! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see <http://www.gnu.org/licenses/>. ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incoprorating dislocation and twinning physics !> @details to be done !-------------------------------------------------------------------------------------------------- module constitutive_dislotwin use prec, only: & pReal, & pInt use lattice, only: & LATTICE_undefined_ID implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & constitutive_dislotwin_sizeDotState, & !< number of dotStates constitutive_dislotwin_sizeState, & !< total number of microstructural state variables constitutive_dislotwin_sizePostResults !< cumulative size of post results integer(kind(LATTICE_undefined_ID)), dimension(:), allocatable, public :: & constitutive_dislotwin_structureID !< ID of the lattice structure integer(pInt), dimension(:,:), allocatable, target, public :: & constitutive_dislotwin_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & constitutive_dislotwin_output !< name of each post result output character(len=12), dimension(3), parameter, private :: & CONSTITUTIVE_DISLOTWIN_listBasicSlipStates = & ['rhoEdge ', 'rhoEdgeDip ', 'accshearslip'] character(len=12), dimension(2), parameter, private :: & CONSTITUTIVE_DISLOTWIN_listBasicTwinStates = & ['twinFraction', 'accsheartwin'] character(len=17), dimension(4), parameter, private :: & CONSTITUTIVE_DISLOTWIN_listDependentSlipStates = & ['invLambdaSlip ', 'invLambdaSlipTwin', 'meanFreePathSlip ', 'tauSlipThreshold '] character(len=16), dimension(4), parameter, private :: & CONSTITUTIVE_DISLOTWIN_listDependentTwinStates = & ['invLambdaTwin ', 'meanFreePathTwin', 'tauTwinThreshold', 'twinVolume '] real(pReal), parameter, private :: & kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin integer(pInt), dimension(:), allocatable, private :: & constitutive_dislotwin_Noutput !< number of outputs per instance of this plasticity integer(pInt), dimension(:), allocatable, private :: & constitutive_dislotwin_structure, & !< number representing the kind of lattice structure constitutive_dislotwin_totalNslip, & !< total number of active slip systems for each instance constitutive_dislotwin_totalNtwin !< total number of active twin systems for each instance integer(pInt), dimension(:,:), allocatable, private :: & constitutive_dislotwin_Nslip, & !< number of active slip systems for each family and instance constitutive_dislotwin_Ntwin !< number of active twin systems for each family and instance real(pReal), dimension(:), allocatable, private :: & constitutive_dislotwin_CoverA, & !< c/a ratio for hex type lattice constitutive_dislotwin_Gmod, & !< shear modulus constitutive_dislotwin_nu, & !< poisson's ratio constitutive_dislotwin_CAtomicVolume, & !< atomic volume in Bugers vector unit constitutive_dislotwin_D0, & !< prefactor for self-diffusion coefficient constitutive_dislotwin_Qsd, & !< activation energy for dislocation climb constitutive_dislotwin_GrainSize, & !< grain size constitutive_dislotwin_p, & !< p-exponent in glide velocity constitutive_dislotwin_q, & !< q-exponent in glide velocity constitutive_dislotwin_MaxTwinFraction, & !< maximum allowed total twin volume fraction constitutive_dislotwin_r, & !< r-exponent in twin nucleation rate constitutive_dislotwin_CEdgeDipMinDistance, & !< constitutive_dislotwin_Cmfptwin, & !< constitutive_dislotwin_Cthresholdtwin, & !< constitutive_dislotwin_SolidSolutionStrength, & !< Strength due to elements in solid solution constitutive_dislotwin_L0, & !< Length of twin nuclei in Burgers vectors constitutive_dislotwin_xc, & !< critical distance for formation of twin nucleus constitutive_dislotwin_VcrossSlip, & !< cross slip volume constitutive_dislotwin_sbResistance, & !< value for shearband resistance (might become an internal state variable at some point) constitutive_dislotwin_sbVelocity, & !< value for shearband velocity_0 constitutive_dislotwin_sbQedge, & !< value for shearband systems Qedge constitutive_dislotwin_SFE_0K, & !< stacking fault energy at zero K constitutive_dislotwin_dSFE_dT, & !< temperature dependance of stacking fault energy constitutive_dislotwin_aTolRho, & !< absolute tolerance for integration of dislocation density constitutive_dislotwin_aTolTwinFrac !< absolute tolerance for integration of twin volume fraction real(pReal), dimension(:,:,:), allocatable, private :: & constitutive_dislotwin_Cslip_66 !< elasticity matrix in Mandel notation for each instance real(pReal), dimension(:,:,:,:), allocatable, private :: & constitutive_dislotwin_Ctwin_66 !< twin elasticity matrix in Mandel notation for each instance real(pReal), dimension(:,:,:,:,:), allocatable, private :: & constitutive_dislotwin_Cslip_3333 !< elasticity matrix for each instance real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: & constitutive_dislotwin_Ctwin_3333 !< twin elasticity matrix for each instance real(pReal), dimension(:,:), allocatable, private :: & constitutive_dislotwin_rhoEdge0, & !< initial edge dislocation density per slip system for each family and instance constitutive_dislotwin_rhoEdgeDip0, & !< initial edge dipole density per slip system for each family and instance constitutive_dislotwin_burgersPerSlipFamily, & !< absolute length of burgers vector [m] for each slip family and instance constitutive_dislotwin_burgersPerSlipSystem, & !< absolute length of burgers vector [m] for each slip system and instance constitutive_dislotwin_burgersPerTwinFamily, & !< absolute length of burgers vector [m] for each twin family and instance constitutive_dislotwin_burgersPerTwinSystem, & !< absolute length of burgers vector [m] for each twin system and instance constitutive_dislotwin_QedgePerSlipFamily, & !< activation energy for glide [J] for each slip family and instance constitutive_dislotwin_QedgePerSlipSystem, & !< activation energy for glide [J] for each slip system and instance constitutive_dislotwin_v0PerSlipFamily, & !< dislocation velocity prefactor [m/s] for each family and instance constitutive_dislotwin_v0PerSlipSystem, & !< dislocation velocity prefactor [m/s] for each slip system and instance constitutive_dislotwin_Ndot0PerTwinFamily, & !< twin nucleation rate [1/m³s] for each twin family and instance constitutive_dislotwin_Ndot0PerTwinSystem, & !< twin nucleation rate [1/m³s] for each twin system and instance constitutive_dislotwin_tau_r, & !< stress to bring partial close together for each twin system and instance constitutive_dislotwin_twinsizePerTwinFamily, & !< twin thickness [m] for each twin family and instance constitutive_dislotwin_twinsizePerTwinSystem, & !< twin thickness [m] for each twin system and instance constitutive_dislotwin_CLambdaSlipPerSlipFamily, & !< Adj. parameter for distance between 2 forest dislocations for each slip family and instance constitutive_dislotwin_CLambdaSlipPerSlipSystem, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance constitutive_dislotwin_interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance constitutive_dislotwin_interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance constitutive_dislotwin_interaction_TwinSlip, & !< coefficients for twin-slip interaction for each interaction type and instance constitutive_dislotwin_interaction_TwinTwin !< coefficients for twin-twin interaction for each interaction type and instance real(pReal), dimension(:,:,:), allocatable, private :: & constitutive_dislotwin_interactionMatrix_SlipSlip, & !< interaction matrix of the different slip systems for each instance constitutive_dislotwin_interactionMatrix_SlipTwin, & !< interaction matrix of slip systems with twin systems for each instance constitutive_dislotwin_interactionMatrix_TwinSlip, & !< interaction matrix of twin systems with slip systems for each instance constitutive_dislotwin_interactionMatrix_TwinTwin, & !< interaction matrix of the different twin systems for each instance constitutive_dislotwin_forestProjectionEdge !< matrix of forest projections of edge dislocations for each instance real(pReal), dimension(:,:,:,:,:), allocatable, private :: & constitutive_dislotwin_sbSv enum, bind(c) enumerator :: undefined_ID, & edge_density_ID, & dipole_density_ID, & shear_rate_slip_ID, & accumulated_shear_slip_ID, & mfp_slip_ID, & resolved_stress_slip_ID, & threshold_stress_slip_ID, & edge_dipole_distance_ID, & stress_exponent_ID, & twin_fraction_ID, & shear_rate_twin_ID, & accumulated_shear_twin_ID, & mfp_twin_ID, & resolved_stress_twin_ID, & threshold_stress_twin_ID, & resolved_stress_shearband_ID, & shear_rate_shearband_ID, & sb_eigenvalues_ID, & sb_eigenvectors_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & constitutive_dislotwin_outputID !