPI(1:3,1:3,i,j,k) = temp33_Complex enddo; enddo; enddo endif if (gridOffset == 0_pInt) & field_fourierMPI(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal) ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1 end subroutine utilities_fourierConvolution !-------------------------------------------------------------------------------------------------- !> @brief calculate root mean square of divergence of field_fourier !-------------------------------------------------------------------------------------------------- real(pReal) function utilities_divergenceRMS() use math use numerics, only: & worldrank use mesh, only: & gridLocal, & gridGlobal implicit none integer(pInt) :: i, j, k real(pReal) :: & err_real_div_RMS, & !< RMS of divergence in real space err_div_max, & !< maximum value of divergence in Fourier space err_real_div_max !< maximum value of divergence in real space complex(pReal), dimension(3) :: temp3_complex PetscErrorCode :: ierr if (worldrank == 0_pInt) then write(6,'(/,a)') ' ... calculating divergence ................................................' flush(6) endif !-------------------------------------------------------------------------------------------------- ! calculating RMS divergence criterion in Fourier space utilities_divergenceRMS = 0.0_pReal do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2) do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice. utilities_divergenceRMS = utilities_divergenceRMS & + 2.0_pReal*(sum (real(math_mul33x3_complex(field_fourierMPI(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)& ! --> sum squared L_2 norm of vector +sum(aimag(math_mul33x3_complex(field_fourierMPI(1:3,1:3,i,j,k),& xi(1:3,i,j,k))*TWOPIIMG)**2.0_pReal)) enddo utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1) + sum( real(math_mul33x3_complex(field_fourierMPI(1:3,1:3,1 ,j,k), & xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal) & + sum(aimag(math_mul33x3_complex(field_fourierMPI(1:3,1:3,1 ,j,k), & xi(1:3,1 ,j,k))*TWOPIIMG)**2.0_pReal) & + sum( real(math_mul33x3_complex(field_fourierMPI(1:3,1:3,grid1Red,j,k), & xi(1:3,grid1Red,j,k))*TWOPIIMG)**2.0_pReal) & + sum(aimag(math_mul33x3_complex(field_fourierMPI(1:3,1:3,grid1Red,j,k), & xi(1:3,grid1Red,j,k))*TWOPIIMG)**2.0_pReal) enddo; enddo if(gridGlobal(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1 call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space !-------------------------------------------------------------------------------------------------- ! calculate additional divergence criteria and report if (debugDivergence) then ! calculate divergence again err_div_max = 0.0_pReal do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt, grid1Red temp3_Complex = math_mul33x3_complex(field_fourierMPI(1:3,1:3,i,j,k)*wgt,& ! weighting P_fourier xi(1:3,i,j,k))*TWOPIIMG err_div_max = max(err_div_max,sum(abs(temp3_Complex)**2.0_pReal)) divFourierMPI(1:3,i,j,k) = temp3_Complex ! need divergence NOT squared enddo; enddo; enddo call fftw_mpi_execute_dft_c2r(planDivMPI,divFourierMPI,divRealMPI) ! already weighted err_real_div_RMS = sum(divRealMPI**2.0_pReal) call MPI_reduce(MPI_IN_PLACE,err_real_div_RMS,1,MPI_DOUBLE,MPI_SUM,0,PETSC_COMM_WORLD,ierr) err_real_div_RMS = sqrt(wgt*err_real_div_RMS) ! RMS in real space err_real_div_max = maxval(sum(divRealMPI**2.0_pReal,dim=4)) ! max in real space call MPI_reduce(MPI_IN_PLACE,err_real_div_max,1,MPI_DOUBLE,MPI_MAX,0,PETSC_COMM_WORLD,ierr) err_real_div_max = sqrt(err_real_div_max) call MPI_reduce(MPI_IN_PLACE,err_div_max,1,MPI_DOUBLE,MPI_MAX,0,PETSC_COMM_WORLD,ierr) err_div_max = sqrt( err_div_max) ! max in Fourier space if (worldrank == 0_pInt) then write(6,'(/,1x,a,es11.4)') 'error divergence FT RMS = ',utilities_divergenceRMS write(6,'(1x,a,es11.4)') 'error divergence Real RMS = ',err_real_div_RMS write(6,'(1x,a,es11.4)') 'error divergence FT max = ',err_div_max write(6,'(1x,a,es11.4)') 'error divergence Real max = ',err_real_div_max flush(6) endif endif end function utilities_divergenceRMS !