!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH !> @author Chen Zhang, Michigan State University !> @brief crystallite state integration functions and reporting of results !-------------------------------------------------------------------------------------------------- module crystallite use prec, only: & pReal, & pInt implicit none private character(len=64), dimension(:,:), allocatable, private :: & crystallite_output !< name of each post result output integer(pInt), public, protected :: & crystallite_maxSizePostResults !< description not available integer(pInt), dimension(:), allocatable, public, protected :: & crystallite_sizePostResults !< description not available integer(pInt), dimension(:,:), allocatable, private :: & crystallite_sizePostResult !< description not available real(pReal), dimension(:,:,:), allocatable, public :: & crystallite_dt !< requested time increment of each grain real(pReal), dimension(:,:,:), allocatable, private :: & crystallite_subdt, & !< substepped time increment of each grain crystallite_subFrac, & !< already calculated fraction of increment crystallite_subStep !< size of next integration step real(pReal), dimension(:,:,:,:), allocatable, public :: & crystallite_Tstar_v, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step) crystallite_Tstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc crystallite_partionedTstar0_v !< 2nd Piola-Kirchhoff stress vector at start of homog inc real(pReal), dimension(:,:,:,:), allocatable, private :: & crystallite_subTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of crystallite inc crystallite_orientation, & !< orientation as quaternion crystallite_orientation0, & !< initial orientation as quaternion crystallite_rotation !< grain rotation away from initial orientation as axis-angle (in degrees) in crystal reference frame real(pReal), dimension(:,:,:,:,:), allocatable, public :: & crystallite_Fp, & !< current plastic def grad (end of converged time step) crystallite_Fp0, & !< plastic def grad at start of FE inc crystallite_partionedFp0,& !< plastic def grad at start of homog inc crystallite_Fi, & !< current intermediate def grad (end of converged time step) crystallite_Fi0, & !< intermediate def grad at start of FE inc crystallite_partionedFi0,& !< intermediate def grad at start of homog inc crystallite_F0, & !< def grad at start of FE inc crystallite_partionedF, & !< def grad to be reached at end of homog inc crystallite_partionedF0, & !< def grad at start of homog inc crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step) crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc crystallite_partionedLp0,& !< plastic velocity grad at start of homog inc crystallite_Li, & !< current intermediate velocitiy grad (end of converged time step) crystallite_Li0, & !< intermediate velocitiy grad at start of FE inc crystallite_partionedLi0,& !< intermediate velocity grad at start of homog inc crystallite_Fe, & !< current "elastic" def grad (end of converged time step) crystallite_P !< 1st Piola-Kirchhoff stress per grain real(pReal), dimension(:,:,:,:,:), allocatable, private :: & crystallite_subFe0,& !< "elastic" def grad at start of crystallite inc crystallite_invFp, & !< inverse of current plastic def grad (end of converged time step) crystallite_subFp0,& !< plastic def grad at start of crystallite inc crystallite_invFi, & !< inverse of current intermediate def grad (end of converged time step) crystallite_subFi0,& !< intermediate def grad at start of crystallite inc crystallite_subF, & !< def grad to be reached at end of crystallite inc crystallite_subF0, & !< def grad at start of crystallite inc crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc crystallite_subLi0,& !< intermediate velocity grad at start of crystallite inc crystallite_disorientation !< disorientation between two neighboring ips (only calculated for single grain IPs) real(pReal), dimension(:,:,:,:,:,:,:), allocatable, public :: & crystallite_dPdF, & !< current individual dPdF per grain (end of converged time step) crystallite_dPdF0, & !< individual dPdF per grain at start of FE inc crystallite_partioneddPdF0 !< individual dPdF per grain at start of homog inc real(pReal), dimension(:,:,:,:,:,:,:), allocatable, private :: & crystallite_fallbackdPdF !< dPdF fallback for non-converged grains (elastic prediction) logical, dimension(:,:,:), allocatable, public :: & crystallite_requested !< flag to request crystallite calculation logical, dimension(:,:,:), allocatable, public, protected :: & crystallite_converged, & !< convergence flag crystallite_localPlasticity !< indicates this grain to have purely local constitutive law logical, dimension(:,:,:), allocatable, private :: & crystallite_todo !< flag to indicate need for further computation logical, dimension(:,:), allocatable, private :: & crystallite_clearToWindForward, & !< description not available crystallite_clearToCutback, & !< description not available crystallite_syncSubFrac, & !< description not available crystallite_syncSubFracCompleted, & !< description not available crystallite_neighborEnforcedCutback !< description not available enum, bind(c) enumerator :: undefined_ID, & phase_ID, & texture_ID, & volume_ID, & grainrotationx_ID, & grainrotationy_ID, & grainrotationz_ID, & orientation_ID, & grainrotation_ID, & eulerangles_ID, & defgrad_ID, & fe_ID, & fp_ID, & fi_ID, & lp_ID, & li_ID, & e_ID, & ee_ID, & p_ID, & s_ID, & elasmatrix_ID, & neighboringip_ID, & neighboringelement_ID end enum integer(kind(undefined_ID)),dimension(:,:), allocatable, private :: & crystallite_outputID !< ID of each post result output public :: & crystallite_init, & crystallite_stressAndItsTangent, & crystallite_orientations, & crystallite_push33ToRef, & crystallite_postResults private :: & crystallite_integrateStateFPI, & crystallite_integrateStateEuler, & crystallite_integrateStateAdaptiveEuler, & crystallite_integrateStateRK4, & crystallite_integrateStateRKCK45, & crystallite_integrateStress, & crystallite_stateJump contains !-------------------------------------------------------------------------------------------------- !> @brief allocates and initialize per grain variables !-------------------------------------------------------------------------------------------------- subroutine crystallite_init use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: & debug_info, & debug_reset, & debug_level, & debug_crystallite, & debug_levelBasic use numerics, only: & usePingPong use math, only: & math_I3, & math_EulerToR, & math_inv33, & math_transpose33, & math_mul33xx33, & math_mul33x33 use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & mesh_element, & mesh_NcpElems, & mesh_maxNips, & mesh_maxNipNeighbors use IO, only: & IO_read, & IO_timeStamp, & IO_open_jobFile_stat, & IO_open_file, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_write_jobFile, & IO_error, & IO_EOF use material use constitutive, only: & constitutive_initialFi, & constitutive_microstructure ! derived (shortcut) quantities of given state implicit none integer(pInt), parameter :: & FILEUNIT = 200_pInt integer(pInt), allocatable, dimension(:) :: chunkPos integer(pInt) :: & c, & !< counter in integration point component loop i, & !< counter in integration point loop e, & !< counter in element loop o, & !< counter in output loop r, & !< counter in crystallite loop cMax, & !< maximum number of integration point components iMax, & !< maximum number of integration points eMax, & !< maximum number of elements nMax, & !< maximum number of ip neighbors myNcomponents, & !< number of components at current IP section = 0_pInt, & mySize character(len=65536) :: & tag = '', & line= '' write(6,'(/,a)') ' <<<+- crystallite init -+>>>' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" cMax = homogenization_maxNgrains iMax = mesh_maxNips eMax = mesh_NcpElems nMax = mesh_maxNipNeighbors allocate(crystallite_Tstar0_v(6,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partionedTstar0_v(6,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subTstar0_v(6,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Tstar_v(6,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_P(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_F0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partionedF0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partionedF(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subF0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subF(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Fp0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partionedFp0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subFp0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Fp(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_invFp(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Fi0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partionedFi0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subFi0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Fi(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_invFi(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Fe(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subFe0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Lp0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partionedLp0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subLp0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Lp(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Li0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partionedLi0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subLi0(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_Li(3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_dPdF(3,3,3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_dPdF0(3,3,3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_partioneddPdF0(3,3,3,3,cMax,iMax,eMax),source=0.0_pReal) allocate(crystallite_fallbackdPdF(3,3,3,3,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_dt(cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subdt(cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subFrac(cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_subStep(cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_orientation(4,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_orientation0(4,cMax,iMax,eMax), source=0.0_pReal) allocate(crystallite_rotation(4,cMax,iMax,eMax), source=0.0_pReal) if (any(plasticState%nonLocal)) & allocate(crystallite_disorientation(4,nMax,cMax,iMax,eMax),source=0.0_pReal) allocate(crystallite_localPlasticity(cMax,iMax,eMax), source=.true.) allocate(crystallite_requested(cMax,iMax,eMax), source=.false.) allocate(crystallite_todo(cMax,iMax,eMax), source=.false.) allocate(crystallite_converged(cMax,iMax,eMax), source=.true.) allocate(crystallite_clearToWindForward(iMax,eMax), source=.true.) allocate(crystallite_syncSubFrac(iMax,eMax), source=.false.) allocate(crystallite_syncSubFracCompleted(iMax,eMax), source=.false.) allocate(crystallite_clearToCutback(iMax,eMax), source=.true.) allocate(crystallite_neighborEnforcedCutback(iMax,eMax), source=.false.) allocate(crystallite_output(maxval(crystallite_Noutput), & material_Ncrystallite)) ; crystallite_output = '' allocate(crystallite_outputID(maxval(crystallite_Noutput), & material_Ncrystallite), source=undefined_ID) allocate(crystallite_sizePostResults(material_Ncrystallite),source=0_pInt) allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), & material_Ncrystallite), source=0_pInt) if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present... call IO_open_file(FILEUNIT,material_configFile) ! ...open material.config file do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to line = IO_read(FILEUNIT) enddo do while (trim(line) /= IO_EOF) ! read through sections of crystallite part line = IO_read(FILEUNIT) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(FILEUNIT, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt o = 0_pInt ! reset output counter cycle ! skip to next line endif if (section > 0_pInt) then chunkPos = IO_stringPos(line) tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key select case(tag) case ('(output)') o = o + 1_pInt crystallite_output(o,section) = IO_lc(IO_stringValue(line,chunkPos,2_pInt)) outputName: select case(crystallite_output(o,section)) case ('phase') outputName crystallite_outputID(o,section) = phase_ID case ('texture') outputName crystallite_outputID(o,section) = texture_ID case ('volume') outputName crystallite_outputID(o,section) = volume_ID case ('grainrotationx') outputName crystallite_outputID(o,section) = grainrotationx_ID case ('grainrotationy') outputName crystallite_outputID(o,section) = grainrotationy_ID case ('grainrotationz') outputName crystallite_outputID(o,section) = grainrotationx_ID case ('orientation') outputName crystallite_outputID(o,section) = orientation_ID case ('grainrotation') outputName crystallite_outputID(o,section) = grainrotation_ID case ('eulerangles') outputName crystallite_outputID(o,section) = eulerangles_ID case ('defgrad','f') outputName crystallite_outputID(o,section) = defgrad_ID case ('fe') outputName crystallite_outputID(o,section) = fe_ID case ('fp') outputName crystallite_outputID(o,section) = fp_ID case ('fi') outputName crystallite_outputID(o,section) = fi_ID case ('lp') outputName crystallite_outputID(o,section) = lp_ID case ('li') outputName crystallite_outputID(o,section) = li_ID case ('e') outputName crystallite_outputID(o,section) = e_ID case ('ee') outputName crystallite_outputID(o,section) = ee_ID case ('p','firstpiola','1stpiola') outputName crystallite_outputID(o,section) = p_ID case ('s','tstar','secondpiola','2ndpiola') outputName crystallite_outputID(o,section) = s_ID case ('elasmatrix') outputName crystallite_outputID(o,section) = elasmatrix_ID case ('neighboringip') outputName crystallite_outputID(o,section) = neighboringip_ID case ('neighboringelement') outputName crystallite_outputID(o,section) = neighboringelement_ID case default outputName call IO_error(105_pInt,ext_msg=IO_stringValue(line,chunkPos,2_pInt)//' (Crystallite)') end select outputName end select endif enddo close(FILEUNIT) do r = 1_pInt,material_Ncrystallite do o = 1_pInt,crystallite_Noutput(r) select case(crystallite_outputID(o,r)) case(phase_ID,texture_ID,volume_ID,grainrotationx_ID,grainrotationy_ID,grainrotationz_ID) mySize = 1_pInt case(orientation_ID,grainrotation_ID) mySize = 4_pInt case(eulerangles_ID) mySize = 3_pInt case(defgrad_ID,fe_ID,fp_ID,fi_ID,lp_ID,li_ID,e_ID,ee_ID,p_ID,s_ID) mySize = 9_pInt case(elasmatrix_ID) mySize = 36_pInt case(neighboringip_ID,neighboringelement_ID) mySize = mesh_maxNipNeighbors case default mySize = 0_pInt end select crystallite_sizePostResult(o,r) = mySize crystallite_sizePostResults(r) = crystallite_sizePostResults(r) + mySize enddo enddo crystallite_maxSizePostResults = & maxval(crystallite_sizePostResults(microstructure_crystallite),microstructure_active) !