< ID of each post result output public :: & constitutive_dislotwin_init, & constitutive_dislotwin_stateInit, & constitutive_dislotwin_aTolState, & constitutive_dislotwin_homogenizedC, & constitutive_dislotwin_microstructure, & constitutive_dislotwin_LpAndItsTangent, & constitutive_dislotwin_dotState, & constitutive_dislotwin_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine constitutive_dislotwin_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: & debug_level,& debug_constitutive,& debug_levelBasic use math, only: & math_Mandel3333to66, & math_Voigt66to3333, & math_mul3x3 use mesh, only: & mesh_maxNips, & mesh_NcpElems use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & homogenization_maxNgrains, & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_DISLOTWIN_label, & PLASTICITY_DISLOTWIN_ID, & MATERIAL_partPhase use lattice implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: MAXNCHUNKS = LATTICE_maxNinteraction + 1_pInt integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions integer(pInt), dimension(7) :: configNchunks integer(pInt) :: section = 0_pInt, maxNinstance,mySize=0_pInt,structID,maxTotalNslip,maxTotalNtwin,& f,i,j,k,l,m,n,o,p,q,r,s,ns,nt, & Nchunks_SlipSlip, Nchunks_SlipTwin, Nchunks_TwinSlip, Nchunks_TwinTwin, & Nchunks_SlipFamilies, Nchunks_TwinFamilies, & index_myFamily, index_otherFamily character(len=32) :: & structure = '' character(len=65536) :: & tag = '', & line = '' write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOTWIN_label//' init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(phase_plasticity == PLASTICITY_DISLOTWIN_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance Nchunks_SlipFamilies = lattice_maxNslipFamily Nchunks_TwinFamilies = lattice_maxNtwinFamily Nchunks_SlipSlip = lattice_maxNinteraction Nchunks_SlipTwin = lattice_maxNinteraction Nchunks_TwinSlip = lattice_maxNinteraction Nchunks_TwinTwin = lattice_maxNinteraction !* Space allocation for global variables allocate(constitutive_dislotwin_sizeDotState(maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_sizeState(maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_sizePostResults(maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt) allocate(constitutive_dislotwin_output(maxval(phase_Noutput),maxNinstance)) constitutive_dislotwin_output = '' allocate(constitutive_dislotwin_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID) allocate(constitutive_dislotwin_Noutput(maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_structureID(maxNinstance), source=LATTICE_undefined_ID) allocate(constitutive_dislotwin_structure(maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_Ntwin(lattice_maxNtwinFamily,maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_totalNslip(maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_totalNtwin(maxNinstance), source=0_pInt) allocate(constitutive_dislotwin_CoverA(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_Gmod(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_nu(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_CAtomicVolume(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_D0(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_Qsd(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_GrainSize(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_p(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_q(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_MaxTwinFraction(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_r(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_CEdgeDipMinDistance(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_Cmfptwin(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_Cthresholdtwin(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_SolidSolutionStrength(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_L0(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_xc(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_VcrossSlip(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_aTolRho(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_aTolTwinFrac(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_Cslip_66(6,6,maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_Cslip_3333(3,3,3,3,maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_sbResistance(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_sbVelocity(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_sbQedge(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_SFE_0K(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_dSFE_dT(maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_rhoEdge0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_burgersPerTwinFamily(lattice_maxNtwinFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_QedgePerSlipFamily(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_v0PerSlipFamily(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_Ndot0PerTwinFamily(lattice_maxNtwinFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_twinsizePerTwinFamily(lattice_maxNtwinFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_CLambdaSlipPerSlipFamily(lattice_maxNslipFamily,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_sbSv(6,6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), & source=0.0_pReal) rewind(fileUnit) do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase> line = IO_read(fileUnit) enddo do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt ! advance section counter cycle ! skip to next line endif if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran if (phase_plasticity(section) == PLASTICITY_DISLOTWIN_ID) then ! one of my sections i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase positions = IO_stringPos(line,MAXNCHUNKS) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('plasticity', 'elasticity') cycle case ('(output)') constitutive_dislotwin_Noutput(i) = constitutive_dislotwin_Noutput(i) + 1_pInt constitutive_dislotwin_output(constitutive_dislotwin_Noutput(i),i) = & IO_lc(IO_stringValue(line,positions,2_pInt)) select case(IO_lc(IO_stringValue(line,positions,2_pInt))) case ('edge_density') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = edge_density_ID case ('dipole_density') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = dipole_density_ID case ('shear_rate_slip') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = shear_rate_slip_ID case ('accumulated_shear_slip') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = accumulated_shear_slip_ID case ('mfp_slip') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = mfp_slip_ID case ('resolved_stress_slip') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = resolved_stress_slip_ID case ('edge_dipole_distance') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = edge_dipole_distance_ID case ('stress_exponent') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = stress_exponent_ID case ('twin_fraction') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = twin_fraction_ID case ('shear_rate_twin') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = shear_rate_twin_ID case ('accumulated_shear_twin') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = accumulated_shear_twin_ID case ('mfp_twin') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = mfp_twin_ID case ('resolved_stress_twin') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = resolved_stress_twin_ID case ('threshold_stress_twin') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = threshold_stress_twin_ID case ('resolved_stress_shearband') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = resolved_stress_shearband_ID case ('shear_rate_shearband') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = shear_rate_shearband_ID case ('sb_eigenvalues') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = sb_eigenvalues_ID case ('sb_eigenvectors') constitutive_dislotwin_outputID(constitutive_dislotwin_Noutput(i),i) = sb_eigenvectors_ID case default call IO_error(105_pInt,ext_msg=IO_stringValue(line,positions,2_pInt)//' ('//PLASTICITY_DISLOTWIN_label//')') end select case ('lattice_structure') structure = IO_lc(IO_stringValue(line,positions,2_pInt)) select case(structure(1:3)) case(LATTICE_iso_label) constitutive_dislotwin_structureID(i) = LATTICE_iso_ID case(LATTICE_fcc_label) constitutive_dislotwin_structureID(i) = LATTICE_fcc_ID case(LATTICE_bcc_label) constitutive_dislotwin_structureID(i) = LATTICE_bcc_ID case(LATTICE_hex_label) constitutive_dislotwin_structureID(i) = LATTICE_hex_ID case(LATTICE_ort_label) constitutive_dislotwin_structureID(i) = LATTICE_ort_ID end select configNchunks = lattice_configNchunks(constitutive_dislotwin_structureID(i)) Nchunks_SlipFamilies = configNchunks(1) Nchunks_TwinFamilies = configNchunks(2) Nchunks_SlipSlip = configNchunks(3) Nchunks_SlipTwin = configNchunks(4) Nchunks_TwinSlip = configNchunks(5) Nchunks_TwinTwin = configNchunks(6) case ('covera_ratio') constitutive_dislotwin_CoverA(i) = IO_floatValue(line,positions,2_pInt) case ('c11') constitutive_dislotwin_Cslip_66(1,1,i) = IO_floatValue(line,positions,2_pInt) case ('c12') constitutive_dislotwin_Cslip_66(1,2,i) = IO_floatValue(line,positions,2_pInt) case ('c13') constitutive_dislotwin_Cslip_66(1,3,i) = IO_floatValue(line,positions,2_pInt) case ('c22') constitutive_dislotwin_Cslip_66(2,2,i) = IO_floatValue(line,positions,2_pInt) case ('c23') constitutive_dislotwin_Cslip_66(2,3,i) = IO_floatValue(line,positions,2_pInt) case ('c33') constitutive_dislotwin_Cslip_66(3,3,i) = IO_floatValue(line,positions,2_pInt) case ('c44') constitutive_dislotwin_Cslip_66(4,4,i) = IO_floatValue(line,positions,2_pInt) case ('c55') constitutive_dislotwin_Cslip_66(5,5,i) = IO_floatValue(line,positions,2_pInt) case ('c66') constitutive_dislotwin_Cslip_66(6,6,i) = IO_floatValue(line,positions,2_pInt) case ('nslip') if (positions(1) < 1_pInt + Nchunks_SlipFamilies) & call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')') Nchunks_SlipFamilies = positions(1) - 1_pInt do j = 1_pInt, Nchunks_SlipFamilies constitutive_dislotwin_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j) enddo case ('ntwin') if (positions(1) < 1_pInt + Nchunks_TwinFamilies) & call IO_warning(51_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')') Nchunks_TwinFamilies = positions(1) - 1_pInt do j = 1_pInt, Nchunks_TwinFamilies constitutive_dislotwin_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j) enddo case ('rhoedge0') do j = 1_pInt, Nchunks_SlipFamilies constitutive_dislotwin_rhoEdge0(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('rhoedgedip0') do j = 1_pInt, Nchunks_SlipFamilies constitutive_dislotwin_rhoEdgeDip0(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('slipburgers') do j = 1_pInt, Nchunks_SlipFamilies constitutive_dislotwin_burgersPerSlipFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('twinburgers') do j = 1_pInt, Nchunks_TwinFamilies constitutive_dislotwin_burgersPerTwinFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('qedge') do j = 1_pInt, Nchunks_SlipFamilies constitutive_dislotwin_QedgePerSlipFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('v0') do j = 1_pInt, Nchunks_SlipFamilies constitutive_dislotwin_v0PerSlipFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('ndot0') do j = 1_pInt, Nchunks_TwinFamilies constitutive_dislotwin_Ndot0PerTwinFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('twinsize') do j = 1_pInt, Nchunks_TwinFamilies constitutive_dislotwin_twinsizePerTwinFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('clambdaslip') do j = 1_pInt, Nchunks_SlipFamilies constitutive_dislotwin_CLambdaSlipPerSlipFamily(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('grainsize') constitutive_dislotwin_GrainSize(i) = IO_floatValue(line,positions,2_pInt) case ('maxtwinfraction') constitutive_dislotwin_MaxTwinFraction(i) = IO_floatValue(line,positions,2_pInt) case ('pexponent') constitutive_dislotwin_p(i) = IO_floatValue(line,positions,2_pInt) case ('qexponent') constitutive_dislotwin_q(i) = IO_floatValue(line,positions,2_pInt) case ('rexponent') constitutive_dislotwin_r(i) = IO_floatValue(line,positions,2_pInt) case ('d0') constitutive_dislotwin_D0(i) = IO_floatValue(line,positions,2_pInt) case ('qsd') constitutive_dislotwin_Qsd(i) = IO_floatValue(line,positions,2_pInt) case ('atol_rho') constitutive_dislotwin_aTolRho(i) = IO_floatValue(line,positions,2_pInt) case ('atol_twinfrac') constitutive_dislotwin_aTolTwinFrac(i) = IO_floatValue(line,positions,2_pInt) case ('cmfptwin') constitutive_dislotwin_Cmfptwin(i) = IO_floatValue(line,positions,2_pInt) case ('cthresholdtwin') constitutive_dislotwin_Cthresholdtwin(i) = IO_floatValue(line,positions,2_pInt) case ('solidsolutionstrength') constitutive_dislotwin_SolidSolutionStrength(i) = IO_floatValue(line,positions,2_pInt) case ('l0') constitutive_dislotwin_L0(i) = IO_floatValue(line,positions,2_pInt) case ('xc') constitutive_dislotwin_xc(i) = IO_floatValue(line,positions,2_pInt) case ('vcrossslip') constitutive_dislotwin_VcrossSlip(i) = IO_floatValue(line,positions,2_pInt) case ('cedgedipmindistance') constitutive_dislotwin_CEdgeDipMinDistance(i) = IO_floatValue(line,positions,2_pInt) case ('catomicvolume') constitutive_dislotwin_CAtomicVolume(i) = IO_floatValue(line,positions,2_pInt) case ('interaction_slipslip','interactionslipslip') if (positions(1) < 1_pInt + Nchunks_SlipSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')') do j = 1_pInt, Nchunks_SlipSlip constitutive_dislotwin_interaction_SlipSlip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_sliptwin','interactionsliptwin') if (positions(1) < 1_pInt + Nchunks_SlipTwin) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')') do j = 1_pInt, Nchunks_SlipTwin constitutive_dislotwin_interaction_SlipTwin(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_twinslip','interactiontwinslip') if (positions(1) < 1_pInt + Nchunks_TwinSlip) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')') do j = 1_pInt, Nchunks_TwinSlip constitutive_dislotwin_interaction_TwinSlip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_twintwin','interactiontwintwin') if (positions(1) < 1_pInt + Nchunks_TwinTwin) & call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')') do j = 1_pInt, Nchunks_TwinTwin constitutive_dislotwin_interaction_TwinTwin(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('sfe_0k') constitutive_dislotwin_SFE_0K(i) = IO_floatValue(line,positions,2_pInt) case ('dsfe_dt') constitutive_dislotwin_dSFE_dT(i) = IO_floatValue(line,positions,2_pInt) case ('shearbandresistance') constitutive_dislotwin_sbResistance(i) = IO_floatValue(line,positions,2_pInt) case ('shearbandvelocity') constitutive_dislotwin_sbVelocity(i) = IO_floatValue(line,positions,2_pInt) case ('qedgepersbsystem') constitutive_dislotwin_sbQedge(i) = IO_floatValue(line,positions,2_pInt) case default call IO_error(210_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')') end select endif endif enddo sanityChecks: do i = 1_pInt,maxNinstance constitutive_dislotwin_structure(i) = & lattice_initializeStructure(constitutive_dislotwin_structureID(i),constitutive_dislotwin_CoverA(i)) structID = constitutive_dislotwin_structure(i) if (structID < 1_pInt) call IO_error(205_pInt,el=i) if (sum(constitutive_dislotwin_Nslip(:,i)) < 0_pInt) call IO_error(211_pInt,el=i,ext_msg='Nslip (' & //PLASTICITY_DISLOTWIN_label//')') if (sum(constitutive_dislotwin_Ntwin(:,i)) < 0_pInt) call IO_error(211_pInt,el=i,ext_msg='Ntwin (' & //PLASTICITY_DISLOTWIN_label//')') do f = 1_pInt,lattice_maxNslipFamily if (constitutive_dislotwin_Nslip(f,i) > 0_pInt) then if (constitutive_dislotwin_rhoEdge0(f,i) < 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='rhoEdge0 (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_rhoEdgeDip0(f,i) < 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='rhoEdgeDip0 (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_burgersPerSlipFamily(f,i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='slipBurgers (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_v0PerSlipFamily(f,i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='v0 (' & //PLASTICITY_DISLOTWIN_label//')') endif enddo do f = 1_pInt,lattice_maxNtwinFamily if (constitutive_dislotwin_Ntwin(f,i) > 0_pInt) then if (constitutive_dislotwin_burgersPerTwinFamily(f,i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='twinburgers (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_Ndot0PerTwinFamily(f,i) < 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='ndot0 (' & //PLASTICITY_DISLOTWIN_label//')') endif enddo if (constitutive_dislotwin_CAtomicVolume(i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='cAtomicVolume (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_D0(i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='D0 (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_Qsd(i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='Qsd (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_SFE_0K(i) == 0.0_pReal .and. & constitutive_dislotwin_dSFE_dT(i) == 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='SFE (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_aTolRho(i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='aTolRho (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_aTolTwinFrac(i) <= 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='aTolTwinFrac (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_sbResistance(i) < 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='sbResistance (' & //PLASTICITY_DISLOTWIN_label//')') if (constitutive_dislotwin_sbVelocity(i) < 0.0_pReal) call IO_error(211_pInt,el=i,ext_msg='sbVelocity (' & //PLASTICITY_DISLOTWIN_label//')') !