-------------------------------------------------------------------------------------------------- !> @brief calculate max of curl of field_fourier !-------------------------------------------------------------------------------------------------- real(pReal) function utilities_curlRMS() use math use numerics, only: & worldrank use mesh, only: & gridLocal, & gridGlobal implicit none integer(pInt) :: i, j, k, l complex(pReal), dimension(3,3) :: curl_fourier PetscErrorCode :: ierr if (worldrank == 0_pInt) then write(6,'(/,a)') ' ... calculating curl ......................................................' flush(6) endif !-------------------------------------------------------------------------------------------------- ! calculating max curl criterion in Fourier space utilities_curlRMS = 0.0_pReal do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 2_pInt, grid1Red - 1_pInt do l = 1_pInt, 3_pInt curl_fourier(l,1) = (+field_fourierMPI(l,3,i,j,k)*xi(2,i,j,k)& -field_fourierMPI(l,2,i,j,k)*xi(3,i,j,k))*TWOPIIMG curl_fourier(l,2) = (+field_fourierMPI(l,1,i,j,k)*xi(3,i,j,k)& -field_fourierMPI(l,3,i,j,k)*xi(1,i,j,k))*TWOPIIMG curl_fourier(l,3) = (+field_fourierMPI(l,2,i,j,k)*xi(1,i,j,k)& -field_fourierMPI(l,1,i,j,k)*xi(2,i,j,k))*TWOPIIMG enddo utilities_curlRMS = utilities_curlRMS + & 2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) enddo do l = 1_pInt, 3_pInt curl_fourier = (+field_fourierMPI(l,3,1,j,k)*xi(2,1,j,k)& -field_fourierMPI(l,2,1,j,k)*xi(3,1,j,k))*TWOPIIMG curl_fourier = (+field_fourierMPI(l,1,1,j,k)*xi(3,1,j,k)& -field_fourierMPI(l,3,1,j,k)*xi(1,1,j,k))*TWOPIIMG curl_fourier = (+field_fourierMPI(l,2,1,j,k)*xi(1,1,j,k)& -field_fourierMPI(l,1,1,j,k)*xi(2,1,j,k))*TWOPIIMG enddo utilities_curlRMS = utilities_curlRMS + & 2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) do l = 1_pInt, 3_pInt curl_fourier = (+field_fourierMPI(l,3,grid1Red,j,k)*xi(2,grid1Red,j,k)& -field_fourierMPI(l,2,grid1Red,j,k)*xi(3,grid1Red,j,k))*TWOPIIMG curl_fourier = (+field_fourierMPI(l,1,grid1Red,j,k)*xi(3,grid1Red,j,k)& -field_fourierMPI(l,3,grid1Red,j,k)*xi(1,grid1Red,j,k))*TWOPIIMG curl_fourier = (+field_fourierMPI(l,2,grid1Red,j,k)*xi(1,grid1Red,j,k)& -field_fourierMPI(l,1,grid1Red,j,k)*xi(2,grid1Red,j,k))*TWOPIIMG enddo utilities_curlRMS = utilities_curlRMS + & 2.0_pReal*sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) enddo; enddo call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) utilities_curlRMS = sqrt(utilities_curlRMS) * wgt if(gridGlobal(1) == 1_pInt) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1 end function utilities_curlRMS !-------------------------------------------------------------------------------------------------- !> @brief calculates mask compliance tensor used to adjust F to fullfill stress BC !-------------------------------------------------------------------------------------------------- function utilities_maskedCompliance(rot_BC,mask_stress,C) use IO, only: & IO_error use numerics, only: & worldrank use math, only: & math_Plain3333to99, & math_plain99to3333, & math_rotate_forward3333, & math_rotate_forward33, & math_invert implicit none real(pReal), dimension(3,3,3,3) :: utilities_maskedCompliance !< masked compliance real(pReal), intent(in) , dimension(3,3,3,3) :: C !< current average stiffness real(pReal), intent(in) , dimension(3,3) :: rot_BC !< rotation of load frame logical, intent(in), dimension(3,3) :: mask_stress !< mask of stress BC integer(pInt) :: j, k, m, n logical, dimension(9) :: mask_stressVector real(pReal), dimension(9,9) :: temp99_Real integer(pInt) :: size_reduced = 0_pInt real(pReal), dimension(:,:), allocatable :: & s_reduced, & !< reduced compliance matrix (depending on number of stress BC) c_reduced, & !< reduced stiffness (depending on number of stress BC) sTimesC !