-------------------------------------------------------------------------------------------------- ! write description file for crystallite output if (worldrank == 0_pInt) then call IO_write_jobFile(FILEUNIT,'outputCrystallite') do r = 1_pInt,material_Ncrystallite if (any(microstructure_crystallite(mesh_element(4,:)) == r)) then write(FILEUNIT,'(/,a,/)') '['//trim(crystallite_name(r))//']' do o = 1_pInt,crystallite_Noutput(r) write(FILEUNIT,'(a,i4)') trim(crystallite_output(o,r))//char(9),crystallite_sizePostResult(o,r) enddo endif enddo close(FILEUNIT) endif !-------------------------------------------------------------------------------------------------- ! initialize !$OMP PARALLEL DO PRIVATE(myNcomponents) do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), c = 1_pInt:myNcomponents) crystallite_Fp0(1:3,1:3,c,i,e) = math_EulerToR(material_EulerAngles(1:3,c,i,e)) ! plastic def gradient reflects init orientation crystallite_Fi0(1:3,1:3,c,i,e) = constitutive_initialFi(c,i,e) crystallite_F0(1:3,1:3,c,i,e) = math_I3 crystallite_localPlasticity(c,i,e) = phase_localPlasticity(material_phase(c,i,e)) crystallite_Fe(1:3,1:3,c,i,e) = math_inv33(math_mul33x33(crystallite_Fi0(1:3,1:3,c,i,e), & crystallite_Fp0(1:3,1:3,c,i,e))) ! assuming that euler angles are given in internal strain free configuration crystallite_Fp(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e) crystallite_Fi(1:3,1:3,c,i,e) = crystallite_Fi0(1:3,1:3,c,i,e) crystallite_requested(c,i,e) = .true. endforall enddo !$OMP END PARALLEL DO if(any(.not. crystallite_localPlasticity) .and. .not. usePingPong) call IO_error(601_pInt) ! exit if nonlocal but no ping-pong crystallite_partionedFp0 = crystallite_Fp0 crystallite_partionedFi0 = crystallite_Fi0 crystallite_partionedF0 = crystallite_F0 crystallite_partionedF = crystallite_F0 call crystallite_orientations() crystallite_orientation0 = crystallite_orientation ! store initial orientations for calculation of grain rotations !$OMP PARALLEL DO PRIVATE(myNcomponents) do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do c = 1_pInt,myNcomponents call constitutive_microstructure(crystallite_orientation, & ! pass orientation to constitutive module crystallite_Fe(1:3,1:3,c,i,e), & crystallite_Fp(1:3,1:3,c,i,e), & c,i,e) ! update dependent state variables to be consistent with basic states enddo enddo enddo !$OMP END PARALLEL DO call crystallite_stressAndItsTangent(.true.) ! request elastic answers crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback !-------------------------------------------------------------------------------------------------- ! debug output if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fe: ', shape(crystallite_Fe) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp: ', shape(crystallite_Fp) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fi: ', shape(crystallite_Fi) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp: ', shape(crystallite_Lp) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Li: ', shape(crystallite_Li) write(6,'(a35,1x,7(i8,1x))') 'crystallite_F0: ', shape(crystallite_F0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp0: ', shape(crystallite_Fp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fi0: ', shape(crystallite_Fi0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp0: ', shape(crystallite_Lp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Li0: ', shape(crystallite_Li0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF: ', shape(crystallite_partionedF) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFi0: ', shape(crystallite_partionedFi0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLi0: ', shape(crystallite_partionedLi0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF: ', shape(crystallite_subF) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF0: ', shape(crystallite_subF0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFe0: ', shape(crystallite_subFe0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFp0: ', shape(crystallite_subFp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFi0: ', shape(crystallite_subFi0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLp0: ', shape(crystallite_subLp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLi0: ', shape(crystallite_subLi0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_P: ', shape(crystallite_P) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v) write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF: ', shape(crystallite_dPdF) write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF0: ', shape(crystallite_dPdF0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partioneddPdF0: ', shape(crystallite_partioneddPdF0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF) write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation: ', shape(crystallite_orientation) write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation0: ', shape(crystallite_orientation0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_rotation: ', shape(crystallite_rotation) write(6,'(a35,1x,7(i8,1x))') 'crystallite_disorientation: ', shape(crystallite_disorientation) write(6,'(a35,1x,7(i8,1x))') 'crystallite_dt: ', shape(crystallite_dt) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subdt: ', shape(crystallite_subdt) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFrac: ', shape(crystallite_subFrac) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subStep: ', shape(crystallite_subStep) write(6,'(a35,1x,7(i8,1x))') 'crystallite_localPlasticity: ', shape(crystallite_localPlasticity) write(6,'(a35,1x,7(i8,1x))') 'crystallite_requested: ', shape(crystallite_requested) write(6,'(a35,1x,7(i8,1x))') 'crystallite_todo: ', shape(crystallite_todo) write(6,'(a35,1x,7(i8,1x))') 'crystallite_converged: ', shape(crystallite_converged) write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults) write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult) write(6,'(/,a35,1x,i10)') 'Number of nonlocal grains: ',count(.not. crystallite_localPlasticity) flush(6) endif call debug_info call debug_reset end subroutine crystallite_init !-------------------------------------------------------------------------------------------------- !> @brief calculate stress (P) and tangent (dPdF) for crystallites !-------------------------------------------------------------------------------------------------- subroutine crystallite_stressAndItsTangent(updateJaco) use prec, only: & tol_math_check, & dNeq use numerics, only: & subStepMinCryst, & subStepSizeCryst, & stepIncreaseCryst, & pert_Fg, & pert_method, & nCryst, & numerics_integrator, & numerics_integrationMode, & numerics_timeSyncing, & analyticJaco use debug, only: & debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_CrystalliteLoopDistribution use IO, only: & IO_warning, & IO_error use math, only: & math_inv33, & math_identity2nd, & math_transpose33, & math_mul33x33, & math_mul66x6, & math_Mandel6to33, & math_Mandel33to6, & math_Plain3333to99, & math_Plain99to3333, & math_I3, & math_mul3333xx3333, & math_mul33xx33, & math_invert, & math_det33 use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & mesh_element, & mesh_NcpElems, & mesh_maxNips, & mesh_ipNeighborhood, & FE_NipNeighbors, & FE_geomtype, & FE_cellType use material, only: & homogenization_Ngrains, & plasticState, & sourceState, & phase_Nsources, & phaseAt, phasememberAt, & homogenization_maxNgrains use constitutive, only: & constitutive_TandItsTangent, & constitutive_LpAndItsTangent, & constitutive_LiAndItsTangent implicit none logical, intent(in) :: & updateJaco !< whether to update the Jacobian (stiffness) or not real(pReal) :: & myPert, & ! perturbation with correct sign formerSubStep, & subFracIntermediate real(pReal), dimension(3,3) :: & invFp, & ! inverse of the plastic deformation gradient Fe_guess, & ! guess for elastic deformation gradient Tstar ! 2nd Piola-Kirchhoff stress tensor real(pReal), allocatable, dimension(:,:,:,:,:,:,:) :: & dPdF_perturbation1, & dPdF_perturbation2 real(pReal), allocatable, dimension(:,:,:,:,:) :: & F_backup, & Fp_backup, & InvFp_backup, & Fi_backup, & InvFi_backup, & Fe_backup, & Lp_backup, & Li_backup, & P_backup real(pReal), allocatable, dimension(:,:,:,:) :: & Tstar_v_backup logical, allocatable, dimension(:,:,:) :: & convergenceFlag_backup integer(pInt) :: & NiterationCrystallite, & ! number of iterations in crystallite loop c, & !< counter in integration point component loop i, & !< counter in integration point loop e, & !< counter in element loop k, & l, & n, startIP, endIP, & neighboring_e, & neighboring_i, & o, & p, & perturbation , & ! loop counter for forward,backward perturbation mode myNcomponents, & mySource ! local variables used for calculating analytic Jacobian real(pReal), dimension(3,3) :: temp_33 real(pReal), dimension(3,3,3,3) :: dSdFe, & dSdF, & dSdFi, & dLidS, & dLidFi, & dLpdS, & dLpdFi, & dFidS, & dFpinvdF, & rhs_3333, & lhs_3333, & temp_3333 real(pReal), dimension(9,9):: temp_99 logical :: error if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt & .and. FEsolving_execElem(1) <= debug_e & .and. debug_e <= FEsolving_execElem(2)) then write(6,'(/,a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> boundary values at el ip ipc ', & debug_e,'(',mesh_element(1,debug_e), ')',debug_i, debug_g write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F ', & math_transpose33(crystallite_partionedF(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F0 ', & math_transpose33(crystallite_partionedF0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp0', & math_transpose33(crystallite_partionedFp0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fi0', & math_transpose33(crystallite_partionedFi0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp0', & math_transpose33(crystallite_partionedLp0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Li0', & math_transpose33(crystallite_partionedLi0(1:3,1:3,debug_g,debug_i,debug_e)) endif !-------------------------------------------------------------------------------------------------- ! initialize to starting condition crystallite_subStep = 0.0_pReal !$OMP PARALLEL DO PRIVATE(myNcomponents) elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do c = 1_pInt,myNcomponents if (crystallite_requested(c,i,e)) then plasticState (phaseAt(c,i,e))%subState0( :,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%partionedState0(:,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%subState0( :,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%partionedState0(:,phasememberAt(c,i,e)) enddo crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_partionedFp0(1:3,1:3,c,i,e) ! ...plastic def grad crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_partionedLp0(1:3,1:3,c,i,e) ! ...plastic velocity grad crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_partionedFi0(1:3,1:3,c,i,e) ! ...intermediate def grad crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_partionedLi0(1:3,1:3,c,i,e) ! ...intermediate velocity grad crystallite_dPdF0(1:3,1:3,1:3,1:3,c,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,c,i,e) ! ...stiffness crystallite_subF0(1:3,1:3,c,i,e) = crystallite_partionedF0(1:3,1:3,c,i,e) ! ...def grad crystallite_subTstar0_v(1:6,c,i,e) = crystallite_partionedTstar0_v(1:6,c,i,e) !...2nd PK stress crystallite_subFe0(1:3,1:3,c,i,e) = math_mul33x33(math_mul33x33(crystallite_subF0(1:3,1:3,c,i,e), & math_inv33(crystallite_subFp0(1:3,1:3,c,i,e))), & math_inv33(crystallite_subFi0(1:3,1:3,c,i,e)))! only needed later on for stiffness calculation crystallite_subFrac(c,i,e) = 0.0_pReal crystallite_subStep(c,i,e) = 1.0_pReal/subStepSizeCryst crystallite_todo(c,i,e) = .true. crystallite_converged(c,i,e) = .false. ! pretend failed step of twice the required size endif enddo; enddo enddo elementLooping1 !$OMP END PARALLEL DO singleRun: if (FEsolving_execELem(1) == FEsolving_execElem(2) .and. & FEsolving_execIP(1,FEsolving_execELem(1))==FEsolving_execIP(2,FEsolving_execELem(1))) then startIP = FEsolving_execIP(1,FEsolving_execELem(1)) endIP = startIP else singleRun startIP = 1_pInt endIP = mesh_maxNips endif singleRun NiterationCrystallite = 0_pInt numerics_integrationMode = 1_pInt cutbackLooping: do while (any(crystallite_todo(:,startIP:endIP,FEsolving_execELem(1):FEsolving_execElem(2)))) if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a,i6)') '<< CRYST >> crystallite iteration ',NiterationCrystallite timeSyncing1: if (any(.not. crystallite_localPlasticity) .and. numerics_timeSyncing) then ! Time synchronization can only be used for nonlocal calculations, and only there it makes sense. ! The idea is that in nonlocal calculations often the vast majority of the ips ! converges in one iteration whereas a small fraction of ips has to do a lot of cutbacks. ! Hence, we try to minimize the computational effort by just doing a lot of cutbacks ! in the vicinity of the "bad" ips and leave the easily converged volume more or less as it is. ! However, some synchronization of the time step has to be done at the border between "bad" ips ! and the ones that immediately converged. if (any(crystallite_syncSubFrac)) then ! Just did a time synchronization. ! If all synchronizers converged, then do nothing else than winding them forward. ! If any of the synchronizers did not converge, something went completely wrong ! and its not clear how to fix this, so all nonlocals become terminally ill. if (any(crystallite_syncSubFrac .and. .not. crystallite_converged(1,:,:))) then if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if (crystallite_syncSubFrac(i,e) .and. .not. crystallite_converged(1,i,e)) & write(6,'(a,i8,1x,i2)') '<< CRYST >> time synchronization: failed at el,ip ',e,i enddo enddo endif crystallite_syncSubFrac = .false. where(.not. crystallite_localPlasticity) crystallite_substep = 0.0_pReal crystallite_todo = .false. endwhere else !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_syncSubFrac(i,e) crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) enddo enddo !$OMP END PARALLEL DO if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a,i6)') '<< CRYST >> time synchronization: wind forward' endif elseif (any(crystallite_syncSubFracCompleted)) then ! Just completed a time synchronization. ! Make sure that the ips that synchronized their time step start non-converged do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if (crystallite_syncSubFracCompleted(i,e)) crystallite_converged(1,i,e) = .false. crystallite_syncSubFracCompleted(i,e) = .false. crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) .or. .not. crystallite_converged(1,i,e) enddo enddo if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a,i6)') '<< CRYST >> time synchronization: done, proceed with cutback' else ! Normal calculation. ! If all converged and are at the end of the time increment, then just do a final wind forward. ! If all converged, but not all reached the end of the time increment, then we only wind ! those forward that are still on their way, all others have to wait. ! If some did not converge and all are still at the start of the time increment, ! then all non-convergers force their converged neighbors to also do a cutback. ! In case that some ips have already wound forward to an intermediate time (subfrac), ! then all those ips that converged in the first iteration, but now have a non-converged neighbor ! have to synchronize their time step to the same intermediate time. If such a synchronization ! takes place, all other ips have to wait and only the synchronizers do a cutback. In the next ! iteration those will do a wind forward while all others still wait. !