* Determine total number of active slip or twin systems constitutive_dislotwin_Nslip(:,i) = min(lattice_NslipSystem(:,structID),constitutive_dislotwin_Nslip(:,i)) constitutive_dislotwin_Ntwin(:,i) = min(lattice_NtwinSystem(:,structID),constitutive_dislotwin_Ntwin(:,i)) constitutive_dislotwin_totalNslip(i) = sum(constitutive_dislotwin_Nslip(:,i)) constitutive_dislotwin_totalNtwin(i) = sum(constitutive_dislotwin_Ntwin(:,i)) enddo sanityChecks !-------------------------------------------------------------------------------------------------- ! allocation of variables whose size depends on the total number of active slip systems maxTotalNslip = maxval(constitutive_dislotwin_totalNslip) maxTotalNtwin = maxval(constitutive_dislotwin_totalNtwin) allocate(constitutive_dislotwin_burgersPerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_burgersPerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_QedgePerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_v0PerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_Ndot0PerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_tau_r(maxTotalNtwin, maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_twinsizePerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance),source=0.0_pReal) allocate(constitutive_dislotwin_interactionMatrix_SlipSlip(maxTotalNslip,maxTotalNslip,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_interactionMatrix_SlipTwin(maxTotalNslip,maxTotalNtwin,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_interactionMatrix_TwinSlip(maxTotalNtwin,maxTotalNslip,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_interactionMatrix_TwinTwin(maxTotalNtwin,maxTotalNtwin,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstance), & source=0.0_pReal) allocate(constitutive_dislotwin_Ctwin_66(6,6,maxTotalNtwin,maxNinstance), source=0.0_pReal) allocate(constitutive_dislotwin_Ctwin_3333(3,3,3,3,maxTotalNtwin,maxNinstance), source=0.0_pReal) instancesLoop: do i = 1_pInt,maxNinstance structID = constitutive_dislotwin_structure(i) ns = constitutive_dislotwin_totalNslip(i) nt = constitutive_dislotwin_totalNtwin(i) !* Determine size of state array constitutive_dislotwin_sizeDotState(i) = int(size(CONSTITUTIVE_DISLOTWIN_listBasicSlipStates),pInt) * ns & + int(size(CONSTITUTIVE_DISLOTWIN_listBasicTwinStates),pInt) * nt constitutive_dislotwin_sizeState(i) = constitutive_dislotwin_sizeDotState(i) & + int(size(CONSTITUTIVE_DISLOTWIN_listDependentSlipStates),pInt) * ns & + int(size(CONSTITUTIVE_DISLOTWIN_listDependentTwinStates),pInt) * nt !* Determine size of postResults array outputsLoop: do o = 1_pInt,constitutive_dislotwin_Noutput(i) select case(constitutive_dislotwin_outputID(o,i)) case(edge_density_ID, & dipole_density_ID, & shear_rate_slip_ID, & accumulated_shear_slip_ID, & mfp_slip_ID, & resolved_stress_slip_ID, & threshold_stress_slip_ID, & edge_dipole_distance_ID, & stress_exponent_ID & ) mySize = ns case(twin_fraction_ID, & shear_rate_twin_ID, & accumulated_shear_twin_ID, & mfp_twin_ID, & resolved_stress_twin_ID, & threshold_stress_twin_ID & ) mySize = nt case(resolved_stress_shearband_ID, & shear_rate_shearband_ID & ) mySize = 6_pInt case(sb_eigenvalues_ID) mySize = 3_pInt case(sb_eigenvectors_ID) mySize = 9_pInt end select if (mySize > 0_pInt) then ! any meaningful output found constitutive_dislotwin_sizePostResult(o,i) = mySize constitutive_dislotwin_sizePostResults(i) = constitutive_dislotwin_sizePostResults(i) + mySize endif enddo outputsLoop !* Elasticity matrix and shear modulus according to material.config constitutive_dislotwin_Cslip_66(1:6,1:6,i) = lattice_symmetrizeC66(constitutive_dislotwin_structureID(i),& constitutive_dislotwin_Cslip_66(:,:,i)) constitutive_dislotwin_Gmod(i) = & 0.2_pReal*(constitutive_dislotwin_Cslip_66(1,1,i)-constitutive_dislotwin_Cslip_66(1,2,i)) & +0.6_pReal*constitutive_dislotwin_Cslip_66(4,4,i) ! (C11iso-C12iso)/2 with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5 constitutive_dislotwin_nu(i) = ( constitutive_dislotwin_Cslip_66(1,1,i) + 4.0_pReal*constitutive_dislotwin_Cslip_66(1,2,i) & - 2.0_pReal*constitutive_dislotwin_Cslip_66(1,2,i) ) & / ( 4.0_pReal*constitutive_dislotwin_Cslip_66(1,1,i) + 6.0_pReal*constitutive_dislotwin_Cslip_66(1,2,i) & + 2.0_pReal*constitutive_dislotwin_Cslip_66(4,4,i) ) constitutive_dislotwin_Cslip_66(1:6,1:6,i) = & math_Mandel3333to66(math_Voigt66to3333(constitutive_dislotwin_Cslip_66(1:6,1:6,i))) constitutive_dislotwin_Cslip_3333(1:3,1:3,1:3,1:3,i) = & math_Voigt66to3333(constitutive_dislotwin_Cslip_66(1:6,1:6,i)) !* Process slip related parameters ------------------------------------------------ slipFamiliesLoop: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(constitutive_dislotwin_Nslip(1:f-1_pInt,i)) ! index in truncated slip system list slipSystemsLoop: do j = 1_pInt,constitutive_dislotwin_Nslip(f,i) !* Burgers vector, ! dislocation velocity prefactor, ! mean free path prefactor, ! and minimum dipole distance constitutive_dislotwin_burgersPerSlipSystem(index_myFamily+j,i) = constitutive_dislotwin_burgersPerSlipFamily(f,i) constitutive_dislotwin_QedgePerSlipSystem(index_myFamily+j,i) = constitutive_dislotwin_QedgePerSlipFamily(f,i) constitutive_dislotwin_v0PerSlipSystem(index_myFamily+j,i) = constitutive_dislotwin_v0PerSlipFamily(f,i) constitutive_dislotwin_CLambdaSlipPerSlipSystem(index_myFamily+j,i) = constitutive_dislotwin_CLambdaSlipPerSlipFamily(f,i) !* Calculation of forest projections for edge dislocations !* Interaction matrices do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(constitutive_dislotwin_Nslip(1:o-1_pInt,i)) do k = 1_pInt,constitutive_dislotwin_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_dislotwin_forestProjectionEdge(index_myFamily+j,index_otherFamily+k,i) = & abs(math_mul3x3(lattice_sn(:,sum(lattice_NslipSystem(1:f-1,structID))+j,structID), & lattice_st(:,sum(lattice_NslipSystem(1:o-1,structID))+k,structID))) constitutive_dislotwin_interactionMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,i) = & constitutive_dislotwin_interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,structID))+j, & sum(lattice_NslipSystem(1:o-1,structID))+k, & structID), i ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_dislotwin_Ntwin(1:o-1_pInt,i)) do k = 1_pInt,constitutive_dislotwin_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_dislotwin_interactionMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,i) = & constitutive_dislotwin_interaction_SlipTwin(lattice_interactionSlipTwin( & sum(lattice_NslipSystem(1:f-1_pInt,structID))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,structID))+k, & structID), i ) enddo; enddo enddo slipSystemsLoop enddo slipFamiliesLoop !* Process twin related parameters ------------------------------------------------ twinFamiliesLoop: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(constitutive_dislotwin_Ntwin(1:f-1_pInt,i)) ! index in truncated twin system list twinSystemsLoop: do j = 1_pInt,constitutive_dislotwin_Ntwin(f,i) !* Burgers vector, ! nucleation rate prefactor, ! and twin size constitutive_dislotwin_burgersPerTwinSystem(index_myFamily+j,i) = constitutive_dislotwin_burgersPerTwinFamily(f,i) constitutive_dislotwin_Ndot0PerTwinSystem(index_myFamily+j,i) = constitutive_dislotwin_Ndot0PerTwinFamily(f,i) constitutive_dislotwin_twinsizePerTwinSystem(index_myFamily+j,i) = constitutive_dislotwin_twinsizePerTwinFamily(f,i) !* Rotate twin elasticity matrices index_otherFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! index in full lattice twin list do l = 1_pInt,3_pInt ; do m = 1_pInt,3_pInt ; do n = 1_pInt,3_pInt ; do o = 1_pInt,3_pInt do p = 1_pInt,3_pInt ; do q = 1_pInt,3_pInt ; do r = 1_pInt,3_pInt ; do s = 1_pInt,3_pInt constitutive_dislotwin_Ctwin_3333(l,m,n,o,index_myFamily+j,i) = & constitutive_dislotwin_Ctwin_3333(l,m,n,o,index_myFamily+j,i) + & constitutive_dislotwin_Cslip_3333(p,q,r,s,i) * & lattice_Qtwin(l,p,index_otherFamily+j,structID) * & lattice_Qtwin(m,q,index_otherFamily+j,structID) * & lattice_Qtwin(n,r,index_otherFamily+j,structID) * & lattice_Qtwin(o,s,index_otherFamily+j,structID) enddo ; enddo ; enddo ; enddo enddo ; enddo ; enddo ; enddo constitutive_dislotwin_Ctwin_66(1:6,1:6,index_myFamily+j,i) = & math_Mandel3333to66(constitutive_dislotwin_Ctwin_3333(1:3,1:3,1:3,1:3,index_myFamily+j,i)) !* Interaction matrices do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(constitutive_dislotwin_Nslip(1:o-1_pInt,i)) do k = 1_pInt,constitutive_dislotwin_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_dislotwin_interactionMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,i) = & constitutive_dislotwin_interaction_TwinSlip(lattice_interactionTwinSlip( & sum(lattice_NtwinSystem(1:f-1_pInt,structID))+j, & sum(lattice_NslipSystem(1:o-1_pInt,structID))+k, & structID), i ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_dislotwin_Ntwin(1:o-1_pInt,i)) do k = 1_pInt,constitutive_dislotwin_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_dislotwin_interactionMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,i) = & constitutive_dislotwin_interaction_TwinTwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:f-1_pInt,structID))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,structID))+k, & structID), i ) enddo; enddo enddo twinSystemsLoop enddo twinFamiliesLoop enddo instancesLoop end subroutine constitutive_dislotwin_init !