< temp variable to check inversion logical :: errmatinv character(len=1024):: formatString mask_stressVector = reshape(transpose(mask_stress), [9]) size_reduced = int(count(mask_stressVector), pInt) if(size_reduced > 0_pInt )then allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal) allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal) allocate (sTimesC(size_reduced,size_reduced), source =0.0_pReal) temp99_Real = math_Plain3333to99(math_rotate_forward3333(C,rot_BC)) if(debugGeneral .and. worldrank == 0_pInt) then write(6,'(/,a)') ' ... updating masked compliance ............................................' write(6,'(/,a,/,9(9(2x,f12.7,1x)/))',advance='no') ' Stiffness C (load) / GPa =',& transpose(temp99_Real)/1.e9_pReal flush(6) endif k = 0_pInt ! calculate reduced stiffness do n = 1_pInt,9_pInt if(mask_stressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(mask_stressVector(m)) then j = j + 1_pInt c_reduced(k,j) = temp99_Real(n,m) endif; enddo; endif; enddo call math_invert(size_reduced, c_reduced, s_reduced, errmatinv) ! invert reduced stiffness if(errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance') temp99_Real = 0.0_pReal ! fill up compliance with zeros k = 0_pInt do n = 1_pInt,9_pInt if(mask_stressVector(n)) then k = k + 1_pInt j = 0_pInt do m = 1_pInt,9_pInt if(mask_stressVector(m)) then j = j + 1_pInt temp99_Real(n,m) = s_reduced(k,j) endif; enddo; endif; enddo !-------------------------------------------------------------------------------------------------- ! check if inversion was successful sTimesC = matmul(c_reduced,s_reduced) do m=1_pInt, size_reduced do n=1_pInt, size_reduced if(m==n .and. abs(sTimesC(m,n)) > (1.0_pReal + 10.0e-12_pReal)) errmatinv = .true. ! diagonal elements of S*C should be 1 if(m/=n .and. abs(sTimesC(m,n)) > (0.0_pReal + 10.0e-12_pReal)) errmatinv = .true. ! off diagonal elements of S*C should be 0 enddo enddo if((debugGeneral .or. errmatinv) .and. (worldrank == 0_pInt)) then ! report write(formatString, '(I16.16)') size_reduced formatString = '(/,a,/,'//trim(formatString)//'('//trim(formatString)//'(2x,es9.2,1x)/))' write(6,trim(formatString),advance='no') ' C * S (load) ', & transpose(matmul(c_reduced,s_reduced)) write(6,trim(formatString),advance='no') ' S (load) ', transpose(s_reduced) endif if(errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance') deallocate(c_reduced) deallocate(s_reduced) deallocate(sTimesC) else temp99_real = 0.0_pReal endif if(debugGeneral .and. worldrank == 0_pInt) & ! report write(6,'(/,a,/,9(9(2x,f12.7,1x)/),/)',advance='no') ' Masked Compliance (load) * GPa =', & transpose(temp99_Real*1.e9_pReal) flush(6) utilities_maskedCompliance = math_Plain99to3333(temp99_Real) end function utilities_maskedCompliance !-------------------------------------------------------------------------------------------------- !> @brief calculates constitutive response !-------------------------------------------------------------------------------------------------- subroutine utilities_constitutiveResponse(F_lastInc,F,temperature,timeinc,& P,C_volAvg,C_minmaxAvg,P_av,forwardData,rotation_BC) use debug, only: & debug_reset, & debug_info use numerics, only: & worldrank use math, only: & math_transpose33, & math_rotate_forward33, & math_det33 use mesh, only: & gridLocal use FEsolving, only: & restartWrite use CPFEM, only: & CPFEM_general, & CPFEM_COLLECT, & CPFEM_CALCRESULTS, & CPFEM_AGERESULTS use homogenization, only: & materialpoint_F0, & materialpoint_F, & materialpoint_P, & materialpoint_dPdF use thermal_isothermal, only: & thermal_isothermal_temperature implicit none real(pReal), intent(in) :: temperature !< temperature (no field) real(pReal), intent(in), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)) :: & F_lastInc, & !< target deformation gradient F !< previous deformation gradient real(pReal), intent(in) :: timeinc !