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) enddo enddo !$OMP END PARALLEL DO if (all(crystallite_localPlasticity .or. crystallite_converged)) then if (all(crystallite_localPlasticity .or. crystallite_subStep + crystallite_subFrac >= 1.0_pReal)) then crystallite_clearToWindForward = .true. ! final wind forward if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a,i6)') '<< CRYST >> final wind forward' else !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_subStep(1,i,e) < 1.0_pReal enddo enddo !$OMP END PARALLEL DO if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a,i6)') '<< CRYST >> wind forward' endif else subFracIntermediate = maxval(crystallite_subFrac, mask=.not.crystallite_localPlasticity) if (dNeq(subFracIntermediate,0.0_pReal)) then crystallite_neighborEnforcedCutback = .false. ! look for ips that require a cutback because of a nonconverged neighbor !$OMP PARALLEL !$OMP DO PRIVATE(neighboring_e,neighboring_i) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if (.not. crystallite_localPlasticity(1,i,e) .and. crystallite_converged(1,i,e)) then do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e)))) neighboring_e = mesh_ipNeighborhood(1,n,i,e) neighboring_i = mesh_ipNeighborhood(2,n,i,e) if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) & .and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then crystallite_neighborEnforcedCutback(i,e) = .true. #ifndef _OPENMP if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ', neighboring_e,neighboring_i, & ' enforced cutback at ',e,i #endif exit endif endif enddo endif enddo enddo !$OMP END DO !$OMP DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if(crystallite_neighborEnforcedCutback(i,e)) crystallite_converged(1,i,e) = .false. enddo enddo !$OMP END DO !$OMP END PARALLEL else crystallite_syncSubFrac = .false. ! look for ips that have to do a time synchronization because of a nonconverged neighbor !$OMP PARALLEL !$OMP DO PRIVATE(neighboring_e,neighboring_i) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if (.not. crystallite_localPlasticity(1,i,e) .and. dNeq(crystallite_subFrac(1,i,e),0.0_pReal)) then do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e)))) neighboring_e = mesh_ipNeighborhood(1,n,i,e) neighboring_i = mesh_ipNeighborhood(2,n,i,e) if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) & .and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then crystallite_syncSubFrac(i,e) = .true. #ifndef _OPENMP if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ',neighboring_e,neighboring_i, & ' enforced time synchronization at ',e,i #endif exit endif endif enddo endif enddo enddo !$OMP END DO !$OMP DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if(crystallite_syncSubFrac(i,e)) crystallite_converged(1,i,e) = .false. enddo enddo !$OMP END DO !$OMP END PARALLEL endif where(.not. crystallite_localPlasticity .and. crystallite_subStep < 1.0_pReal) & crystallite_converged = .false. if (any(crystallite_syncSubFrac)) then ! have to do syncing now, so all wait except for the synchronizers which do a cutback !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_syncSubFrac(i,e) enddo enddo !$OMP END PARALLEL DO if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a,i6)') '<< CRYST >> time synchronization: cutback' else !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if(.not. crystallite_converged(1,i,e)) crystallite_clearToCutback(i,e) = .true. enddo enddo !$OMP END PARALLEL DO if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) & write(6,'(a,i6)') '<< CRYST >> cutback' endif endif endif ! Make sure that all cutbackers start with the same substep where(.not. crystallite_localPlasticity .and. .not. crystallite_converged) & crystallite_subStep = minval(crystallite_subStep, mask=.not. crystallite_localPlasticity & .and. .not. crystallite_converged) ! Those that do neither wind forward nor cutback are not to do !$OMP PARALLEL DO elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if(.not. crystallite_clearToWindForward(i,e) .and. .not. crystallite_clearToCutback(i,e)) & crystallite_todo(1,i,e) = .false. enddo enddo elementLooping2 !$OMP END PARALLEL DO endif timeSyncing1 !$OMP PARALLEL DO PRIVATE(myNcomponents,formerSubStep) elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed do c = 1,myNcomponents ! --- wind forward --- if (crystallite_converged(c,i,e) .and. crystallite_clearToWindForward(i,e)) then formerSubStep = crystallite_subStep(c,i,e) crystallite_subFrac(c,i,e) = crystallite_subFrac(c,i,e) + crystallite_subStep(c,i,e) !$OMP FLUSH(crystallite_subFrac) crystallite_subStep(c,i,e) = min(1.0_pReal - crystallite_subFrac(c,i,e), & stepIncreaseCryst * crystallite_subStep(c,i,e)) !$OMP FLUSH(crystallite_subStep) if (crystallite_subStep(c,i,e) > 0.0_pReal) then crystallite_subF0(1:3,1:3,c,i,e) = crystallite_subF(1:3,1:3,c,i,e) ! ...def grad !$OMP FLUSH(crystallite_subF0) crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_Lp(1:3,1:3,c,i,e) ! ...plastic velocity gradient crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_Li(1:3,1:3,c,i,e) ! ...intermediate velocity gradient crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_Fp(1:3,1:3,c,i,e) ! ...plastic def grad crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_Fi(1:3,1:3,c,i,e) ! ...intermediate def grad crystallite_subFe0(1:3,1:3,c,i,e) = math_mul33x33(math_mul33x33(crystallite_subF (1:3,1:3,c,i,e), & crystallite_invFp(1:3,1:3,c,i,e)), & crystallite_invFi(1:3,1:3,c,i,e)) ! only needed later on for stiffness calculation !if abbrevation, make c and p private in omp plasticState (phaseAt(c,i,e))%subState0(:,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%state( :,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%subState0(:,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%state( :,phasememberAt(c,i,e)) enddo crystallite_subTstar0_v(1:6,c,i,e) = crystallite_Tstar_v(1:6,c,i,e) ! ...2nd PK stress if (crystallite_syncSubFrac(i,e)) then ! if we just did a synchronization of states, then we wind forward without any further time integration crystallite_syncSubFracCompleted(i,e) = .true. crystallite_syncSubFrac(i,e) = .false. crystallite_todo(c,i,e) = .false. else crystallite_todo(c,i,e) = .true. endif !$OMP FLUSH(crystallite_todo) #ifndef _OPENMP if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. c == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) & write(6,'(a,f12.8,a,f12.8,a,i8,1x,i2,1x,i3,/)') '<< CRYST >> winding forward from ', & crystallite_subFrac(c,i,e)-formerSubStep,' to current crystallite_subfrac ', & crystallite_subFrac(c,i,e),' in crystallite_stressAndItsTangent at el ip ipc ',e,i,c #endif else ! this crystallite just converged for the entire timestep crystallite_todo(c,i,e) = .false. ! so done here !$OMP FLUSH(crystallite_todo) if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt & .and. formerSubStep > 0.0_pReal) then !$OMP CRITICAL (distributionCrystallite) debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) = & debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) + 1_pInt !$OMP END CRITICAL (distributionCrystallite) endif endif ! --- cutback --- elseif (.not. crystallite_converged(c,i,e) .and. crystallite_clearToCutback(i,e)) then if (crystallite_syncSubFrac(i,e)) then ! synchronize time crystallite_subStep(c,i,e) = subFracIntermediate else crystallite_subStep(c,i,e) = subStepSizeCryst * crystallite_subStep(c,i,e) ! cut step in half and restore... endif !$OMP FLUSH(crystallite_subStep) crystallite_Fp(1:3,1:3,c,i,e) = crystallite_subFp0(1:3,1:3,c,i,e) ! ...plastic def grad !$OMP FLUSH(crystallite_Fp) crystallite_invFp(1:3,1:3,c,i,e) = math_inv33(crystallite_Fp(1:3,1:3,c,i,e)) !$OMP FLUSH(crystallite_invFp) crystallite_Fi(1:3,1:3,c,i,e) = crystallite_subFi0(1:3,1:3,c,i,e) ! ...intermediate def grad !$OMP FLUSH(crystallite_Fi) crystallite_invFi(1:3,1:3,c,i,e) = math_inv33(crystallite_Fi(1:3,1:3,c,i,e)) !$OMP FLUSH(crystallite_invFi) crystallite_Lp(1:3,1:3,c,i,e) = crystallite_subLp0(1:3,1:3,c,i,e) ! ...plastic velocity grad crystallite_Li(1:3,1:3,c,i,e) = crystallite_subLi0(1:3,1:3,c,i,e) ! ...intermediate velocity grad plasticState (phaseAt(c,i,e))%state( :,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%subState0(:,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%state( :,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%subState0(:,phasememberAt(c,i,e)) enddo crystallite_Tstar_v(1:6,c,i,e) = crystallite_subTstar0_v(1:6,c,i,e) ! ...2nd PK stress ! cant restore dotState here, since not yet calculated in first cutback after initialization crystallite_todo(c,i,e) = crystallite_subStep(c,i,e) > subStepMinCryst ! still on track or already done (beyond repair) !$OMP FLUSH(crystallite_todo) #ifndef _OPENMP if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt) then if (crystallite_todo(c,i,e)) then write(6,'(a,f12.8,a,i8,1x,i2,1x,i3,/)') '<< CRYST >> cutback step in crystallite_stressAndItsTangent & &with new crystallite_subStep: ',& crystallite_subStep(c,i,e),' at el ip ipc ',e,i,c else write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> reached minimum step size & &in crystallite_stressAndItsTangent at el ip ipc ',e,i,c endif endif #endif endif ! --- prepare for integration --- if (crystallite_todo(c,i,e) .and. (crystallite_clearToWindForward(i,e) .or. crystallite_clearToCutback(i,e))) then crystallite_subF(1:3,1:3,c,i,e) = crystallite_subF0(1:3,1:3,c,i,e) & + crystallite_subStep(c,i,e) & * (crystallite_partionedF(1:3,1:3,c,i,e) & - crystallite_partionedF0(1:3,1:3,c,i,e)) !$OMP FLUSH(crystallite_subF) crystallite_Fe(1:3,1:3,c,i,e) = math_mul33x33(math_mul33x33(crystallite_subF (1:3,1:3,c,i,e), & crystallite_invFp(1:3,1:3,c,i,e)), & crystallite_invFi(1:3,1:3,c,i,e)) crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e) crystallite_converged(c,i,e) = .false. ! start out non-converged endif enddo ! grains enddo ! IPs enddo elementLooping3 !$OMP END PARALLEL DO timeSyncing2: if(numerics_timeSyncing) then if (any(.not. crystallite_localPlasticity .and. .not. crystallite_todo .and. .not. crystallite_converged & .and. crystallite_subStep <= subStepMinCryst)) then ! no way of rescuing a nonlocal ip that violated the lower time step limit, ... if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do c = 1,myNcomponents if (.not. crystallite_localPlasticity(c,i,e) .and. .not. crystallite_todo(c,i,e) & .and. .not. crystallite_converged(c,i,e) .and. crystallite_subStep(c,i,e) <= subStepMinCryst) & write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> nonlocal violated minimum subStep at el ip ipc ',e,i,c enddo enddo enddo elementLooping4 endif where(.not. crystallite_localPlasticity) crystallite_todo = .false. ! ... so let all nonlocal ips die peacefully crystallite_subStep = 0.0_pReal endwhere endif endif timeSyncing2 if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then write(6,'(/,a,e12.5)') '<< CRYST >> min(subStep) ',minval(crystallite_subStep) write(6,'(a,e12.5)') '<< CRYST >> max(subStep) ',maxval(crystallite_subStep) write(6,'(a,e12.5)') '<< CRYST >> min(subFrac) ',minval(crystallite_subFrac) write(6,'(a,e12.5,/)') '<< CRYST >> max(subFrac) ',maxval(crystallite_subFrac) flush(6) endif ! --- integrate --- requires fully defined state array (basic + dependent state) if (any(crystallite_todo)) then select case(numerics_integrator(numerics_integrationMode)) case(1_pInt) call crystallite_integrateStateFPI() case(2_pInt) call crystallite_integrateStateEuler() case(3_pInt) call crystallite_integrateStateAdaptiveEuler() case(4_pInt) call crystallite_integrateStateRK4() case(5_pInt) call crystallite_integrateStateRKCK45() end select endif where(.not. crystallite_converged .and. crystallite_subStep > subStepMinCryst) & ! do not try non-converged & fully cutbacked any further crystallite_todo = .true. NiterationCrystallite = NiterationCrystallite + 1_pInt enddo cutbackLooping ! --+>> CHECK FOR NON-CONVERGED CRYSTALLITES <<+-- elementLooping5: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed do c = 1,myNcomponents if (.not. crystallite_converged(c,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway) if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) & write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> no convergence: respond fully elastic at el (elFE) ip ipc ', & e,'(',mesh_element(1,e),')',i,c invFp = math_inv33(crystallite_partionedFp0(1:3,1:3,c,i,e)) Fe_guess = math_mul33x33(math_mul33x33(crystallite_partionedF(1:3,1:3,c,i,e), invFp), & math_inv33(crystallite_partionedFi0(1:3,1:3,c,i,e))) call constitutive_TandItsTangent(Tstar,dSdFe,dSdFi,Fe_guess,crystallite_partionedFi0(1:3,1:3,c,i,e),c,i,e) crystallite_P(1:3,1:3,c,i,e) = math_mul33x33(math_mul33x33(crystallite_partionedF(1:3,1:3,c,i,e), invFp), & math_mul33x33(Tstar,transpose(invFp))) endif if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. c == debug_g) & .or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> central solution of cryst_StressAndTangent at el ip ipc ',e,i,c write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CRYST >> P / MPa', & math_transpose33(crystallite_P(1:3,1:3,c,i,e))*1.0e-6_pReal write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp', & math_transpose33(crystallite_Fp(1:3,1:3,c,i,e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fi', & math_transpose33(crystallite_Fi(1:3,1:3,c,i,e)) write(6,'(a,/,3(12x,3(f14.9,1x)/),/)') '<< CRYST >> Lp', & math_transpose33(crystallite_Lp(1:3,1:3,c,i,e)) write(6,'(a,/,3(12x,3(f14.9,1x)/),/)') '<< CRYST >> Li', & math_transpose33(crystallite_Li(1:3,1:3,c,i,e)) flush(6) endif enddo enddo enddo elementLooping5 ! --+>> STIFFNESS CALCULATION <<+-- computeJacobian: if(updateJaco) then jacobianMethod: if (analyticJaco) then ! --- ANALYTIC JACOBIAN --- !$OMP PARALLEL DO PRIVATE(dSdF,dSdFe,dSdFi,dLpdS,dLpdFi,dFpinvdF,dLidS,dLidFi,dFidS,& !