-------------------------------------------------------------------------------------------------- !> @brief sets the initial microstructural state for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- function constitutive_dislotwin_stateInit(matID) use math, only: & pi use lattice, only: & lattice_maxNslipFamily implicit none integer(pInt), intent(in) :: matID !< number specifying the instance of the plasticity real(pReal), dimension(constitutive_dislotwin_sizeState(matID)) :: & constitutive_dislotwin_stateInit integer(pInt) :: i,j,f,ns,nt, index_myFamily real(pReal), dimension(constitutive_dislotwin_totalNslip(matID)) :: & rhoEdge0, & rhoEdgeDip0, & invLambdaSlip0, & MeanFreePathSlip0, & tauSlipThreshold0 real(pReal), dimension(constitutive_dislotwin_totalNtwin(matID)) :: & MeanFreePathTwin0,TwinVolume0 ns = constitutive_dislotwin_totalNslip(matID) nt = constitutive_dislotwin_totalNtwin(matID) constitutive_dislotwin_stateInit = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! initialize basic slip state variables do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(constitutive_dislotwin_Nslip(1:f-1_pInt,matID)) ! index in truncated slip system list rhoEdge0(index_myFamily+1_pInt: & index_myFamily+constitutive_dislotwin_Nslip(f,matID)) = & constitutive_dislotwin_rhoEdge0(f,matID) rhoEdgeDip0(index_myFamily+1_pInt: & index_myFamily+constitutive_dislotwin_Nslip(f,matID)) = & constitutive_dislotwin_rhoEdgeDip0(f,matID) enddo constitutive_dislotwin_stateInit(1_pInt:ns) = rhoEdge0 constitutive_dislotwin_stateInit(ns+1_pInt:2_pInt*ns) = rhoEdgeDip0 !-------------------------------------------------------------------------------------------------- ! initialize dependent slip microstructural variables forall (i = 1_pInt:ns) & invLambdaSlip0(i) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_forestProjectionEdge(1:ns,i,matID)))/ & constitutive_dislotwin_CLambdaSlipPerSlipSystem(i,matID) constitutive_dislotwin_stateInit(3_pInt*ns+2_pInt*nt+1:4_pInt*ns+2_pInt*nt) = invLambdaSlip0 forall (i = 1_pInt:ns) & MeanFreePathSlip0(i) = & constitutive_dislotwin_GrainSize(matID)/(1.0_pReal+invLambdaSlip0(i)*constitutive_dislotwin_GrainSize(matID)) constitutive_dislotwin_stateInit(5_pInt*ns+3_pInt*nt+1:6_pInt*ns+3_pInt*nt) = MeanFreePathSlip0 forall (i = 1_pInt:ns) & tauSlipThreshold0(i) = constitutive_dislotwin_SolidSolutionStrength(matID) + & constitutive_dislotwin_Gmod(matID)*constitutive_dislotwin_burgersPerSlipSystem(i,matID) * & sqrt(dot_product((rhoEdge0+rhoEdgeDip0),constitutive_dislotwin_interactionMatrix_SlipSlip(i,1:ns,matID))) constitutive_dislotwin_stateInit(6_pInt*ns+4_pInt*nt+1:7_pInt*ns+4_pInt*nt) = tauSlipThreshold0 !-------------------------------------------------------------------------------------------------- ! initialize dependent twin microstructural variables forall (j = 1_pInt:nt) & MeanFreePathTwin0(j) = constitutive_dislotwin_GrainSize(matID) constitutive_dislotwin_stateInit(6_pInt*ns+3_pInt*nt+1_pInt:6_pInt*ns+4_pInt*nt) = MeanFreePathTwin0 forall (j = 1_pInt:nt) & TwinVolume0(j) = & (pi/4.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(j,matID)*MeanFreePathTwin0(j)**(2.0_pReal) constitutive_dislotwin_stateInit(7_pInt*ns+5_pInt*nt+1_pInt:7_pInt*ns+6_pInt*nt) = TwinVolume0 end function constitutive_dislotwin_stateInit !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- pure function constitutive_dislotwin_aTolState(matID) implicit none integer(pInt), intent(in) :: & matID ! number specifying the current instance of the plasticity real(pReal), dimension(constitutive_dislotwin_sizeState(matID)) :: & constitutive_dislotwin_aTolState ! relevant state values for the current instance of this plasticity ! Tolerance state for dislocation densities constitutive_dislotwin_aTolState(1_pInt:2_pInt*constitutive_dislotwin_totalNslip(matID)) = & constitutive_dislotwin_aTolRho(matID) ! Tolerance state for accumulated shear due to slip constitutive_dislotwin_aTolState(2_pInt*constitutive_dislotwin_totalNslip(matID)+1_pInt: & 3_pInt*constitutive_dislotwin_totalNslip(matID))=1e6_pReal ! Tolerance state for twin volume fraction constitutive_dislotwin_aTolState(3_pInt*constitutive_dislotwin_totalNslip(matID)+1_pInt: & 3_pInt*constitutive_dislotwin_totalNslip(matID)+& constitutive_dislotwin_totalNtwin(matID)) = & constitutive_dislotwin_aTolTwinFrac(matID) ! Tolerance state for accumulated shear due to twin constitutive_dislotwin_aTolState(3_pInt*constitutive_dislotwin_totalNslip(matID)+ & constitutive_dislotwin_totalNtwin(matID)+1_pInt: & 3_pInt*constitutive_dislotwin_totalNslip(matID)+ & 2_pInt*constitutive_dislotwin_totalNtwin(matID)) = 1e6_pReal end function constitutive_dislotwin_aTolState !-------------------------------------------------------------------------------------------------- !> @brief returns the homogenized elasticity matrix !-------------------------------------------------------------------------------------------------- pure function constitutive_dislotwin_homogenizedC(state,ipc,ip,el) use prec, only: & p_vec use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(6,6) :: & constitutive_dislotwin_homogenizedC integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state integer(pInt) :: matID,ns,nt,i real(pReal) :: sumf !* Shortened notation matID = phase_plasticityInstance(material_phase(ipc,ip,el)) ns = constitutive_dislotwin_totalNslip(matID) nt = constitutive_dislotwin_totalNtwin(matID) !* Total twin volume fraction sumf = sum(state(ipc,ip,el)%p((3_pInt*ns+1_pInt):(3_pInt*ns+nt))) ! safe for nt == 0 !* Homogenized elasticity matrix constitutive_dislotwin_homogenizedC = (1.0_pReal-sumf)*constitutive_dislotwin_Cslip_66(1:6,1:6,matID) do i=1_pInt,nt constitutive_dislotwin_homogenizedC = & constitutive_dislotwin_homogenizedC + state(ipc,ip,el)%p(3_pInt*ns+i)*constitutive_dislotwin_Ctwin_66(1:6,1:6,i,matID) enddo end function constitutive_dislotwin_homogenizedC !-------------------------------------------------------------------------------------------------- !> @brief calculates derived quantities from state !-------------------------------------------------------------------------------------------------- subroutine constitutive_dislotwin_microstructure(temperature,state,ipc,ip,el) use prec, only: & p_vec use math, only: & pi use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), intent(in) :: & temperature !< temperature at IP type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: & state !< microstructure state integer(pInt) :: & matID,structID,& ns,nt,s,t real(pReal) :: & sumf,sfe,x0 real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: fOverStacksize !* Shortened notation matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_dislotwin_structure(matID) ns = constitutive_dislotwin_totalNslip(matID) nt = constitutive_dislotwin_totalNtwin(matID) !* State: 1 : ns rho_edge !* State: ns+1 : 2*ns rho_dipole !* State: 2*ns+1 : 3*ns accumulated shear due to slip !* State: 3*ns+1 : 3*ns+nt f !* State: 3*ns+nt+1 : 3*ns+2*nt accumulated shear due to twin !* State: 3*ns+2*nt+1 : 4*ns+2*nt 1/lambda_slip !* State: 4*ns+2*nt+1 : 5*ns+2*nt 1/lambda_sliptwin !* State: 5*ns+2*nt+1 : 5*ns+3*nt 1/lambda_twin !* State: 5*ns+3*nt+1 : 6*ns+3*nt mfp_slip !* State: 6*ns+3*nt+1 : 6*ns+4*nt mfp_twin !* State: 6*ns+4*nt+1 : 7*ns+4*nt threshold_stress_slip !* State: 7*ns+4*nt+1 : 7*ns+5*nt threshold_stress_twin !* State: 7*ns+5*nt+1 : 7*ns+6*nt twin volume !* Total twin volume fraction sumf = sum(state(ipc,ip,el)%p((3*ns+1):(3*ns+nt))) ! safe for nt == 0 !* Stacking fault energy sfe = constitutive_dislotwin_SFE_0K(matID) + & constitutive_dislotwin_dSFE_dT(matID) * Temperature !* rescaled twin volume fraction for topology forall (t = 1_pInt:nt) & fOverStacksize(t) = & state(ipc,ip,el)%p(3_pInt*ns+t)/constitutive_dislotwin_twinsizePerTwinSystem(t,matID) !* 1/mean free distance between 2 forest dislocations seen by a moving dislocation forall (s = 1_pInt:ns) & state(ipc,ip,el)%p(3_pInt*ns+2_pInt*nt+s) = & sqrt(dot_product((state(ipc,ip,el)%p(1:ns)+state(ipc,ip,el)%p(ns+1_pInt:2_pInt*ns)),& constitutive_dislotwin_forestProjectionEdge(1:ns,s,matID)))/ & constitutive_dislotwin_CLambdaSlipPerSlipSystem(s,matID) !* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation !$OMP CRITICAL (evilmatmul) state(ipc,ip,el)%p((4_pInt*ns+2_pInt*nt+1_pInt):(5_pInt*ns+2_pInt*nt)) = 0.0_pReal if (nt > 0_pInt .and. ns > 0_pInt) & state(ipc,ip,el)%p((4_pInt*ns+2_pInt*nt+1):(5_pInt*ns+2_pInt*nt)) = & matmul(constitutive_dislotwin_interactionMatrix_SlipTwin(1:ns,1:nt,matID),fOverStacksize(1:nt))/(1.0_pReal-sumf) !