< loading time logical, intent(in) :: forwardData !< age results real(pReal), intent(in), dimension(3,3) :: rotation_BC !< rotation of load frame real(pReal),intent(out), dimension(3,3,3,3) :: C_volAvg, C_minmaxAvg !< average stiffness real(pReal),intent(out), dimension(3,3) :: P_av !< average PK stress real(pReal),intent(out), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)) :: P !< PK stress integer(pInt) :: & calcMode, & !< CPFEM mode for calculation j,k real(pReal), dimension(3,3,3,3) :: max_dPdF, min_dPdF real(pReal) :: max_dPdF_norm, min_dPdF_norm, defgradDetMin, defgradDetMax, defgradDet PetscErrorCode :: ierr if (worldrank == 0_pInt) then write(6,'(/,a)') ' ... evaluating constitutive response ......................................' flush(6) endif calcMode = CPFEM_CALCRESULTS if (forwardData) then ! aging results calcMode = ior(calcMode, CPFEM_AGERESULTS) materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(gridLocal)]) endif if (cutBack) then ! restore saved variables calcMode = iand(calcMode, not(CPFEM_AGERESULTS)) endif call CPFEM_general(CPFEM_COLLECT,F_lastInc(1:3,1:3,1,1,1),F(1:3,1:3,1,1,1), & temperature,timeinc,1_pInt,1_pInt) thermal_isothermal_temperature(:) = temperature materialpoint_F = reshape(F,[3,3,1,product(gridLocal)]) call debug_reset() !-------------------------------------------------------------------------------------------------- ! calculate bounds of det(F) and report if(debugGeneral) then defgradDetMax = -huge(1.0_pReal) defgradDetMin = +huge(1.0_pReal) do j = 1_pInt, product(gridLocal) defgradDet = math_det33(materialpoint_F(1:3,1:3,1,j)) defgradDetMax = max(defgradDetMax,defgradDet) defgradDetMin = min(defgradDetMin,defgradDet) end do call MPI_reduce(MPI_IN_PLACE,defgradDetMax,1,MPI_DOUBLE,MPI_MAX,0,PETSC_COMM_WORLD,ierr) call MPI_reduce(MPI_IN_PLACE,defgradDetMin,1,MPI_DOUBLE,MPI_MIN,0,PETSC_COMM_WORLD,ierr) if (worldrank == 0_pInt) then write(6,'(a,1x,es11.4)') ' max determinant of deformation =', defgradDetMax write(6,'(a,1x,es11.4)') ' min determinant of deformation =', defgradDetMin flush(6) endif endif call CPFEM_general(calcMode,F_lastInc(1:3,1:3,1,1,1), F(1:3,1:3,1,1,1), & ! first call calculates everything temperature,timeinc,1_pInt,1_pInt) max_dPdF = 0.0_pReal max_dPdF_norm = 0.0_pReal min_dPdF = huge(1.0_pReal) min_dPdF_norm = huge(1.0_pReal) do k = 1_pInt, product(gridLocal) if (max_dPdF_norm < sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then max_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k) max_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal) endif if (min_dPdF_norm > sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then min_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k) min_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal) endif end do call MPI_Allreduce(MPI_IN_PLACE,max_dPdF,81,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr) call MPI_Allreduce(MPI_IN_PLACE,min_dPdF,81,MPI_DOUBLE,MPI_MIN,PETSC_COMM_WORLD,ierr) C_minmaxAvg = 0.5_pReal*(max_dPdF + min_dPdF) C_volAvg = sum(sum(materialpoint_dPdF,dim=6),dim=5) * wgt call MPI_Allreduce(MPI_IN_PLACE,C_volAvg,81,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) call debug_info() restartWrite = .false. ! reset restartWrite status cutBack = .false. ! reset cutBack status P = reshape(materialpoint_P, [3,3,gridLocal(1),gridLocal(2),gridLocal(3)]) P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P call MPI_Allreduce(MPI_IN_PLACE,P_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) if (debugRotation .and. worldrank == 0_pInt) & write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress (lab) / MPa =',& math_transpose33(P_av)*1.e-6_pReal P_av = math_rotate_forward33(P_av,rotation_BC) if (worldrank == 0_pInt) then write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress / MPa =',& math_transpose33(P_av)*1.e-6_pReal flush(6) endif end subroutine utilities_constitutiveResponse !