$OMP rhs_3333,lhs_3333,temp_99,temp_33,temp_3333,myNcomponents,error) elementLooping6: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed do c = 1_pInt,myNcomponents call constitutive_TandItsTangent(temp_33,dSdFe,dSdFi,crystallite_Fe(1:3,1:3,c,i,e), & crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate elastic stress tangent call constitutive_LiAndItsTangent(temp_33,dLidS,dLidFi,crystallite_Tstar_v(1:6,c,i,e), & crystallite_Fi(1:3,1:3,c,i,e), & c,i,e) ! call constitutive law to calculate Li tangent in lattice configuration if (sum(abs(dLidS)) < tol_math_check) then dFidS = 0.0_pReal else temp_33 = math_inv33(crystallite_subFi0(1:3,1:3,c,i,e)) lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal do o=1_pInt,3_pInt; do p=1_pInt,3_pInt lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) + & crystallite_subdt(c,i,e)*math_mul33x33(temp_33,dLidFi(1:3,1:3,o,p)) lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) + & crystallite_invFi(1:3,1:3,c,i,e)*crystallite_invFi(p,o,c,i,e) rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) - & crystallite_subdt(c,i,e)*math_mul33x33(temp_33,dLidS(1:3,1:3,o,p)) enddo; enddo call math_invert(9_pInt,math_Plain3333to99(lhs_3333),temp_99,error) if (error) then call IO_warning(warning_ID=600_pInt,el=e,ip=i,g=c, & ext_msg='inversion error in analytic tangent calculation') dFidS = 0.0_pReal else dFidS = math_mul3333xx3333(math_Plain99to3333(temp_99),rhs_3333) endif dLidS = math_mul3333xx3333(dLidFi,dFidS) + dLidS endif call constitutive_LpAndItsTangent(temp_33,dLpdS,dLpdFi,crystallite_Tstar_v(1:6,c,i,e), & crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate Lp tangent in lattice configuration dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS temp_33 = math_transpose33(math_mul33x33(crystallite_invFp(1:3,1:3,c,i,e), & crystallite_invFi(1:3,1:3,c,i,e))) rhs_3333 = 0.0_pReal forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) & rhs_3333(p,o,1:3,1:3) = math_mul33x33(dSdFe(p,o,1:3,1:3),temp_33) temp_3333 = 0.0_pReal temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,c,i,e), & math_inv33(crystallite_subFp0(1:3,1:3,c,i,e))) forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) & temp_3333(1:3,1:3,p,o) = math_mul33x33(math_mul33x33(temp_33,dLpdS(1:3,1:3,p,o)), & crystallite_invFi(1:3,1:3,c,i,e)) temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,c,i,e), & crystallite_invFp(1:3,1:3,c,i,e)), & math_inv33(crystallite_subFi0(1:3,1:3,c,i,e))) forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) & temp_3333(1:3,1:3,p,o) = temp_3333(1:3,1:3,p,o) + math_mul33x33(temp_33,dLidS(1:3,1:3,p,o)) lhs_3333 = crystallite_subdt(c,i,e)*math_mul3333xx3333(dSdFe,temp_3333) + & math_mul3333xx3333(dSdFi,dFidS) call math_invert(9_pInt,math_identity2nd(9_pInt)+math_Plain3333to99(lhs_3333),temp_99,error) if (error) then call IO_warning(warning_ID=600_pInt,el=e,ip=i,g=c, & ext_msg='inversion error in analytic tangent calculation') dSdF = rhs_3333 else dSdF = math_mul3333xx3333(math_Plain99to3333(temp_99),rhs_3333) endif dFpinvdF = 0.0_pReal temp_3333 = math_mul3333xx3333(dLpdS,dSdF) forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) & dFpinvdF(1:3,1:3,p,o) = -crystallite_subdt(c,i,e)* & math_mul33x33(math_inv33(crystallite_subFp0(1:3,1:3,c,i,e)), & math_mul33x33(temp_3333(1:3,1:3,p,o), & crystallite_invFi(1:3,1:3,c,i,e))) crystallite_dPdF(1:3,1:3,1:3,1:3,c,i,e) = 0.0_pReal temp_33 = math_mul33x33(crystallite_invFp(1:3,1:3,c,i,e), & math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,c,i,e)), & math_transpose33(crystallite_invFp(1:3,1:3,c,i,e)))) forall(p=1_pInt:3_pInt) & crystallite_dPdF(p,1:3,p,1:3,c,i,e) = math_transpose33(temp_33) temp_33 = math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,c,i,e)), & math_transpose33(crystallite_invFp(1:3,1:3,c,i,e))) forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) & crystallite_dPdF(1:3,1:3,p,o,c,i,e) = crystallite_dPdF(1:3,1:3,p,o,c,i,e) + & math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,c,i,e),dFpinvdF(1:3,1:3,p,o)),temp_33) temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,c,i,e), & crystallite_invFp(1:3,1:3,c,i,e)) forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) & crystallite_dPdF(1:3,1:3,p,o,c,i,e) = crystallite_dPdF(1:3,1:3,p,o,c,i,e) + & math_mul33x33(math_mul33x33(temp_33,dSdF(1:3,1:3,p,o)), & math_transpose33(crystallite_invFp(1:3,1:3,c,i,e))) temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,c,i,e), & crystallite_invFp(1:3,1:3,c,i,e)), & math_Mandel6to33(crystallite_Tstar_v(1:6,c,i,e))) forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) & crystallite_dPdF(1:3,1:3,p,o,c,i,e) = crystallite_dPdF(1:3,1:3,p,o,c,i,e) + & math_mul33x33(temp_33,math_transpose33(dFpinvdF(1:3,1:3,p,o))) enddo; enddo enddo elementLooping6 !$OMP END PARALLEL DO else jacobianMethod ! --- STANDARD (PERTURBATION METHOD) FOR JACOBIAN --- numerics_integrationMode = 2_pInt ! --- BACKUP --- allocate(dPdF_perturbation1(3,3,3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(dPdF_perturbation2(3,3,3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(F_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(Fp_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(InvFp_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(Fi_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(InvFi_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(Fe_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(Lp_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(Li_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(P_backup (3,3, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(Tstar_v_backup (6, homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = 0.0_pReal) allocate(convergenceFlag_backup (homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source = .false.) !$OMP PARALLEL DO PRIVATE(myNcomponents) elementLooping7: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do c = 1,myNcomponents plasticState (phaseAt(c,i,e))%state_backup(:,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%state( :,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%state_backup(:,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%state( :,phasememberAt(c,i,e)) enddo plasticState (phaseAt(c,i,e))%dotState_backup(:,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%dotState( :,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%dotState_backup(:,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%dotState( :,phasememberAt(c,i,e)) enddo F_backup(1:3,1:3,c,i,e) = crystallite_subF(1:3,1:3,c,i,e) ! ... and kinematics Fp_backup(1:3,1:3,c,i,e) = crystallite_Fp(1:3,1:3,c,i,e) InvFp_backup(1:3,1:3,c,i,e) = crystallite_invFp(1:3,1:3,c,i,e) Fi_backup(1:3,1:3,c,i,e) = crystallite_Fi(1:3,1:3,c,i,e) InvFi_backup(1:3,1:3,c,i,e) = crystallite_invFi(1:3,1:3,c,i,e) Fe_backup(1:3,1:3,c,i,e) = crystallite_Fe(1:3,1:3,c,i,e) Lp_backup(1:3,1:3,c,i,e) = crystallite_Lp(1:3,1:3,c,i,e) Li_backup(1:3,1:3,c,i,e) = crystallite_Li(1:3,1:3,c,i,e) Tstar_v_backup(1:6,c,i,e) = crystallite_Tstar_v(1:6,c,i,e) P_backup(1:3,1:3,c,i,e) = crystallite_P(1:3,1:3,c,i,e) convergenceFlag_backup(c,i,e) = crystallite_converged(c,i,e) enddo; enddo enddo elementLooping7 !$END PARALLEL DO ! --- CALCULATE STATE AND STRESS FOR PERTURBATION --- dPdF_perturbation1 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment dPdF_perturbation2 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment pertubationLoop: do perturbation = 1,2 ! forward and backward perturbation if (iand(pert_method,perturbation) > 0_pInt) then ! mask for desired direction myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step do k = 1,3; do l = 1,3 ! ...alter individual components if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. c == debug_g) & .or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) & write(6,'(a,2(1x,i1),1x,a,/)') '<< CRYST >> [[[[[[ Stiffness perturbation',k,l,']]]]]]' ! --- INITIALIZE UNPERTURBED STATE --- select case(numerics_integrator(numerics_integrationMode)) case(1_pInt) !why not OMP? ! Fix-point method: restore to last converged state at end of subinc, since this is probably closest to perturbed state do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do c = 1,myNcomponents plasticState (phaseAt(c,i,e))%state( :,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%state_backup(:,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%state( :,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%state_backup(:,phasememberAt(c,i,e)) enddo plasticState (phaseAt(c,i,e))%dotState( :,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%dotState_backup(:,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%dotState( :,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%dotState_backup(:,phasememberAt(c,i,e)) enddo crystallite_Fp(1:3,1:3,c,i,e) = Fp_backup(1:3,1:3,c,i,e) crystallite_invFp(1:3,1:3,c,i,e) = InvFp_backup(1:3,1:3,c,i,e) crystallite_Fi(1:3,1:3,c,i,e) = Fi_backup(1:3,1:3,c,i,e) crystallite_invFi(1:3,1:3,c,i,e) = InvFi_backup(1:3,1:3,c,i,e) crystallite_Fe(1:3,1:3,c,i,e) = Fe_backup(1:3,1:3,c,i,e) crystallite_Lp(1:3,1:3,c,i,e) = Lp_backup(1:3,1:3,c,i,e) crystallite_Li(1:3,1:3,c,i,e) = Li_backup(1:3,1:3,c,i,e) crystallite_Tstar_v(1:6,c,i,e) = Tstar_v_backup(1:6,c,i,e) enddo; enddo enddo case(2_pInt,3_pInt) ! explicit Euler methods: nothing to restore (except for F), since we are only doing a stress integration step case(4_pInt,5_pInt) !why not OMP? ! explicit Runge-Kutta methods: restore to start of subinc, since we are doing a full integration of state and stress do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do c = 1,myNcomponents plasticState (phaseAt(c,i,e))%state( :,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%subState0(:,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%state( :,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%subState0(:,phasememberAt(c,i,e)) enddo plasticState (phaseAt(c,i,e))%dotState( :,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%dotState_backup(:,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%dotState( :,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%dotState_backup(:,phasememberAt(c,i,e)) enddo crystallite_Fp(1:3,1:3,c,i,e) = crystallite_subFp0(1:3,1:3,c,i,e) crystallite_Fi(1:3,1:3,c,i,e) = crystallite_subFi0(1:3,1:3,c,i,e) crystallite_Fe(1:3,1:3,c,i,e) = crystallite_subFe0(1:3,1:3,c,i,e) crystallite_Lp(1:3,1:3,c,i,e) = crystallite_subLp0(1:3,1:3,c,i,e) crystallite_Li(1:3,1:3,c,i,e) = crystallite_subLi0(1:3,1:3,c,i,e) crystallite_Tstar_v(1:6,c,i,e) = crystallite_subTstar0_v(1:6,c,i,e) enddo; enddo enddo end select ! --- PERTURB EITHER FORWARD OR BACKWARD --- !why not OMP? do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do c = 1,myNcomponents crystallite_subF(1:3,1:3,c,i,e) = F_backup(1:3,1:3,c,i,e) crystallite_subF(k,l,c,i,e) = crystallite_subF(k,l,c,i,e) + myPert crystallite_todo(c,i,e) = crystallite_requested(c,i,e) & .and. convergenceFlag_backup(c,i,e) if (crystallite_todo(c,i,e)) crystallite_converged(c,i,e) = .false. ! start out non-converged enddo; enddo; enddo select case(numerics_integrator(numerics_integrationMode)) case(1_pInt) call crystallite_integrateStateFPI() case(2_pInt) call crystallite_integrateStateEuler() case(3_pInt) call crystallite_integrateStateAdaptiveEuler() case(4_pInt) call crystallite_integrateStateRK4() case(5_pInt) call crystallite_integrateStateRKCK45() end select !why not OMP? elementLooping8: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) select case(perturbation) case(1_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), c = 1:myNcomponents, & crystallite_requested(c,i,e) .and. crystallite_converged(c,i,e)) & ! converged state warrants stiffness update dPdF_perturbation1(1:3,1:3,k,l,c,i,e) = & (crystallite_P(1:3,1:3,c,i,e) - P_backup(1:3,1:3,c,i,e)) / myPert ! tangent dP_ij/dFg_kl case(2_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), c = 1:myNcomponents, & crystallite_requested(c,i,e) .and. crystallite_converged(c,i,e)) & ! converged state warrants stiffness update dPdF_perturbation2(1:3,1:3,k,l,c,i,e) = & (crystallite_P(1:3,1:3,c,i,e) - P_backup(1:3,1:3,c,i,e)) / myPert ! tangent dP_ij/dFg_kl end select enddo elementLooping8 enddo; enddo ! k,l component perturbation loop endif enddo pertubationLoop ! --- STIFFNESS ACCORDING TO PERTURBATION METHOD AND CONVERGENCE --- elementLooping9: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) select case(pert_method) case(1_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), c = 1:myNcomponents, & crystallite_requested(c,i,e) .and. convergenceFlag_backup(c,i,e)) & ! perturbation mode 1: central solution converged crystallite_dPdF(1:3,1:3,1:3,1:3,c,i,e) = dPdF_perturbation1(1:3,1:3,1:3,1:3,c,i,e) case(2_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), c = 1:myNcomponents, & crystallite_requested(c,i,e) .and. convergenceFlag_backup(c,i,e)) & ! perturbation mode 2: central solution converged crystallite_dPdF(1:3,1:3,1:3,1:3,c,i,e) = dPdF_perturbation2(1:3,1:3,1:3,1:3,c,i,e) case(3_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), c = 1:myNcomponents, & crystallite_requested(c,i,e) .and. convergenceFlag_backup(c,i,e)) & ! perturbation mode 3: central solution converged crystallite_dPdF(1:3,1:3,1:3,1:3,c,i,e) = 0.5_pReal* ( dPdF_perturbation1(1:3,1:3,1:3,1:3,c,i,e) & + dPdF_perturbation2(1:3,1:3,1:3,1:3,c,i,e)) end select forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), c = 1:myNcomponents, & crystallite_requested(c,i,e) .and. .not. convergenceFlag_backup(c,i,e)) & ! for any pertubation mode: if central solution did not converge... crystallite_dPdF(1:3,1:3,1:3,1:3,c,i,e) = crystallite_fallbackdPdF(1:3,1:3,1:3,1:3,c,i,e) ! ...use (elastic) fallback enddo elementLooping9 ! --- RESTORE --- !why not OMP? elementLooping10: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e); do c = 1,myNcomponents plasticState (phaseAt(c,i,e))%state( :,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%state_backup(:,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%state( :,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%state_backup(:,phasememberAt(c,i,e)) enddo plasticState (phaseAt(c,i,e))%dotState( :,phasememberAt(c,i,e)) = & plasticState (phaseAt(c,i,e))%dotState_backup(:,phasememberAt(c,i,e)) do mySource = 1_pInt, phase_Nsources(phaseAt(c,i,e)) sourceState(phaseAt(c,i,e))%p(mySource)%dotState( :,phasememberAt(c,i,e)) = & sourceState(phaseAt(c,i,e))%p(mySource)%dotState_backup(:,phasememberAt(c,i,e)) enddo crystallite_subF(1:3,1:3,c,i,e) = F_backup(1:3,1:3,c,i,e) crystallite_Fp(1:3,1:3,c,i,e) = Fp_backup(1:3,1:3,c,i,e) crystallite_invFp(1:3,1:3,c,i,e) = InvFp_backup(1:3,1:3,c,i,e) crystallite_Fi(1:3,1:3,c,i,e) = Fi_backup(1:3,1:3,c,i,e) crystallite_invFi(1:3,1:3,c,i,e) = InvFi_backup(1:3,1:3,c,i,e) crystallite_Fe(1:3,1:3,c,i,e) = Fe_backup(1:3,1:3,c,i,e) crystallite_Lp(1:3,1:3,c,i,e) = Lp_backup(1:3,1:3,c,i,e) crystallite_Li(1:3,1:3,c,i,e) = Li_backup(1:3,1:3,c,i,e) crystallite_Tstar_v(1:6,c,i,e) = Tstar_v_backup(1:6,c,i,e) crystallite_P(1:3,1:3,c,i,e) = P_backup(1:3,1:3,c,i,e) crystallite_converged(c,i,e) = convergenceFlag_backup(c,i,e) enddo; enddo enddo elementLooping10 deallocate(dPdF_perturbation1) deallocate(dPdF_perturbation2) deallocate(F_backup ) deallocate(Fp_backup ) deallocate(InvFp_backup ) deallocate(Fi_backup ) deallocate(InvFi_backup ) deallocate(Fe_backup ) deallocate(Lp_backup ) deallocate(Li_backup ) deallocate(P_backup ) deallocate(Tstar_v_backup ) deallocate(convergenceFlag_backup) endif jacobianMethod endif computeJacobian !why not OMP? end subroutine crystallite_stressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, state with 4th order explicit Runge Kutta method !