$OMP END CRITICAL (evilmatmul) !* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin !$OMP CRITICAL (evilmatmul) if (nt > 0_pInt) & state(ipc,ip,el)%p((5_pInt*ns+2_pInt*nt+1_pInt):(5_pInt*ns+3_pInt*nt)) = & matmul(constitutive_dislotwin_interactionMatrix_TwinTwin(1:nt,1:nt,matID),fOverStacksize(1:nt))/(1.0_pReal-sumf) !$OMP END CRITICAL (evilmatmul) !* mean free path between 2 obstacles seen by a moving dislocation do s = 1_pInt,ns if (nt > 0_pInt) then state(ipc,ip,el)%p(5_pInt*ns+3_pInt*nt+s) = & constitutive_dislotwin_GrainSize(matID)/(1.0_pReal+constitutive_dislotwin_GrainSize(matID)*& (state(ipc,ip,el)%p(3_pInt*ns+2_pInt*nt+s)+state(ipc,ip,el)%p(4_pInt*ns+2_pInt*nt+s))) else state(ipc,ip,el)%p(5_pInt*ns+s) = & constitutive_dislotwin_GrainSize(matID)/& (1.0_pReal+constitutive_dislotwin_GrainSize(matID)*(state(ipc,ip,el)%p(3_pInt*ns+s))) endif enddo !* mean free path between 2 obstacles seen by a growing twin forall (t = 1_pInt:nt) & state(ipc,ip,el)%p(6_pInt*ns+3_pInt*nt+t) = & (constitutive_dislotwin_Cmfptwin(matID)*constitutive_dislotwin_GrainSize(matID))/& (1.0_pReal+constitutive_dislotwin_GrainSize(matID)*state(ipc,ip,el)%p(5_pInt*ns+2_pInt*nt+t)) !* threshold stress for dislocation motion forall (s = 1_pInt:ns) & state(ipc,ip,el)%p(6_pInt*ns+4_pInt*nt+s) = constitutive_dislotwin_SolidSolutionStrength(matID)+ & constitutive_dislotwin_Gmod(matID)*constitutive_dislotwin_burgersPerSlipSystem(s,matID)*& sqrt(dot_product((state(ipc,ip,el)%p(1:ns)+state(ipc,ip,el)%p(ns+1_pInt:2_pInt*ns)),& constitutive_dislotwin_interactionMatrix_SlipSlip(s,1:ns,matID))) !* threshold stress for growing twin forall (t = 1_pInt:nt) & state(ipc,ip,el)%p(7_pInt*ns+4_pInt*nt+t) = & constitutive_dislotwin_Cthresholdtwin(matID)*& (sfe/(3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,matID))+& 3.0_pReal*constitutive_dislotwin_burgersPerTwinSystem(t,matID)*constitutive_dislotwin_Gmod(matID)/& (constitutive_dislotwin_L0(matID)*constitutive_dislotwin_burgersPerSlipSystem(t,matID))) !* final twin volume after growth forall (t = 1_pInt:nt) & state(ipc,ip,el)%p(7_pInt*ns+5_pInt*nt+t) = & (pi/4.0_pReal)*constitutive_dislotwin_twinsizePerTwinSystem(t,matID)*state(ipc,ip,el)%p(6*ns+3*nt+t)**(2.0_pReal) !* equilibrium seperation of partial dislocations do t = 1_pInt,nt x0 = constitutive_dislotwin_Gmod(matID)*constitutive_dislotwin_burgersPerTwinSystem(t,matID)**(2.0_pReal)/& (sfe*8.0_pReal*pi)*(2.0_pReal+constitutive_dislotwin_nu(matID))/(1.0_pReal-constitutive_dislotwin_nu(matID)) constitutive_dislotwin_tau_r(t,matID)= & constitutive_dislotwin_Gmod(matID)*constitutive_dislotwin_burgersPerTwinSystem(t,matID)/(2.0_pReal*pi)*& (1/(x0+constitutive_dislotwin_xc(matID))+cos(pi/3.0_pReal)/x0) enddo end subroutine constitutive_dislotwin_microstructure !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- subroutine constitutive_dislotwin_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,ipc,ip,el) use prec, only: & p_vec use math, only: & math_Plain3333to99, & math_Mandel6to33, & math_Mandel33to6, & math_spectralDecompositionSym33, & math_tensorproduct, & math_symmetric33, & math_mul33x3 use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance use lattice, only: & lattice_Sslip, & lattice_Sslip_v, & lattice_Stwin, & lattice_Stwin_v, & lattice_maxNslipFamily,& lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_shearTwin, & lattice_fcc_corellationTwinSlip, & LATTICE_fcc_ID implicit none integer(pInt), intent(in) :: ipc,ip,el real(pReal), intent(in) :: Temperature real(pReal), dimension(6), intent(in) :: Tstar_v type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(inout) :: state real(pReal), dimension(3,3), intent(out) :: Lp real(pReal), dimension(9,9), intent(out) :: dLp_dTstar integer(pInt) :: matID,structID,ns,nt,f,i,j,k,l,m,n,index_myFamily,s1,s2 real(pReal) :: sumf,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0,Ndot0 real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip,dgdot_dtauslip,tau_slip real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,dgdot_dtautwin,tau_twin real(pReal), dimension(6) :: gdot_sb,dgdot_dtausb,tau_sb real(pReal), dimension(3,3) :: eigVectors, sb_Smatrix real(pReal), dimension(3) :: eigValues, sb_s, sb_m real(pReal), dimension(3,6), parameter :: & sb_sComposition = & reshape(real([& 1, 0, 1, & 1, 0,-1, & 1, 1, 0, & 1,-1, 0, & 0, 1, 1, & 0, 1,-1 & ],pReal),[ 3,6]), & sb_mComposition = & reshape(real([& 1, 0,-1, & 1, 0,+1, & 1,-1, 0, & 1, 1, 0, & 0, 1,-1, & 0, 1, 1 & ],pReal),[ 3,6]) logical error !* Shortened notation matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_dislotwin_structure(matID) ns = constitutive_dislotwin_totalNslip(matID) nt = constitutive_dislotwin_totalNtwin(matID) !* Total twin volume fraction sumf = sum(state(ipc,ip,el)%p((3_pInt*ns+1_pInt):(3_pInt*ns+nt))) ! safe for nt == 0 Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal dLp_dTstar = 0.0_pReal !* Dislocation glide part gdot_slip = 0.0_pReal dgdot_dtauslip = 0.0_pReal j = 0_pInt slipFamiliesLoop: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family slipSystemsLoop: do i = 1_pInt,constitutive_dislotwin_Nslip(f,matID) j = j+1_pInt !* Calculation of Lp !* Resolved shear stress on slip system tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,structID)) !* Stress ratios StressRatio_p = (abs(tau_slip(j))/state(ipc,ip,el)%p(6*ns+4*nt+j))**constitutive_dislotwin_p(matID) StressRatio_pminus1 = (abs(tau_slip(j))/state(ipc,ip,el)%p(6*ns+4*nt+j))**(constitutive_dislotwin_p(matID)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,matID)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(ipc,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,matID)*& constitutive_dislotwin_v0PerSlipSystem(j,matID) !* Shear rates due to slip gdot_slip(j) = (1.0_pReal - sumf) * DotGamma0 & * exp(-BoltzmannRatio*(1-StressRatio_p) ** constitutive_dislotwin_q(matID)) & * sign(1.0_pReal,tau_slip(j)) !* Derivatives of shear rates dgdot_dtauslip(j) = & ((abs(gdot_slip(j))*BoltzmannRatio*& constitutive_dislotwin_p(matID)*constitutive_dislotwin_q(matID))/state(ipc,ip,el)%p(6*ns+4*nt+j))*& StressRatio_pminus1*(1-StressRatio_p)**(constitutive_dislotwin_q(matID)-1.0_pReal) !* Plastic velocity gradient for dislocation glide Lp = Lp + gdot_slip(j)*lattice_Sslip(:,:,1,index_myFamily+i,structID) !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtauslip(j)*& lattice_Sslip(k,l,1,index_myFamily+i,structID)*& lattice_Sslip(m,n,1,index_myFamily+i,structID) enddo slipSystemsLoop enddo slipFamiliesLoop !* Shear banding (shearband) part if(constitutive_dislotwin_sbVelocity(matID) /= 0.0_pReal .and. & constitutive_dislotwin_sbResistance(matID) /= 0.0_pReal) then gdot_sb = 0.0_pReal dgdot_dtausb = 0.0_pReal call math_spectralDecompositionSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors, error) do j = 1_pInt,6_pInt sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j)) sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j)) sb_Smatrix = math_tensorproduct(sb_s,sb_m) constitutive_dislotwin_sbSv(1:6,j,ipc,ip,el) = math_Mandel33to6(math_symmetric33(sb_Smatrix)) !* Calculation of Lp !* Resolved shear stress on shear banding system tau_sb(j) = dot_product(Tstar_v,constitutive_dislotwin_sbSv(1:6,j,ipc,ip,el)) !* Stress ratios StressRatio_p = (abs(tau_sb(j))/constitutive_dislotwin_sbResistance(matID))**constitutive_dislotwin_p(matID) StressRatio_pminus1 = (abs(tau_sb(j))/constitutive_dislotwin_sbResistance(matID))& **(constitutive_dislotwin_p(matID)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_sbQedge(matID)/(kB*Temperature) !* Initial shear rates DotGamma0 = constitutive_dislotwin_sbVelocity(matID) !* Shear rates due to shearband gdot_sb(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**constitutive_dislotwin_q(matID))*& sign(1.0_pReal,tau_sb(j)) !* Derivatives of shear rates dgdot_dtausb(j) = & ((abs(gdot_sb(j))*BoltzmannRatio*& constitutive_dislotwin_p(matID)*constitutive_dislotwin_q(matID))/constitutive_dislotwin_sbResistance(matID))*& StressRatio_pminus1*(1_pInt-StressRatio_p)**(constitutive_dislotwin_q(matID)-1.0_pReal) !* Plastic velocity gradient for shear banding Lp = Lp + gdot_sb(j)*sb_Smatrix !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtausb(j)*& sb_Smatrix(k,l)*& sb_Smatrix(m,n) enddo end if !* Mechanical twinning part gdot_twin = 0.0_pReal dgdot_dtautwin = 0.0_pReal j = 0_pInt twinFamiliesLoop: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family twinSystemsLoop: do i = 1_pInt,constitutive_dislotwin_Ntwin(f,matID) j = j+1_pInt !* Calculation of Lp !* Resolved shear stress on twin system tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,structID)) !* Stress ratios StressRatio_r = (state(ipc,ip,el)%p(7*ns+4*nt+j)/tau_twin(j))**constitutive_dislotwin_r(matID) !