-------------------------------------------------------------------------------------------------- !> @brief calculates forward rate, either guessing or just add delta/timeinc !-------------------------------------------------------------------------------------------------- pure function utilities_calculateRate(avRate,timeinc_old,guess,field_lastInc,field) use mesh, only: & gridLocal implicit none real(pReal), intent(in), dimension(3,3) :: avRate !< homogeneous addon real(pReal), intent(in) :: & timeinc_old !< timeinc of last step logical, intent(in) :: & guess !< guess along former trajectory real(pReal), intent(in), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)) :: & field_lastInc, & !< data of previous step field !< data of current step real(pReal), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)) :: & utilities_calculateRate if (guess) then utilities_calculateRate = (field-field_lastInc) / timeinc_old else utilities_calculateRate = spread(spread(spread(avRate,3,gridLocal(1)),4,gridLocal(2)), & 5,gridLocal(3)) endif end function utilities_calculateRate !-------------------------------------------------------------------------------------------------- !> @brief forwards a field with a pointwise given rate, if aim is given, !> ensures that the average matches the aim !-------------------------------------------------------------------------------------------------- function utilities_forwardField(timeinc,field_lastInc,rate,aim) use mesh, only: & gridLocal implicit none real(pReal), intent(in) :: & timeinc !< timeinc of current step real(pReal), intent(in), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)) :: & field_lastInc, & !< initial field rate !< rate by which to forward real(pReal), intent(in), optional, dimension(3,3) :: & aim !< average field value aim real(pReal), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)) :: & utilities_forwardField real(pReal), dimension(3,3) :: fieldDiff !< - aim PetscErrorCode :: ierr utilities_forwardField = field_lastInc + rate*timeinc if (present(aim)) then !< correct to match average fieldDiff = sum(sum(sum(utilities_forwardField,dim=5),dim=4),dim=3)*wgt call MPI_Allreduce(MPI_IN_PLACE,fieldDiff,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr) fieldDiff = fieldDiff - aim utilities_forwardField = utilities_forwardField - & spread(spread(spread(fieldDiff,3,gridLocal(1)),4,gridLocal(2)),5,gridLocal(3)) endif end function utilities_forwardField !-------------------------------------------------------------------------------------------------- !> @brief calculates filter for fourier convolution depending on type given in numerics.config !-------------------------------------------------------------------------------------------------- real(pReal) function utilities_getFilter(k) use IO, only: & IO_error use numerics, only: & spectral_filter use math, only: & PI use mesh, only: & gridGlobal implicit none real(pReal),intent(in), dimension(3) :: k !< indices of frequency utilities_getFilter = 1.0_pReal select case (spectral_filter) case ('none') ! default, no weighting case ('cosine') ! cosine curve with 1 for avg and zero for highest freq utilities_getFilter = product(1.0_pReal + cos(PI*k*scaledGeomSize/gridGlobal))/8.0_pReal case ('gradient') ! gradient, might need grid scaling as for cosine filter utilities_getFilter = 1.0_pReal/(1.0_pReal + & (k(1)*k(1) + k(2)*k(2) + k(3)*k(3))) case default call IO_error(error_ID = 892_pInt, ext_msg = trim(spectral_filter)) end select if (gridGlobal(1) /= 1_pInt .and. k(1) == real(grid1Red - 1_pInt, pReal)/scaledGeomSize(1)) & utilities_getFilter = 0.0_pReal if (gridGlobal(2) /= 1_pInt .and. k(2) == real(gridGlobal(2)/2_pInt, pReal)/scaledGeomSize(2)) & utilities_getFilter = 0.0_pReal ! do not delete the whole slice in case of 2D calculation if (gridGlobal(2) /= 1_pInt .and. k(2) == real(gridGlobal(2)/2_pInt + mod(gridGlobal(2),2_pInt), pReal)/scaledGeomSize(2)) & utilities_getFilter = 0.0_pReal ! do not delete the whole slice in case of 2D calculation if (gridGlobal(3) /= 1_pInt .and. k(3) == real(gridGlobal(3)/2_pInt, pReal)/scaledGeomSize(3)) & utilities_getFilter = 0.0_pReal ! do not delete the whole slice in case of 2D calculation if (gridGlobal(3) /= 1_pInt .and. k(3) == real(gridGlobal(3)/2_pInt + mod(gridGlobal(3),2_pInt), pReal)/scaledGeomSize(3)) & utilities_getFilter = 0.0_pReal ! do not delete the whole slice in case of 2D calculation end function utilities_getFilter !-------------------------------------------------------------------------------------------------- !> @brief cleans up !-------------------------------------------------------------------------------------------------- subroutine utilities_destroy() use math implicit none if (debugDivergence) call fftw_destroy_plan(planDivMPI) if (debugFFTW) call fftw_destroy_plan(planDebugForthMPI) if (debugFFTW) call fftw_destroy_plan(planDebugBackMPI) call fftw_destroy_plan(planForthMPI) call fftw_destroy_plan(planBackMPI) call fftw_destroy_plan(planCoordsMPI) end subroutine utilities_destroy !-------------------------------------------------------------------------------------------------- !> @brief calculate coordinates in current configuration for given defgrad field ! using integration in Fourier space. Similar as in mesh.f90, but using data already defined for ! convolution !-------------------------------------------------------------------------------------------------- subroutine utilities_updateIPcoords(F) use math use mesh, only: & gridGlobal, & gridLocal, & gridOffset, & geomSizeGlobal, & mesh_ipCoordinates implicit none real(pReal), dimension(3,3,gridLocal(1),gridLocal(2),gridLocal(3)), intent(in) :: F integer(pInt) :: i, j, k, m real(pReal), dimension(3) :: step, offset_coords, integrator real(pReal), dimension(3,3) :: Favg PetscErrorCode :: ierr field_realMPI = 0.0_pReal field_realMPI(1:3,1:3,1:gridLocal(1),1:gridLocal(2),1:gridLocal(3)) = F call utilities_FFTforward() integrator = geomSizeGlobal * 0.5_pReal / PI step = geomSizeGlobal/real(gridGlobal, pReal) !-------------------------------------------------------------------------------------------------- ! average F if (gridOffset == 0_pInt) Favg = real(field_fourierMPI(1:3,1:3,1,1,1),pReal)*wgt call MPI_Bcast(Favg,9,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr) !-------------------------------------------------------------------------------------------------- ! integration in Fourier space coords_fourierMPI = cmplx(0.0_pReal, 0.0_pReal, pReal) do k = 1_pInt, gridLocal(3); do j = 1_pInt, gridLocal(2); do i = 1_pInt,grid1Red do m = 1_pInt,3_pInt coords_fourierMPI(m,i,j,k) = sum(field_fourierMPI(m,1:3,i,j,k)*& cmplx(0.0_pReal,xi(1:3,i,j,k)*scaledGeomSize*integrator,pReal)) enddo if (any(xi(1:3,i,j,k) /= 0.0_pReal)) coords_fourierMPI(1:3,i,j,k) = & coords_fourierMPI(1:3,i,j,k)/cmplx(-sum(xi(1:3,i,j,k)*scaledGeomSize*xi(1:3,i,j,k)* & scaledGeomSize),0.0_pReal,pReal) enddo; enddo; enddo call fftw_mpi_execute_dft_c2r(planCoordsMPI,coords_fourierMPI,coords_realMPI) !-------------------------------------------------------------------------------------------------- ! add average to fluctuation and put (0,0,0) on (0,0,0) if (gridOffset == 0_pInt) offset_coords = coords_realMPI(1:3,1,1,1) call MPI_Bcast(offset_coords,3,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr) offset_coords = math_mul33x3(Favg,step/2.0_pReal) - offset_coords m = 1_pInt do k = 1_pInt,gridLocal(3); do j = 1_pInt,gridLocal(2); do i = 1_pInt,gridLocal(1) mesh_ipCoordinates(1:3,1,m) = coords_realMPI(1:3,i,j,k) & + offset_coords & + math_mul33x3(Favg,step*real([i,j,k+gridOffset]-1_pInt,pReal)) m = m+1_pInt enddo; enddo; enddo end subroutine utilities_updateIPcoords end module DAMASK_spectral_utilities