-------------------------------------------------------------------------------------------------- subroutine crystallite_integrateStateRK4() use prec, only: & prec_isNaN use numerics, only: & numerics_integrationMode use debug, only: & debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_StateLoopDistribution use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & mesh_element, & mesh_NcpElems use material, only: & homogenization_Ngrains, & plasticState, & sourceState, & phase_Nsources, & material_Nphase, & phaseAt, phasememberAt use constitutive, only: & constitutive_collectDotState, & constitutive_microstructure implicit none real(pReal), dimension(4), parameter :: & TIMESTEPFRACTION = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration real(pReal), dimension(4), parameter :: & WEIGHT = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal/6.0_pReal] ! weight of slope used for Runge Kutta integration (final weight divided by 6) integer(pInt) :: e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop p, & ! phase loop c, & n, & mySource, & mySizePlasticDotState, & mySizeSourceDotState integer(pInt), dimension(2) :: eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration logical :: NaN, & singleRun ! flag indicating computation for single (g,i,e) triple eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2))) !-------------------------------------------------------------------------------------------------- ! initialize dotState if (.not. singleRun) then do p = 1_pInt, material_Nphase plasticState(p)%RK4dotState = 0.0_pReal do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%RK4dotState = 0.0_pReal enddo enddo else e = eIter(1) i = iIter(1,e) do g = gIter(1,e), gIter(2,e) plasticState(phaseAt(g,i,e))%RK4dotState(:,phasememberAt(g,i,e)) = 0.0_pReal do mySource = 1_pInt, phase_Nsources(phaseAt(g,i,e)) sourceState(phaseAt(g,i,e))%p(mySource)%RK4dotState(:,phasememberAt(g,i,e)) = 0.0_pReal enddo enddo endif !-------------------------------------------------------------------------------------------------- ! first Runge-Kutta step !$OMP PARALLEL !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,c,NaN) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then c = phasememberAt(g,i,e) p = phaseAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,c))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,c))) enddo if (NaN) then ! NaN occured in any dotState if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL !-------------------------------------------------------------------------------------------------- ! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION --- do n = 1_pInt,4_pInt ! --- state update --- !$OMP PARALLEL !$OMP DO PRIVATE(p,c) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) plasticState(p)%RK4dotState(:,c) = plasticState(p)%RK4dotState(:,c) & + weight(n)*plasticState(p)%dotState(:,c) do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%RK4dotState(:,c) = sourceState(p)%p(mySource)%RK4dotState(:,c) & + weight(n)*sourceState(p)%p(mySource)%dotState(:,c) enddo endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) mySizePlasticDotState = plasticState(p)%sizeDotState plasticState(p)%state (1:mySizePlasticDotState,c) = & plasticState(p)%subState0(1:mySizePlasticDotState,c) & + plasticState(p)%dotState (1:mySizePlasticDotState,c) & * crystallite_subdt(g,i,e) * timeStepFraction(n) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,c) = & sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,c) & + sourceState(p)%p(mySource)%dotState (1:mySizeSourceDotState,c) & * crystallite_subdt(g,i,e) * timeStepFraction(n) enddo #ifndef _OPENMP if (n == 4 & .and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then ! final integration step write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> updateState at el ip g ',e,i,g write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState(1:mySizePlasticDotState,c) write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state(1:mySizePlasticDotState,c) endif #endif endif enddo; enddo; enddo !$OMP ENDDO ! --- state jump --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- update dependent states --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & !***dirty way to pass orientation information call constitutive_microstructure(crystallite_orientation, & crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), & g, i, e) ! update dependent state variables to be consistent with basic states enddo; enddo; enddo !$OMP ENDDO ! --- stress integration --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,timeStepFraction(n)) ! fraction of original times step !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- dot state and RK dot state--- first3steps: if (n < 4) then !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & timeStepFraction(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,c,NaN) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,c))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,c))) enddo if (NaN) then ! NaN occured in any dotState if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO endif first3steps !$OMP END PARALLEL enddo ! --- SET CONVERGENCE FLAG --- do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(4,numerics_integrationMode) = & debug_StateLoopDistribution(4,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif enddo; enddo; enddo ! --- CHECK NONLOCAL CONVERGENCE --- if (.not. singleRun) then ! if not requesting Integration of just a single IP if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged endif endif end subroutine crystallite_integrateStateRK4 !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, state with 5th order Runge-Kutta Cash-Karp method with !> adaptive step size (use 5th order solution to advance = "local extrapolation") !-------------------------------------------------------------------------------------------------- subroutine crystallite_integrateStateRKCK45() use prec, only: & prec_isNaN use debug, only: & debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_StateLoopDistribution use numerics, only: & rTol_crystalliteState, & numerics_integrationMode use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_Ngrains, & plasticState, & sourceState, & phase_Nsources, & phaseAt, phasememberAt, & homogenization_maxNgrains use constitutive, only: & constitutive_collectDotState, & constitutive_plasticity_maxSizeDotState, & constitutive_source_maxSizeDotState, & constitutive_microstructure implicit none real(pReal), dimension(5,5), parameter :: & A = reshape([& .2_pReal, .075_pReal, .3_pReal, -11.0_pReal/54.0_pReal, 1631.0_pReal/55296.0_pReal, & .0_pReal, .225_pReal, -.9_pReal, 2.5_pReal, 175.0_pReal/512.0_pReal, & .0_pReal, .0_pReal, 1.2_pReal, -70.0_pReal/27.0_pReal, 575.0_pReal/13824.0_pReal, & .0_pReal, .0_pReal, .0_pReal, 35.0_pReal/27.0_pReal, 44275.0_pReal/110592.0_pReal, & .0_pReal, .0_pReal, .0_pReal, .0_pReal, 253.0_pReal/4096.0_pReal], & [5,5], order=[2,1]) !< coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6) real(pReal), dimension(6), parameter :: & B = & [37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, & 125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], & !< coefficients in Butcher tableau (used for final integration and error estimate) DB = B - & [2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,& 13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 0.25_pReal] !< coefficients in Butcher tableau (used for final integration and error estimate) real(pReal), dimension(5), parameter :: & C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal] !< coefficients in Butcher tableau (fractions of original time step in stages 2 to 6) integer(pInt) :: & e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop stage, & ! stage index in integration stage loop s, & ! state index n, & p, & cc, & mySource, & mySizePlasticDotState, & ! size of dot States mySizeSourceDotState integer(pInt), dimension(2) :: & eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: & iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration real(pReal), dimension(constitutive_plasticity_maxSizeDotState, & homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & plasticStateResiduum, & ! residuum from evolution in microstructure relPlasticStateResiduum ! relative residuum from evolution in microstructure real(pReal), dimension(constitutive_source_maxSizeDotState, & maxval(phase_Nsources), & homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & sourceStateResiduum, & ! residuum from evolution in microstructure relSourceStateResiduum ! relative residuum from evolution in microstructure logical :: & NaN, & singleRun ! flag indicating computation for single (g,i,e) triple eIter = FEsolving_execElem(1:2) if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) & write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',1 ! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP --- do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2))) ! --- FIRST RUNGE KUTTA STEP --- !$OMP PARALLEL !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,cc,NaN) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then cc = phasememberAt(g,i,e) p = phaseAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,cc))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,cc))) enddo if (NaN) then ! NaN occured in any dotState if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL ! --- SECOND TO SIXTH RUNGE KUTTA STEP --- do stage = 1_pInt,5_pInt ! --- state update --- !$OMP PARALLEL !$OMP DO PRIVATE(p,cc) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) cc = phasememberAt(g,i,e) plasticState(p)%RKCK45dotState(stage,:,cc) = plasticState(p)%dotState(:,cc) ! store Runge-Kutta dotState do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%RKCK45dotState(stage,:,cc) = sourceState(p)%p(mySource)%dotState(:,cc) enddo endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,cc,n) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) cc = phasememberAt(g,i,e) plasticState(p)%dotState(:,cc) = A(1,stage) * plasticState(p)%RKCK45dotState(1,:,cc) do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%dotState(:,cc) = A(1,stage) * sourceState(p)%p(mySource)%RKCK45dotState(1,:,cc) enddo do n = 2_pInt, stage plasticState(p)%dotState(:,cc) = & plasticState(p)%dotState(:,cc) + A(n,stage) * plasticState(p)%RKCK45dotState(n,:,cc) do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%dotState(:,cc) = & sourceState(p)%p(mySource)%dotState(:,cc) + A(n,stage) * sourceState(p)%p(mySource)%RKCK45dotState(n,:,cc) enddo enddo endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) cc = phasememberAt(g,i,e) mySizePlasticDotState = plasticState(p)%sizeDotState plasticState (p)%state (1:mySizePlasticDotState, cc) = & plasticState (p)%subState0(1:mySizePlasticDotState, cc) & + plasticState (p)%dotState (1:mySizePlasticDotState, cc) & * crystallite_subdt(g,i,e) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,cc) = & sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,cc) & + sourceState(p)%p(mySource)%dotState (1:mySizeSourceDotState,cc) & * crystallite_subdt(g,i,e) enddo endif enddo; enddo; enddo !$OMP ENDDO ! --- state jump --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- update dependent states --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & !***dirty way to pass orientations to constitutive_microstructure call constitutive_microstructure(crystallite_orientation, & crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), & g, i, e) ! update dependent state variables to be consistent with basic states enddo; enddo; enddo !$OMP ENDDO ! --- stress integration --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,C(stage)) ! fraction of original time step !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- dot state and RK dot state--- #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) & write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',stage+1_pInt #endif !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & C(stage)*crystallite_subdt(g,i,e), & ! fraction of original timestep crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,cc,NaN) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) cc = phasememberAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,cc))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,cc))) enddo if (NaN) then ! NaN occured in any dotState if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL enddo !-------------------------------------------------------------------------------------------------- ! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE --- relPlasticStateResiduum = 0.0_pReal relSourceStateResiduum = 0.0_pReal !$OMP PARALLEL !$OMP DO PRIVATE(p,cc) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) cc = phasememberAt(g,i,e) plasticState(p)%RKCK45dotState(6,:,cc) = plasticState (p)%dotState(:,cc) ! store Runge-Kutta dotState do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%RKCK45dotState(6,:,cc) = sourceState(p)%p(mySource)%dotState(:,cc) ! store Runge-Kutta dotState enddo endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) cc = phasememberAt(g,i,e) ! --- absolute residuum in state --- mySizePlasticDotState = plasticState(p)%sizeDotState plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = & matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:mySizePlasticDotState,cc)),DB) & * crystallite_subdt(g,i,e) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = & matmul(transpose(sourceState(p)%p(mySource)%RKCK45dotState(1:6,1:mySizeSourceDotState,cc)),DB) & * crystallite_subdt(g,i,e) enddo ! --- dot state --- plasticState(p)%dotState(:,cc) = & matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:mySizePlasticDotState,cc)), B) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceState(p)%p(mySource)%dotState(:,cc) = & matmul(transpose(sourceState(p)%p(mySource)%RKCK45dotState(1:6,1:mySizeSourceDotState,cc)),B) enddo endif enddo; enddo; enddo !$OMP ENDDO ! --- state and update --- !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) cc = phasememberAt(g,i,e) mySizePlasticDotState = plasticState(p)%sizeDotState plasticState(p)%state (1:mySizePlasticDotState,cc) = & plasticState(p)%subState0(1:mySizePlasticDotState,cc) & + plasticState(p)%dotState (1:mySizePlasticDotState,cc) & * crystallite_subdt(g,i,e) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,cc) = & sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,cc) & + sourceState(p)%p(mySource)%dotState (1:mySizeSourceDotState,cc)& * crystallite_subdt(g,i,e) enddo endif enddo; enddo; enddo !$OMP ENDDO ! --- relative residui and state convergence --- !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,cc,s) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) cc = phasememberAt(g,i,e) mySizePlasticDotState = plasticState(p)%sizeDotState forall (s = 1_pInt:mySizePlasticDotState, abs(plasticState(p)%state(s,cc)) > 0.0_pReal) & relPlasticStateResiduum(s,g,i,e) = & plasticStateResiduum(s,g,i,e) / plasticState(p)%state(s,cc) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState forall (s = 1_pInt:mySizeSourceDotState,abs(sourceState(p)%p(mySource)%state(s,cc)) > 0.0_pReal) & relSourceStateResiduum(s,mySource,g,i,e) = & sourceStateResiduum(s,mySource,g,i,e) / sourceState(p)%p(mySource)%state(s,cc) enddo !