* Shear rates and their derivatives due to twin if ( tau_twin(j) > 0.0_pReal ) then select case(constitutive_dislotwin_structureID(matID)) case (LATTICE_fcc_ID) s1=lattice_fcc_corellationTwinSlip(1,index_myFamily+i) s2=lattice_fcc_corellationTwinSlip(2,index_myFamily+i) if (tau_twin(j) < constitutive_dislotwin_tau_r(j,matID)) then Ndot0=(abs(gdot_slip(s1))*(state(ipc,ip,el)%p(s2)+state(ipc,ip,el)%p(ns+s2))+& abs(gdot_slip(s2))*(state(ipc,ip,el)%p(s1)+state(ipc,ip,el)%p(ns+s1)))/& (constitutive_dislotwin_L0(matID)*constitutive_dislotwin_burgersPerSlipSystem(j,matID))*& (1.0_pReal-exp(-constitutive_dislotwin_VcrossSlip(matID)/(kB*Temperature)*& (constitutive_dislotwin_tau_r(j,matID)-tau_twin(j)))) else Ndot0=0.0_pReal end if case default Ndot0=constitutive_dislotwin_Ndot0PerTwinSystem(j,matID) end select gdot_twin(j) = & (constitutive_dislotwin_MaxTwinFraction(matID)-sumf)*lattice_shearTwin(index_myFamily+i,structID)*& state(ipc,ip,el)%p(7*ns+5*nt+j)*Ndot0*exp(-StressRatio_r) dgdot_dtautwin(j) = ((gdot_twin(j)*constitutive_dislotwin_r(matID))/tau_twin(j))*StressRatio_r endif !* Plastic velocity gradient for mechanical twinning Lp = Lp + gdot_twin(j)*lattice_Stwin(:,:,index_myFamily+i,structID) !* Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = & dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin(j)*& lattice_Stwin(k,l,index_myFamily+i,structID)*& lattice_Stwin(m,n,index_myFamily+i,structID) enddo twinSystemsLoop enddo twinFamiliesLoop dLp_dTstar = math_Plain3333to99(dLp_dTstar3333) end subroutine constitutive_dislotwin_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- pure function constitutive_dislotwin_dotState(Tstar_v,Temperature,state,ipc,ip,el) use prec, only: & p_vec use math, only: & pi use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_sheartwin, & lattice_fcc_corellationTwinSlip, & LATTICE_fcc_ID implicit none real(pReal), dimension(6), intent(in):: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(constitutive_dislotwin_sizeDotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & constitutive_dislotwin_dotState integer(pInt) matID,structID,ns,nt,f,i,j,index_myFamily,s1,s2 real(pReal) sumf,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,& EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r,Ndot0 real(pReal), dimension(constitutive_dislotwin_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip,tau_slip,DotRhoMultiplication,EdgeDipDistance,DotRhoEdgeEdgeAnnihilation,DotRhoEdgeDipAnnihilation,& ClimbVelocity,DotRhoEdgeDipClimb,DotRhoDipFormation real(pReal), dimension(constitutive_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & tau_twin !* Shortened notation matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_dislotwin_structure(matID) ns = constitutive_dislotwin_totalNslip(matID) nt = constitutive_dislotwin_totalNtwin(matID) !* Total twin volume fraction sumf = sum(state(ipc,ip,el)%p((3_pInt*ns+1_pInt):(3_pInt*ns+nt))) ! safe for nt == 0 constitutive_dislotwin_dotState = 0.0_pReal !* Dislocation density evolution gdot_slip = 0.0_pReal j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt !* Resolved shear stress on slip system tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,structID)) !* Stress ratios StressRatio_p = (abs(tau_slip(j))/state(ipc,ip,el)%p(6_pInt*ns+4_pInt*nt+j))**& constitutive_dislotwin_p(matID) StressRatio_pminus1 = (abs(tau_slip(j))/state(ipc,ip,el)%p(6_pInt*ns+4_pInt*nt+j))**& (constitutive_dislotwin_p(matID)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,matID)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(ipc,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,matID)*& constitutive_dislotwin_v0PerSlipSystem(j,matID) !* Shear rates due to slip gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**constitutive_dislotwin_q(matID))*& sign(1.0_pReal,tau_slip(j)) !* Multiplication DotRhoMultiplication(j) = abs(gdot_slip(j))/& (constitutive_dislotwin_burgersPerSlipSystem(j,matID)*state(ipc,ip,el)%p(5*ns+3*nt+j)) !* Dipole formation EdgeDipMinDistance = & constitutive_dislotwin_CEdgeDipMinDistance(matID)*constitutive_dislotwin_burgersPerSlipSystem(j,matID) if (tau_slip(j) == 0.0_pReal) then DotRhoDipFormation(j) = 0.0_pReal else EdgeDipDistance(j) = & (3.0_pReal*constitutive_dislotwin_Gmod(matID)*constitutive_dislotwin_burgersPerSlipSystem(j,matID))/& (16.0_pReal*pi*abs(tau_slip(j))) if (EdgeDipDistance(j)>state(ipc,ip,el)%p(5*ns+3*nt+j)) EdgeDipDistance(j)=state(ipc,ip,el)%p(5*ns+3*nt+j) if (EdgeDipDistance(j)<EdgeDipMinDistance) EdgeDipDistance(j)=EdgeDipMinDistance DotRhoDipFormation(j) = & ((2.0_pReal*EdgeDipDistance(j))/constitutive_dislotwin_burgersPerSlipSystem(j,matID))*& state(ipc,ip,el)%p(j)*abs(gdot_slip(j)) endif !* Spontaneous annihilation of 2 single edge dislocations DotRhoEdgeEdgeAnnihilation(j) = & ((2.0_pReal*EdgeDipMinDistance)/constitutive_dislotwin_burgersPerSlipSystem(j,matID))*& state(ipc,ip,el)%p(j)*abs(gdot_slip(j)) !* Spontaneous annihilation of a single edge dislocation with a dipole constituent DotRhoEdgeDipAnnihilation(j) = & ((2.0_pReal*EdgeDipMinDistance)/constitutive_dislotwin_burgersPerSlipSystem(j,matID))*& state(ipc,ip,el)%p(ns+j)*abs(gdot_slip(j)) !* Dislocation dipole climb AtomicVolume = & constitutive_dislotwin_CAtomicVolume(matID)*constitutive_dislotwin_burgersPerSlipSystem(j,matID)**(3.0_pReal) VacancyDiffusion = & constitutive_dislotwin_D0(matID)*exp(-constitutive_dislotwin_Qsd(matID)/(kB*Temperature)) if (tau_slip(j) == 0.0_pReal) then DotRhoEdgeDipClimb(j) = 0.0_pReal else ClimbVelocity(j) = & ((3.0_pReal*constitutive_dislotwin_Gmod(matID)*VacancyDiffusion*AtomicVolume)/(2.0_pReal*pi*kB*Temperature))*& (1/(EdgeDipDistance(j)+EdgeDipMinDistance)) DotRhoEdgeDipClimb(j) = & (4.0_pReal*ClimbVelocity(j)*state(ipc,ip,el)%p(ns+j))/(EdgeDipDistance(j)-EdgeDipMinDistance) endif !* Edge dislocation density rate of change constitutive_dislotwin_dotState(j) = & DotRhoMultiplication(j)-DotRhoDipFormation(j)-DotRhoEdgeEdgeAnnihilation(j) !* Edge dislocation dipole density rate of change constitutive_dislotwin_dotState(ns+j) = & DotRhoDipFormation(j)-DotRhoEdgeDipAnnihilation(j)-DotRhoEdgeDipClimb(j) !* Dotstate for accumulated shear due to slip constitutive_dislotwin_dotstate(2_pInt*ns+j) = gdot_slip(j) enddo enddo !* Twin volume fraction evolution j = 0_pInt do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt !* Resolved shear stress on twin system tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,structID)) !* Stress ratios StressRatio_r = (state(ipc,ip,el)%p(7*ns+4*nt+j)/tau_twin(j))**constitutive_dislotwin_r(matID) !* Shear rates and their derivatives due to twin if ( tau_twin(j) > 0.0_pReal ) then select case(constitutive_dislotwin_structureID(matID)) case (LATTICE_fcc_ID) s1=lattice_fcc_corellationTwinSlip(1,index_myFamily+i) s2=lattice_fcc_corellationTwinSlip(2,index_myFamily+i) if (tau_twin(j) < constitutive_dislotwin_tau_r(j,matID)) then Ndot0=(abs(gdot_slip(s1))*(state(ipc,ip,el)%p(s2)+state(ipc,ip,el)%p(ns+s2))+& abs(gdot_slip(s2))*(state(ipc,ip,el)%p(s1)+state(ipc,ip,el)%p(ns+s1)))/& (constitutive_dislotwin_L0(matID)*constitutive_dislotwin_burgersPerSlipSystem(j,matID))*& (1.0_pReal-exp(-constitutive_dislotwin_VcrossSlip(matID)/(kB*Temperature)*& (constitutive_dislotwin_tau_r(j,matID)-tau_twin(j)))) else Ndot0=0.0_pReal end if case default Ndot0=constitutive_dislotwin_Ndot0PerTwinSystem(j,matID) end select constitutive_dislotwin_dotState(3_pInt*ns+j) = & (constitutive_dislotwin_MaxTwinFraction(matID)-sumf)*& state(ipc,ip,el)%p(7_pInt*ns+5_pInt*nt+j)*Ndot0*exp(-StressRatio_r) !* Dotstate for accumulated shear due to twin constitutive_dislotwin_dotstate(3_pInt*ns+nt+j) = constitutive_dislotwin_dotState(3_pInt*ns+j) * & lattice_sheartwin(index_myfamily+i,structID) endif enddo enddo end function constitutive_dislotwin_dotState !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- function constitutive_dislotwin_postResults(Tstar_v,Temperature,state,ipc,ip,el) use prec, only: & p_vec use math, only: & pi, & math_Mandel6to33, & math_spectralDecompositionSym33 use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains,& material_phase, & phase_plasticityInstance,& phase_Noutput use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_shearTwin, & lattice_fcc_corellationTwinSlip, & LATTICE_fcc_ID implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(constitutive_dislotwin_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & constitutive_dislotwin_postResults integer(pInt) :: & matID,structID,& ns,nt,& f,o,i,c,j,index_myFamily,& s1,s2 real(pReal) :: sumf,tau,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,StressRatio_r,Ndot0,dgdot_dtauslip real(preal), dimension(constitutive_dislotwin_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip real(pReal), dimension(3,3) :: eigVectors real(pReal), dimension (3) :: eigValues logical :: error !