$OMP FLUSH(relPlasticStateResiduum) !$OMP FLUSH(relSourceStateResiduum) ! @Martin: do we need flushing? why..? crystallite_todo(g,i,e) = all(abs(relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < & rTol_crystalliteState .or. & abs(plasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < & plasticState(p)%aTolState(1:mySizePlasticDotState)) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState crystallite_todo(g,i,e) = crystallite_todo(g,i,e) .and. & all(abs(relSourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < & rTol_crystalliteState .or. & abs(sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < & sourceState(p)%p(mySource)%aTolState(1:mySizeSourceDotState)) enddo #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt& .and. ((e == debug_e .and. i == debug_i .and. g == debug_g)& .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i3,1x,i3,/)') '<< CRYST >> updateState at el ip ipc ',e,i,g write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> absolute residuum tolerance', & plasticStateResiduum(1:mySizePlasticDotState,g,i,e) / plasticState(p)%aTolState(1:mySizePlasticDotState) write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> relative residuum tolerance', & relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e) / rTol_crystalliteState write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', & plasticState(p)%dotState(1:mySizePlasticDotState,cc) write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', & plasticState(p)%state(1:mySizePlasticDotState,cc) endif #endif endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE JUMP --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO !-------------------------------------------------------------------------------------------------- ! --- UPDATE DEPENDENT STATES IF RESIDUUM BELOW TOLERANCE --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & !***dirty way to pass orientations to constitutive_microstructure call constitutive_microstructure(crystallite_orientation, & crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), & g, i, e) ! update dependent state variables to be consistent with basic states enddo; enddo; enddo !$OMP ENDDO !-------------------------------------------------------------------------------------------------- ! --- FINAL STRESS INTEGRATION STEP IF RESIDUUM BELOW TOLERANCE --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO !-------------------------------------------------------------------------------------------------- ! --- SET CONVERGENCE FLAG --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definition if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(6,numerics_integrationMode) = & debug_StateLoopDistribution(6,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL ! --- nonlocal convergence check --- if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) & write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged' ! if not requesting Integration of just a single IP if ((.not. singleRun) .and. any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged end subroutine crystallite_integrateStateRKCK45 !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, state with 1st order Euler method with adaptive step size !-------------------------------------------------------------------------------------------------- subroutine crystallite_integrateStateAdaptiveEuler() use prec, only: & prec_isNaN use debug, only: & debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_StateLoopDistribution use numerics, only: & rTol_crystalliteState, & numerics_integrationMode use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_Ngrains, & plasticState, & sourceState, & phaseAt, phasememberAt, & phase_Nsources, & homogenization_maxNgrains use constitutive, only: & constitutive_collectDotState, & constitutive_microstructure, & constitutive_plasticity_maxSizeDotState, & constitutive_source_maxSizeDotState implicit none integer(pInt) :: & e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop s, & ! state index p, & c, & mySource, & mySizePlasticDotState, & ! size of dot states mySizeSourceDotState integer(pInt), dimension(2) :: & eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: & iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration real(pReal), dimension(constitutive_plasticity_maxSizeDotState, & homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & plasticStateResiduum, & ! residuum from evolution in micrstructure relPlasticStateResiduum ! relative residuum from evolution in microstructure real(pReal), dimension(constitutive_source_maxSizeDotState,& maxval(phase_Nsources), & homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & sourceStateResiduum, & ! residuum from evolution in micrstructure relSourceStateResiduum ! relative residuum from evolution in microstructure logical :: & converged, & NaN, & singleRun ! flag indicating computation for single (g,i,e) triple ! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP --- eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2))) plasticStateResiduum = 0.0_pReal relPlasticStateResiduum = 0.0_pReal sourceStateResiduum = 0.0_pReal relSourceStateResiduum = 0.0_pReal integrationMode: if (numerics_integrationMode == 1_pInt) then !$OMP PARALLEL ! --- DOT STATE (EULER INTEGRATION) --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,c,NaN) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,c))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,c))) enddo if (NaN) then ! NaN occured in any dotState if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE UPDATE (EULER INTEGRATION) --- !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) mySizePlasticDotState = plasticState(p)%sizeDotState plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = & - 0.5_pReal & * plasticState(p)%dotstate(1:mySizePlasticDotState,c) & * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state plasticState(p)%state (1:mySizePlasticDotState,c) = & plasticState(p)%state (1:mySizePlasticDotState,c) & + plasticState(p)%dotstate(1:mySizePlasticDotState,c) & * crystallite_subdt(g,i,e) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = & - 0.5_pReal & * sourceState(p)%p(mySource)%dotstate(1:mySizeSourceDotState,c) & * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,c) = & sourceState(p)%p(mySource)%state (1:mySizeSourceDotState,c) & + sourceState(p)%p(mySource)%dotstate(1:mySizeSourceDotState,c) & * crystallite_subdt(g,i,e) enddo endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE JUMP --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & !***dirty way to pass orientations to constitutive_microstructure call constitutive_microstructure(crystallite_orientation, & crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), & g, i, e) ! update dependent state variables to be consistent with basic states enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL endif integrationMode ! --- STRESS INTEGRATION (EULER INTEGRATION) --- !$OMP PARALLEL DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP END PARALLEL DO if (numerics_integrationMode == 1_pInt) then !$OMP PARALLEL ! --- DOT STATE (HEUN METHOD) --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,c,NaN) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,c))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,c))) enddo if (NaN) then ! NaN occured in any dotState if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- ERROR ESTIMATE FOR STATE (HEUN METHOD) --- !$OMP SINGLE relPlasticStateResiduum = 0.0_pReal relSourceStateResiduum = 0.0_pReal !$OMP END SINGLE !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,converged,p,c,s) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) ! --- contribution of heun step to absolute residui --- mySizePlasticDotState = plasticState(p)%sizeDotState plasticStateResiduum(1:mySizePlasticDotState,g,i,e) = & plasticStateResiduum(1:mySizePlasticDotState,g,i,e) & + 0.5_pReal * plasticState(p)%dotState(:,c) & * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) = & sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e) & + 0.5_pReal * sourceState(p)%p(mySource)%dotState(:,c) & * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state enddo !$OMP FLUSH(plasticStateResiduum) !$OMP FLUSH(sourceStateResiduum) ! --- relative residui --- forall (s = 1_pInt:mySizePlasticDotState, abs(plasticState(p)%dotState(s,c)) > 0.0_pReal) & relPlasticStateResiduum(s,g,i,e) = & plasticStateResiduum(s,g,i,e) / plasticState(p)%dotState(s,c) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState forall (s = 1_pInt:mySizeSourceDotState,abs(sourceState(p)%p(mySource)%dotState(s,c)) > 0.0_pReal) & relSourceStateResiduum(s,mySource,g,i,e) = & sourceStateResiduum(s,mySource,g,i,e) / sourceState(p)%p(mySource)%dotState(s,c) enddo !$OMP FLUSH(relPlasticStateResiduum) !$OMP FLUSH(relSourceStateResiduum) #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g)& .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> updateState at el ip g ',e,i,g write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> absolute residuum tolerance', & plasticStateResiduum(1:mySizePlasticDotState,g,i,e) / plasticState(p)%aTolState(1:mySizePlasticDotState) write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> relative residuum tolerance', & relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e) / rTol_crystalliteState write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState(1:mySizePlasticDotState,c) & - 2.0_pReal * plasticStateResiduum(1:mySizePlasticDotState,g,i,e) / crystallite_subdt(g,i,e) ! calculate former dotstate from higher order solution and state residuum write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state(1:mySizePlasticDotState,c) endif #endif ! --- converged ? --- converged = all(abs(relPlasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < & rTol_crystalliteState .or. & abs(plasticStateResiduum(1:mySizePlasticDotState,g,i,e)) < & plasticState(p)%aTolState(1:mySizePlasticDotState)) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState converged = converged .and. & all(abs(relSourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < & rTol_crystalliteState .or. & abs(sourceStateResiduum(1:mySizeSourceDotState,mySource,g,i,e)) < & sourceState(p)%p(mySource)%aTolState(1:mySizeSourceDotState)) enddo if (converged) then crystallite_converged(g,i,e) = .true. ! ... converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(2,numerics_integrationMode) = & debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL elseif (numerics_integrationMode > 1) then ! stiffness calculation !$OMP PARALLEL DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_converged(g,i,e) = .true. ! ... converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(2,numerics_integrationMode) = & debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif enddo; enddo; enddo !$OMP END PARALLEL DO endif ! --- NONLOCAL CONVERGENCE CHECK --- if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) & write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged' if ((.not. singleRun) .and. any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged end subroutine crystallite_integrateStateAdaptiveEuler !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, and state with 1st order explicit Euler method !-------------------------------------------------------------------------------------------------- subroutine crystallite_integrateStateEuler() use prec, only: & prec_isNaN use debug, only: & debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_StateLoopDistribution use numerics, only: & numerics_integrationMode, & numerics_timeSyncing use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & mesh_element, & mesh_NcpElems use material, only: & plasticState, & sourceState, & phaseAt, phasememberAt, & phase_Nsources, & homogenization_Ngrains use constitutive, only: & constitutive_collectDotState, & constitutive_microstructure implicit none integer(pInt) :: & e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop p, & ! phase loop c, & mySource, & mySizePlasticDotState, & mySizeSourceDotState integer(pInt), dimension(2) :: & eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: & iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration logical :: & NaN, & singleRun ! flag indicating computation for single (g,i,e) triple eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2))) if (numerics_integrationMode == 1_pInt) then !$OMP PARALLEL ! --- DOT STATE --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,c,NaN) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then c = phasememberAt(g,i,e) p = phaseAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,c))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,c))) enddo if (NaN) then ! NaN occured in any dotState if (.not. crystallite_localPlasticity(g,i,e) .and. .not. numerics_timeSyncing) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE STATE --- !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) mySizePlasticDotState = plasticState(p)%sizeDotState plasticState(p)%state( 1:mySizePlasticDotState,c) = & plasticState(p)%state( 1:mySizePlasticDotState,c) & + plasticState(p)%dotState(1:mySizePlasticDotState,c) & * crystallite_subdt(g,i,e) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceState(p)%p(mySource)%state( 1:mySizeSourceDotState,c) = & sourceState(p)%p(mySource)%state( 1:mySizeSourceDotState,c) & + sourceState(p)%p(mySource)%dotState(1:mySizeSourceDotState,c) & * crystallite_subdt(g,i,e) enddo #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> update state at el ip g ',e,i,g write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState(1:mySizePlasticDotState,c) write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state (1:mySizePlasticDotState,c) endif #endif endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE JUMP --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local... .and. .not. numerics_timeSyncing) then !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE DEPENDENT STATES --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) & !***dirty way to pass orientations to constitutive_microstructure call constitutive_microstructure(crystallite_orientation, & crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), & g, i, e) ! update dependent state variables to be consistent with basic states enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL endif !$OMP PARALLEL ! --- STRESS INTEGRATION --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local... .and. .not. numerics_timeSyncing) then !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- SET CONVERGENCE FLAG --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(1,numerics_integrationMode) = & debug_StateLoopDistribution(1,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL ! --- CHECK NON-LOCAL CONVERGENCE --- if (.not. singleRun) then ! if not requesting Integration of just a single IP if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity) & ! any non-local not yet converged (or broken)... .and. .not. numerics_timeSyncing) & crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged endif end subroutine crystallite_integrateStateEuler !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, state with adaptive 1st order explicit Euler method !> using Fixed Point Iteration to adapt the stepsize !-------------------------------------------------------------------------------------------------- subroutine crystallite_integrateStateFPI() use prec, only: & prec_isNaN use debug, only: & debug_e, & debug_i, & debug_g, & debug_level,& debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_StateLoopDistribution use numerics, only: & nState, & numerics_integrationMode, & rTol_crystalliteState use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & mesh_element, & mesh_NcpElems use material, only: & plasticState, & sourceState, & phaseAt, phasememberAt, & phase_Nsources, & homogenization_Ngrains use constitutive, only: & constitutive_collectDotState, & constitutive_microstructure, & constitutive_plasticity_maxSizeDotState, & constitutive_source_maxSizeDotState implicit none integer(pInt) :: & NiterationState, & !< number of iterations in state loop e, & !< element index in element loop i, & !< integration point index in ip loop g, & !< grain index in grain loop p, & c, & mySource, & mySizePlasticDotState, & ! size of dot states mySizeSourceDotState integer(pInt), dimension(2) :: & eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: & iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration real(pReal) :: & dot_prod12, & dot_prod22, & plasticStateDamper, & ! damper for integration of state sourceStateDamper real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: & plasticStateResiduum, & tempPlasticState real(pReal), dimension(constitutive_source_maxSizeDotState, maxval(phase_Nsources)) :: & sourceStateResiduum, & ! residuum from evolution in micrstructure tempSourceState logical :: & converged, & NaN, & singleRun, & ! flag indicating computation for single (g,i,e) triple doneWithIntegration eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2))) !-------------------------------------------------------------------------------------------------- ! initialize dotState if (.not. singleRun) then forall(p = 1_pInt:size(plasticState)) plasticState(p)%previousDotState = 0.0_pReal plasticState(p)%previousDotState2 = 0.0_pReal end forall do p = 1_pInt, size(sourceState); do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%previousDotState = 0.0_pReal sourceState(p)%p(mySource)%previousDotState2 = 0.0_pReal enddo; enddo else e = eIter(1) i = iIter(1,e) do g = gIter(1,e), gIter(2,e) p = phaseAt(g,i,e) c = phasememberAt(g,i,e) plasticState(p)%previousDotState (:,c) = 0.0_pReal plasticState(p)%previousDotState2(:,c) = 0.0_pReal do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%previousDotState (:,c) = 0.0_pReal sourceState(p)%p(mySource)%previousDotState2(:,c) = 0.0_pReal enddo enddo endif ! --+>> PREGUESS FOR STATE <<+-- ! --- DOT STATES --- !$OMP PARALLEL !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,c,NaN) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,c))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,c))) enddo if (NaN) then ! NaN occured in any dotState if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken is a non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals done (and broken) !$OMP END CRITICAL (checkTodo) else ! broken one was local... crystallite_todo(g,i,e) = .false. ! ... done (and broken) endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE STATE --- !$OMP DO PRIVATE(mySizePlasticDotState,mySizeSourceDotState,p,c) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) mySizePlasticDotState = plasticState(p)%sizeDotState plasticState(p)%state(1:mySizePlasticDotState,c) = & plasticState(p)%subState0(1:mySizePlasticDotState,c) & + plasticState(p)%dotState (1:mySizePlasticDotState,c) & * crystallite_subdt(g,i,e) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceState(p)%p(mySource)%state(1:mySizeSourceDotState,c) = & sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,c) & + sourceState(p)%p(mySource)%dotState (1:mySizeSourceDotState,c) & * crystallite_subdt(g,i,e) enddo endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL ! --+>> STATE LOOP <<+-- NiterationState = 0_pInt doneWithIntegration = .false. crystalliteLooping: do while (.not. doneWithIntegration .and. NiterationState < nState) NiterationState = NiterationState + 1_pInt !$OMP PARALLEL ! --- UPDATE DEPENDENT STATES --- !$OMP DO PRIVATE(p,c) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) & !***dirty way to pass orientations to constitutive_micrsotructure call constitutive_microstructure(crystallite_orientation, & crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), & g, i, e) ! update dependent state variables to be consistent with basic states p = phaseAt(g,i,e) c = phasememberAt(g,i,e) plasticState(p)%previousDotState2(:,c) = plasticState(p)%previousDotState(:,c) plasticState(p)%previousDotState (:,c) = plasticState(p)%dotState(:,c) do mySource = 1_pInt, phase_Nsources(p) sourceState(p)%p(mySource)%previousDotState2(:,c) = sourceState(p)%p(mySource)%previousDotState(:,c) sourceState(p)%p(mySource)%previousDotState (:,c) = sourceState(p)%p(mySource)%dotState(:,c) enddo enddo; enddo; enddo !$OMP ENDDO ! --- STRESS INTEGRATION --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ... then all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP SINGLE !$OMP CRITICAL (write2out) if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) & write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after stress integration' !$OMP END CRITICAL (write2out) !$OMP END SINGLE ! --- DOT STATE --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) & call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Fp, & crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e) enddo; enddo; enddo !$OMP ENDDO !$OMP DO PRIVATE(p,c) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) NaN = any(prec_isNaN(plasticState(p)%dotState(:,c))) do mySource = 1_pInt, phase_Nsources(p) NaN = NaN .or. any(prec_isNaN(sourceState(p)%p(mySource)%dotState(:,c))) enddo if (NaN) then ! NaN occured in any dotState crystallite_todo(g,i,e) = .false. ! ... skip me next time if (.not. crystallite_localPlasticity(g,i,e)) then ! if me is non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE STATE --- !$OMP DO PRIVATE(dot_prod12,dot_prod22, & !$OMP& mySizePlasticDotState,mySizeSourceDotState, & !$OMP& plasticStateResiduum,sourceStateResiduum, & !$OMP& plasticStatedamper,sourceStateDamper, & !$OMP& tempPlasticState,tempSourceState,converged,p,c) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then p = phaseAt(g,i,e) c = phasememberAt(g,i,e) dot_prod12 = dot_product( plasticState(p)%dotState (:,c) & - plasticState(p)%previousDotState (:,c), & plasticState(p)%previousDotState (:,c) & - plasticState(p)%previousDotState2(:,c)) dot_prod22 = dot_product( plasticState(p)%previousDotState (:,c) & - plasticState(p)%previousDotState2(:,c), & plasticState(p)%previousDotState (:,c) & - plasticState(p)%previousDotState2(:,c)) if ( dot_prod22 > 0.0_pReal & .and. ( dot_prod12 < 0.0_pReal & .or. dot_product(plasticState(p)%dotState(:,c), & plasticState(p)%previousDotState(:,c)) < 0.0_pReal) ) then plasticStateDamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22) else plasticStateDamper = 1.0_pReal endif ! --- get residui --- mySizePlasticDotState = plasticState(p)%sizeDotState plasticStateResiduum(1:mySizePlasticDotState) = & plasticState(p)%state(1:mySizePlasticDotState,c) & - plasticState(p)%subState0(1:mySizePlasticDotState,c) & - ( plasticState(p)%dotState(1:mySizePlasticDotState,c) * plasticStateDamper & + plasticState(p)%previousDotState(1:mySizePlasticDotState,c) & * (1.0_pReal - plasticStateDamper)) * crystallite_subdt(g,i,e) ! --- correct state with residuum --- tempPlasticState(1:mySizePlasticDotState) = & plasticState(p)%state(1:mySizePlasticDotState,c) & - plasticStateResiduum(1:mySizePlasticDotState) ! need to copy to local variable, since we cant flush a pointer in openmp ! --- store corrected dotState --- (cannot do this before state update, because not sure how to flush pointers in openmp) plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * plasticStateDamper & + plasticState(p)%previousDotState(:,c) & * (1.0_pReal - plasticStateDamper) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState dot_prod12 = dot_product( sourceState(p)%p(mySource)%dotState (:,c) & - sourceState(p)%p(mySource)%previousDotState (:,c), & sourceState(p)%p(mySource)%previousDotState (:,c) & - sourceState(p)%p(mySource)%previousDotState2(:,c)) dot_prod22 = dot_product( sourceState(p)%p(mySource)%previousDotState (:,c) & - sourceState(p)%p(mySource)%previousDotState2(:,c), & sourceState(p)%p(mySource)%previousDotState (:,c) & - sourceState(p)%p(mySource)%previousDotState2(:,c)) if ( dot_prod22 > 0.0_pReal & .and. ( dot_prod12 < 0.0_pReal & .or. dot_product(sourceState(p)%p(mySource)%dotState(:,c), & sourceState(p)%p(mySource)%previousDotState(:,c)) < 0.0_pReal) ) then sourceStateDamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22) else sourceStateDamper = 1.0_pReal endif ! --- get residui --- mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceStateResiduum(1:mySizeSourceDotState,mySource) = & sourceState(p)%p(mySource)%state(1:mySizeSourceDotState,c) & - sourceState(p)%p(mySource)%subState0(1:mySizeSourceDotState,c) & - ( sourceState(p)%p(mySource)%dotState(1:mySizeSourceDotState,c) * sourceStateDamper & + sourceState(p)%p(mySource)%previousDotState(1:mySizeSourceDotState,c) & * (1.0_pReal - sourceStateDamper)) * crystallite_subdt(g,i,e) ! --- correct state with residuum --- tempSourceState(1:mySizeSourceDotState,mySource) = & sourceState(p)%p(mySource)%state(1:mySizeSourceDotState,c) & - sourceStateResiduum(1:mySizeSourceDotState,mySource) ! need to copy to local variable, since we cant flush a pointer in openmp ! --- store corrected dotState --- (cannot do this before state update, because not sure how to flush pointers in openmp) sourceState(p)%p(mySource)%dotState(:,c) = & sourceState(p)%p(mySource)%dotState(:,c) * sourceStateDamper & + sourceState(p)%p(mySource)%previousDotState(:,c) & * (1.0_pReal - sourceStateDamper) enddo #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> update state at el ip g ',e,i,g write(6,'(a,f6.1,/)') '<< CRYST >> plasticstatedamper ',plasticStatedamper write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> plastic state residuum',plasticStateResiduum(1:mySizePlasticDotState) write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state',tempPlasticState(1:mySizePlasticDotState) endif #endif ! --- converged ? --- converged = all( abs(plasticStateResiduum(1:mySizePlasticDotState)) < & plasticState(p)%aTolState(1:mySizePlasticDotState) & .or. abs(plasticStateResiduum(1:mySizePlasticDotState)) < & rTol_crystalliteState * abs(tempPlasticState(1:mySizePlasticDotState))) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState converged = converged .and. & all( abs(sourceStateResiduum(1:mySizeSourceDotState,mySource)) < & sourceState(p)%p(mySource)%aTolState(1:mySizeSourceDotState) & .or. abs(sourceStateResiduum(1:mySizeSourceDotState,mySource)) < & rTol_crystalliteState * abs(tempSourceState(1:mySizeSourceDotState,mySource))) enddo if (converged) then crystallite_converged(g,i,e) = .true. ! ... converged per definition if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(NiterationState,numerics_integrationMode) = & debug_StateLoopDistribution(NiterationState,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif plasticState(p)%state(1:mySizePlasticDotState,c) = & tempPlasticState(1:mySizePlasticDotState) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDotState = sourceState(p)%p(mySource)%sizeDotState sourceState(p)%p(mySource)%state(1:mySizeSourceDotState,c) = & tempSourceState(1:mySizeSourceDotState,mySource) enddo endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE JUMP --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged and still alive... crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken crystallite_converged(g,i,e) = .false. if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) & write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), & ' grains converged after state integration #', NiterationState ! --- NON-LOCAL CONVERGENCE CHECK --- if (.not. singleRun) then ! if not requesting Integration of just a single IP if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged endif if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), & ' grains converged after non-local check' write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_todo(:,:,:)), & ' grains todo after state integration #', NiterationState endif ! --- CHECK IF DONE WITH INTEGRATION --- doneWithIntegration = .true. elemLoop: do e = eIter(1),eIter(2) do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then doneWithIntegration = .false. exit elemLoop endif enddo; enddo enddo elemLoop enddo crystalliteLooping end subroutine crystallite_integrateStateFPI !-------------------------------------------------------------------------------------------------- !> @brief calculates a jump in the state according to the current state and the current stress !> returns true, if state jump was successfull or not needed. false indicates NaN in delta state !-------------------------------------------------------------------------------------------------- logical function crystallite_stateJump(ipc,ip,el) use prec, only: & prec_isNaN, & dNeq use debug, only: & debug_level, & debug_crystallite, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g use material, only: & plasticState, & sourceState, & phase_Nsources, & phaseAt, phasememberAt use constitutive, only: & constitutive_collectDeltaState implicit none integer(pInt), intent(in):: & el, & ! element index ip, & ! integration point index ipc ! grain index integer(pInt) :: & c, & p, & mySource, & mySizePlasticDeltaState, & mySizeSourceDeltaState c= phasememberAt(ipc,ip,el) p = phaseAt(ipc,ip,el) call constitutive_collectDeltaState(crystallite_Tstar_v(1:6,ipc,ip,el), crystallite_Fe(1:3,1:3,ipc,ip,el), ipc,ip,el) mySizePlasticDeltaState = plasticState(p)%sizeDeltaState if( any(prec_isNaN(plasticState(p)%deltaState(:,c)))) then ! NaN occured in deltaState crystallite_stateJump = .false. return endif plasticState(p)%state(1:mySizePlasticDeltaState,c) = plasticState(p)%state(1:mySizePlasticDeltaState,c) + & plasticState(p)%deltaState(1:mySizePlasticDeltaState,c) do mySource = 1_pInt, phase_Nsources(p) mySizeSourceDeltaState = sourceState(p)%p(mySource)%sizeDeltaState if( any(prec_isNaN(sourceState(p)%p(mySource)%deltaState(:,c)))) then ! NaN occured in deltaState crystallite_stateJump = .false. return endif sourceState(p)%p(mySource)%state(1:mySizeSourceDeltaState,c) = & sourceState(p)%p(mySource)%state(1:mySizeSourceDeltaState,c) + & sourceState(p)%p(mySource)%deltaState(1:mySizeSourceDeltaState,c) enddo #ifndef _OPENMP if (any(dNeq(plasticState(p)%deltaState(1:mySizePlasticDeltaState,c),0.0_pReal)) & .and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3, /)') '<< CRYST >> update state at el ip ipc ',el,ip,ipc write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> deltaState', plasticState(p)%deltaState(1:mySizePlasticDeltaState,c) write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state (1:mySizePlasticDeltaState,c) endif #endif crystallite_stateJump = .true. end function crystallite_stateJump !