* Shortened notation matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_dislotwin_structure(matID) ns = constitutive_dislotwin_totalNslip(matID) nt = constitutive_dislotwin_totalNtwin(matID) !* Total twin volume fraction sumf = sum(state(ipc,ip,el)%p((3_pInt*ns+1_pInt):(3_pInt*ns+nt))) ! safe for nt == 0 !* Required output c = 0_pInt constitutive_dislotwin_postResults = 0.0_pReal !* Spectral decomposition of stress call math_spectralDecompositionSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors, error) do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el)) select case(constitutive_dislotwin_outputID(o,matID)) case (edge_density_ID) constitutive_dislotwin_postResults(c+1_pInt:c+ns) = state(ipc,ip,el)%p(1_pInt:ns) c = c + ns case (dipole_density_ID) constitutive_dislotwin_postResults(c+1_pInt:c+ns) = state(ipc,ip,el)%p(ns+1_pInt:2_pInt*ns) c = c + ns case (shear_rate_slip_ID) j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt !* Resolved shear stress on slip system tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,structID)) !* Stress ratios StressRatio_p = (abs(tau)/state(ipc,ip,el)%p(6_pInt*ns+4_pInt*nt+j))**& constitutive_dislotwin_p(matID) StressRatio_pminus1 = (abs(tau)/state(ipc,ip,el)%p(6_pInt*ns+4_pInt*nt+j))**& (constitutive_dislotwin_p(matID)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,matID)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(ipc,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,matID)* & constitutive_dislotwin_v0PerSlipSystem(j,matID) !* Shear rates due to slip constitutive_dislotwin_postResults(c+j) = & DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& constitutive_dislotwin_q(matID))*sign(1.0_pReal,tau) enddo ; enddo c = c + ns case (accumulated_shear_slip_ID) constitutive_dislotwin_postResults(c+1_pInt:c+ns) = & state(ipc,ip,el)%p((2_pInt*ns+1_pInt):(3_pInt*ns)) c = c + ns case (mfp_slip_ID) constitutive_dislotwin_postResults(c+1_pInt:c+ns) =& state(ipc,ip,el)%p((5_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+3_pInt*nt)) c = c + ns case (resolved_stress_slip_ID) j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) =& dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,structID)) enddo; enddo c = c + ns case (threshold_stress_slip_ID) constitutive_dislotwin_postResults(c+1_pInt:c+ns) = & state(ipc,ip,el)%p((6_pInt*ns+4_pInt*nt+1_pInt):(7_pInt*ns+4_pInt*nt)) c = c + ns case (edge_dipole_distance_ID) j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) = & (3.0_pReal*constitutive_dislotwin_Gmod(matID)*constitutive_dislotwin_burgersPerSlipSystem(j,matID))/& (16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,structID)))) constitutive_dislotwin_postResults(c+j) = min(constitutive_dislotwin_postResults(c+j),state(ipc,ip,el)%p(5*ns+3*nt+j)) ! constitutive_dislotwin_postResults(c+j) = max(constitutive_dislotwin_postResults(c+j),state(ipc,ip,el)%p(4*ns+2*nt+j)) enddo; enddo c = c + ns case (resolved_stress_shearband_ID) do j = 1_pInt,6_pInt ! loop over all shearband families constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v, constitutive_dislotwin_sbSv(1:6,j,ipc,ip,el)) enddo c = c + 6_pInt case (shear_rate_shearband_ID) do j = 1_pInt,6_pInt ! loop over all shearbands !* Resolved shear stress on shearband system tau = dot_product(Tstar_v,constitutive_dislotwin_sbSv(1:6,j,ipc,ip,el)) !* Stress ratios StressRatio_p = (abs(tau)/constitutive_dislotwin_sbResistance(matID))**constitutive_dislotwin_p(matID) StressRatio_pminus1 = (abs(tau)/constitutive_dislotwin_sbResistance(matID))& **(constitutive_dislotwin_p(matID)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_sbQedge(matID)/(kB*Temperature) !* Initial shear rates DotGamma0 = constitutive_dislotwin_sbVelocity(matID) !* Shear rates due to slip constitutive_dislotwin_postResults(c+j) = & DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**constitutive_dislotwin_q(matID))*sign(1.0_pReal,tau) enddo c = c + 6_pInt case (twin_fraction_ID) constitutive_dislotwin_postResults(c+1_pInt:c+nt) = state(ipc,ip,el)%p((3_pInt*ns+1_pInt):(3_pInt*ns+nt)) c = c + nt case (shear_rate_twin_ID) if (nt > 0_pInt) then j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt !* Resolved shear stress on slip system tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,structID)) !* Stress ratios StressRatio_p = (abs(tau)/state(ipc,ip,el)%p(5_pInt*ns+3_pInt*nt+j))**& constitutive_dislotwin_p(matID) StressRatio_pminus1 = (abs(tau)/state(ipc,ip,el)%p(5_pInt*ns+3_pInt*nt+j))**& (constitutive_dislotwin_p(matID)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,matID)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(ipc,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,matID)* & constitutive_dislotwin_v0PerSlipSystem(j,matID) !* Shear rates due to slip gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& constitutive_dislotwin_q(matID))*sign(1.0_pReal,tau) enddo;enddo j = 0_pInt do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1,constitutive_dislotwin_Ntwin(f,matID) ! process each (active) twin system in family j = j + 1_pInt !* Resolved shear stress on twin system tau = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,structID)) !* Stress ratios StressRatio_r = (state(ipc,ip,el)%p(7_pInt*ns+4_pInt*nt+j)/tau)**constitutive_dislotwin_r(matID) !* Shear rates due to twin if ( tau > 0.0_pReal ) then select case(constitutive_dislotwin_structureID(matID)) case (LATTICE_fcc_ID) s1=lattice_fcc_corellationTwinSlip(1,index_myFamily+i) s2=lattice_fcc_corellationTwinSlip(2,index_myFamily+i) if (tau < constitutive_dislotwin_tau_r(j,matID)) then Ndot0=(abs(gdot_slip(s1))*(state(ipc,ip,el)%p(s2)+state(ipc,ip,el)%p(ns+s2))+& abs(gdot_slip(s2))*(state(ipc,ip,el)%p(s1)+state(ipc,ip,el)%p(ns+s1)))/& (constitutive_dislotwin_L0(matID)*& constitutive_dislotwin_burgersPerSlipSystem(j,matID))*& (1.0_pReal-exp(-constitutive_dislotwin_VcrossSlip(matID)/(kB*Temperature)*& (constitutive_dislotwin_tau_r(j,matID)-tau))) else Ndot0=0.0_pReal end if case default Ndot0=constitutive_dislotwin_Ndot0PerTwinSystem(j,matID) end select constitutive_dislotwin_postResults(c+j) = & (constitutive_dislotwin_MaxTwinFraction(matID)-sumf)*lattice_shearTwin(index_myFamily+i,structID)*& state(ipc,ip,el)%p(7_pInt*ns+5_pInt*nt+j)*Ndot0*exp(-StressRatio_r) endif enddo ; enddo endif c = c + nt case (accumulated_shear_twin_ID) constitutive_dislotwin_postResults(c+1_pInt:c+nt) = state(ipc,ip,el)%p((3_pInt*ns+nt+1_pInt):(3_pInt*ns+2_pInt*nt)) c = c + nt case (mfp_twin_ID) constitutive_dislotwin_postResults(c+1_pInt:c+nt) = state(ipc,ip,el)%p((6_pInt*ns+3_pInt*nt+1_pInt):(6_pInt*ns+4_pInt*nt)) c = c + nt case (resolved_stress_twin_ID) if (nt > 0_pInt) then j = 0_pInt do f = 1_pInt,lattice_maxNtwinFamily ! loop over all slip families index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Ntwin(f,matID) ! process each (active) slip system in family j = j + 1_pInt constitutive_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,structID)) enddo; enddo endif c = c + nt case (threshold_stress_twin_ID) constitutive_dislotwin_postResults(c+1_pInt:c+nt) = state(ipc,ip,el)%p((7_pInt*ns+4_pInt*nt+1_pInt):(7_pInt*ns+5_pInt*nt)) c = c + nt case (stress_exponent_ID) j = 0_pInt do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_dislotwin_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt !* Resolved shear stress on slip system tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,structID)) !* Stress ratios StressRatio_p = (abs(tau)/state(ipc,ip,el)%p(6_pInt*ns+4_pInt*nt+j))**& constitutive_dislotwin_p(matID) StressRatio_pminus1 = (abs(tau)/state(ipc,ip,el)%p(6_pInt*ns+4_pInt*nt+j))**& (constitutive_dislotwin_p(matID)-1.0_pReal) !* Boltzmann ratio BoltzmannRatio = constitutive_dislotwin_QedgePerSlipSystem(j,matID)/(kB*Temperature) !* Initial shear rates DotGamma0 = & state(ipc,ip,el)%p(j)*constitutive_dislotwin_burgersPerSlipSystem(j,matID)* & constitutive_dislotwin_v0PerSlipSystem(j,matID) !* Shear rates due to slip gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**& constitutive_dislotwin_q(matID))*sign(1.0_pReal,tau) !* Derivatives of shear rates dgdot_dtauslip = & ((abs(gdot_slip(j))*BoltzmannRatio*& constitutive_dislotwin_p(matID)*constitutive_dislotwin_q(matID))/state(ipc,ip,el)%p(6*ns+4*nt+j))*& StressRatio_pminus1*(1_pInt-StressRatio_p)**(constitutive_dislotwin_q(matID)-1.0_pReal) !* Stress exponent if (gdot_slip(j)==0.0_pReal) then constitutive_dislotwin_postResults(c+j) = 0.0_pReal else constitutive_dislotwin_postResults(c+j) = (tau/gdot_slip(j))*dgdot_dtauslip endif enddo ; enddo c = c + ns case (sb_eigenvalues_ID) forall (j = 1_pInt:3_pInt) & constitutive_dislotwin_postResults(c+j) = eigValues(j) c = c + 3_pInt case (sb_eigenvectors_ID) constitutive_dislotwin_postResults(c+1_pInt:c+9_pInt) = reshape(eigVectors,[9]) c = c + 9_pInt end select enddo end function constitutive_dislotwin_postResults end module constitutive_dislotwin