-------------------------------------------------------------------------------------------------- !> @brief Map 2nd order tensor to reference config !-------------------------------------------------------------------------------------------------- function crystallite_push33ToRef(ipc,ip,el, tensor33) use math, only: & math_mul33x33, & math_inv33, & math_transpose33, & math_EulerToR use material, only: & material_EulerAngles implicit none real(pReal), dimension(3,3) :: crystallite_push33ToRef real(pReal), dimension(3,3), intent(in) :: tensor33 real(pReal), dimension(3,3) :: T integer(pInt), intent(in):: & el, & ! element index ip, & ! integration point index ipc ! grain index T = math_mul33x33(math_EulerToR(material_EulerAngles(1:3,ipc,ip,el)), & math_transpose33(math_inv33(crystallite_subF(1:3,1:3,ipc,ip,el)))) crystallite_push33ToRef = math_mul33x33(math_transpose33(T),math_mul33x33(tensor33,T)) end function crystallite_push33ToRef !-------------------------------------------------------------------------------------------------- !> @brief calculation of stress (P) with time integration based on a residuum in Lp and !> intermediate acceleration of the Newton-Raphson correction !-------------------------------------------------------------------------------------------------- logical function crystallite_integrateStress(& ipc,& ! grain number ip,& ! integration point number el,& ! element number timeFraction & ) use prec, only: pLongInt, & tol_math_check, & prec_isNaN, & dEq use numerics, only: nStress, & aTol_crystalliteStress, & rTol_crystalliteStress, & iJacoLpresiduum, & numerics_integrationMode use debug, only: debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_cumLpCalls, & debug_cumLpTicks, & debug_StressLoopLpDistribution, & debug_StressLoopLiDistribution use constitutive, only: constitutive_LpAndItsTangent, & constitutive_LiAndItsTangent, & constitutive_TandItsTangent use math, only: math_mul33x33, & math_mul33xx33, & math_mul3333xx3333, & math_mul66x6, & math_mul99x99, & math_transpose33, & math_inv33, & math_invert, & math_det33, & math_I3, & math_identity2nd, & math_Mandel66to3333, & math_Mandel6to33, & math_Mandel33to6, & math_Plain3333to99, & math_Plain33to9, & math_Plain9to33, & math_Plain99to3333 use mesh, only: mesh_element implicit none integer(pInt), intent(in):: el, & ! element index ip, & ! integration point index ipc ! grain index real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep !*** local variables ***! real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep Fp_current, & ! plastic deformation gradient at start of timestep Fi_current, & ! intermediate deformation gradient at start of timestep Fp_new, & ! plastic deformation gradient at end of timestep Fe_new, & ! elastic deformation gradient at end of timestep invFp_new, & ! inverse of Fp_new Fi_new, & ! gradient of intermediate deformation stages invFi_new, & invFp_current, & ! inverse of Fp_current invFi_current, & ! inverse of Fp_current Lpguess, & ! current guess for plastic velocity gradient Lpguess_old, & ! known last good guess for plastic velocity gradient Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law residuumLp, & ! current residuum of plastic velocity gradient residuumLp_old, & ! last residuum of plastic velocity gradient deltaLp, & ! direction of next guess Liguess, & ! current guess for intermediate velocity gradient Liguess_old, & ! known last good guess for intermediate velocity gradient Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law residuumLi, & ! current residuum of intermediate velocity gradient residuumLi_old, & ! last residuum of intermediate velocity gradient deltaLi, & ! direction of next guess Tstar, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration A, & B, & Fe, & ! elastic deformation gradient temp_33 real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation real(pReal), dimension(9):: work ! needed for matrix inversion by LAPACK integer(pInt), dimension(9) :: ipiv ! needed for matrix inversion by LAPACK real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme) dRLp_dLp2, & ! working copy of dRdLp dRLi_dLi ! partial derivative of residuumI (Jacobian for NEwton-Raphson scheme) real(pReal), dimension(3,3,3,3):: dT_dFe3333, & ! partial derivative of 2nd Piola-Kirchhoff stress dT_dFi3333, & dFe_dLp3333, & ! partial derivative of elastic deformation gradient dFe_dLi3333, & dFi_dLi3333, & dLp_dFi3333, & dLi_dFi3333, & dLp_dT3333, & dLi_dT3333 real(pReal) detInvFi, & ! determinant of InvFi steplengthLp0, & steplengthLp, & steplengthLi0, & steplengthLi, & dt, & ! time increment aTolLp, & aTolLi integer(pInt) NiterationStressLp, & ! number of stress integrations NiterationStressLi, & ! number of inner stress integrations ierr, & ! error indicator for LAPACK o, & p, & jacoCounterLp, & jacoCounterLi ! counters to check for Jacobian update integer(pLongInt) tick, & tock, & tickrate, & maxticks external :: & dgesv !* be pessimistic crystallite_integrateStress = .false. #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) & write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress at el ip ipc ',el,ip,ipc #endif !* only integrate over fraction of timestep? if (present(timeFraction)) then dt = crystallite_subdt(ipc,ip,el) * timeFraction Fg_new = crystallite_subF0(1:3,1:3,ipc,ip,el) & + (crystallite_subF(1:3,1:3,ipc,ip,el) - crystallite_subF0(1:3,1:3,ipc,ip,el)) * timeFraction else dt = crystallite_subdt(ipc,ip,el) Fg_new = crystallite_subF(1:3,1:3,ipc,ip,el) endif !* feed local variables Fp_current = crystallite_subFp0(1:3,1:3,ipc,ip,el) ! "Fp_current" is only used as temp var here... Lpguess = crystallite_Lp (1:3,1:3,ipc,ip,el) ! ... and take it as first guess Fi_current = crystallite_subFi0(1:3,1:3,ipc,ip,el) ! intermediate configuration, assume decomposition as F = Fe Fi Fp Liguess = crystallite_Li (1:3,1:3,ipc,ip,el) ! ... and take it as first guess Liguess_old = Liguess !* inversion of Fp_current... invFp_current = math_inv33(Fp_current) failedInversionFp: if (all(dEq(invFp_current,0.0_pReal))) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fp_current at el (elFE) ip g ',& el,'(',mesh_element(1,el),')',ip,ipc if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) & write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',math_transpose33(Fp_current(1:3,1:3)) endif #endif return endif failedInversionFp A = math_mul33x33(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp !* inversion of Fi_current... invFi_current = math_inv33(Fi_current) failedInversionFi: if (all(dEq(invFi_current,0.0_pReal))) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fi_current at el (elFE) ip ipc ',& el,'(',mesh_element(1,el),')',ip,ipc if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) & write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',math_transpose33(Fi_current(1:3,1:3)) endif #endif return endif failedInversionFi !* start LpLoop with normal step length NiterationStressLi = 0_pInt jacoCounterLi = 0_pInt steplengthLi0 = 1.0_pReal steplengthLi = steplengthLi0 residuumLi_old = 0.0_pReal LiLoop: do NiterationStressLi = NiterationStressLi + 1_pInt IloopsExeced: if (NiterationStressLi > nStress) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) & write(6,'(a,i3,a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> integrateStress reached inelastic loop limit',nStress, & ' at el (elFE) ip ipc ', el,mesh_element(1,el),ip,ipc #endif return endif IloopsExeced invFi_new = math_mul33x33(invFi_current,math_I3 - dt*Liguess) Fi_new = math_inv33(invFi_new) detInvFi = math_det33(invFi_new) NiterationStressLp = 0_pInt jacoCounterLp = 0_pInt steplengthLp0 = 1.0_pReal steplengthLp = steplengthLp0 residuumLp_old = 0.0_pReal Lpguess_old = Lpguess LpLoop: do ! inner stress integration loop for consistency with Fi NiterationStressLp = NiterationStressLp + 1_pInt loopsExeced: if (NiterationStressLp > nStress) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) & write(6,'(a,i3,a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> integrateStress reached loop limit',nStress, & ' at el (elFE) ip ipc ', el,mesh_element(1,el),ip,ipc #endif return endif loopsExeced !* calculate (elastic) 2nd Piola--Kirchhoff stress tensor and its tangent from constitutive law B = math_I3 - dt*Lpguess Fe = math_mul33x33(math_mul33x33(A,B), invFi_new) ! current elastic deformation tensor call constitutive_TandItsTangent(Tstar, dT_dFe3333, dT_dFi3333, Fe, Fi_new, ipc, ip, el) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative in unloaded configuration Tstar_v = math_Mandel33to6(Tstar) !* calculate plastic velocity gradient and its tangent from constitutive law if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) & call system_clock(count=tick,count_rate=tickrate,count_max=maxticks) call constitutive_LpAndItsTangent(Lp_constitutive, dLp_dT3333, dLp_dFi3333, & Tstar_v, Fi_new, ipc, ip, el) if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then call system_clock(count=tock,count_rate=tickrate,count_max=maxticks) !$OMP CRITICAL (debugTimingLpTangent) debug_cumLpCalls = debug_cumLpCalls + 1_pInt debug_cumLpTicks = debug_cumLpTicks + tock-tick !$OMP FLUSH (debug_cumLpTicks) if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks !$OMP END CRITICAL (debugTimingLpTangent) endif #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i3,/)') '<< CRYST >> stress iteration ', NiterationStressLp write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive', math_transpose33(Lp_constitutive) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess', math_transpose33(Lpguess) endif #endif !* update current residuum and check for convergence of loop aTolLp = max(rTol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error aTol_crystalliteStress) ! minimum lower cutoff residuumLp = Lpguess - Lp_constitutive if (any(prec_isNaN(residuumLp))) then ! NaN in residuum... #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) & write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3,a)') '<< CRYST >> integrateStress encountered NaN at el (elFE) ip ipc ', & el,mesh_element(1,el),ip,ipc, & ' ; iteration ', NiterationStressLp,& ' >> returning..!' #endif return ! ...me = .false. to inform integrator about problem elseif (norm2(residuumLp) < aTolLp) then ! converged if below absolute tolerance exit LpLoop ! ...leave iteration loop elseif ( NiterationStressLp == 1_pInt & .or. norm2(residuumLp) < norm2(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)... residuumLp_old = residuumLp ! ...remember old values and... Lpguess_old = Lpguess steplengthLp = steplengthLp0 ! ...proceed with normal step length (calculate new search direction) else ! not converged and residuum not improved... steplengthLp = 0.5_pReal * steplengthLp ! ...try with smaller step length in same direction Lpguess = Lpguess_old + steplengthLp * deltaLp cycle LpLoop endif !* calculate Jacobian for correction term if (mod(jacoCounterLp, iJacoLpresiduum) == 0_pInt) then dFe_dLp3333 = 0.0_pReal forall(o=1_pInt:3_pInt,p=1_pInt:3_pInt) & dFe_dLp3333(o,1:3,p,1:3) = A(o,p)*math_transpose33(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j) dFe_dLp3333 = - dt * dFe_dLp3333 dRLp_dLp = math_identity2nd(9_pInt) & - math_Plain3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dT3333,dT_dFe3333),dFe_dLp3333)) dRLp_dLp2 = dRLp_dLp ! will be overwritten in first call to LAPACK routine work = math_plain33to9(residuumLp) call dgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp if (ierr /= 0_pInt) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on dR/dLp inversion at el ip ipc ', & el,mesh_element(1,el),ip,ipc if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g)& .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,*) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLp',transpose(dRLp_dLp) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLp',transpose(math_Plain3333to99(dFe_dLp3333)) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFe_constitutive',transpose(math_Plain3333to99(dT_dFe3333)) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLp_dT_constitutive',transpose(math_Plain3333to99(dLp_dT3333)) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> A',math_transpose33(A) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> B',math_transpose33(B) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive',math_transpose33(Lp_constitutive) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess',math_transpose33(Lpguess) endif endif #endif return endif deltaLp = - math_plain9to33(work) endif jacoCounterLp = jacoCounterLp + 1_pInt ! increase counter for jaco update Lpguess = Lpguess + steplengthLp * deltaLp enddo LpLoop if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) & !$OMP CRITICAL (distributionStress) debug_StressLoopLpDistribution(NiterationStressLp,numerics_integrationMode) = & debug_StressLoopLpDistribution(NiterationStressLp,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionStress) !* calculate intermediate velocity gradient and its tangent from constitutive law call constitutive_LiAndItsTangent(Li_constitutive, dLi_dT3333, dLi_dFi3333, & Tstar_v, Fi_new, ipc, ip, el) #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Li_constitutive', math_transpose33(Li_constitutive) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Liguess', math_transpose33(Liguess) endif #endif !* update current residuum and check for convergence of loop aTolLi = max(rTol_crystalliteStress * max(norm2(Liguess),norm2(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error aTol_crystalliteStress) ! minimum lower cutoff residuumLi = Liguess - Li_constitutive if (any(prec_isNaN(residuumLi))) then ! NaN in residuum... return ! ...me = .false. to inform integrator about problem elseif (norm2(residuumLi) < aTolLi) then ! converged if below absolute tolerance exit LiLoop ! ...leave iteration loop elseif ( NiterationStressLi == 1_pInt & .or. norm2(residuumLi) < norm2(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)... residuumLi_old = residuumLi ! ...remember old values and... Liguess_old = Liguess steplengthLi = steplengthLi0 ! ...proceed with normal step length (calculate new search direction) else ! not converged and residuum not improved... steplengthLi = 0.5_pReal * steplengthLi ! ...try with smaller step length in same direction Liguess = Liguess_old + steplengthLi * deltaLi cycle LiLoop endif !* calculate Jacobian for correction term if (mod(jacoCounterLi, iJacoLpresiduum) == 0_pInt) then temp_33 = math_mul33x33(math_mul33x33(A,B),invFi_current) dFe_dLi3333 = 0.0_pReal dFi_dLi3333 = 0.0_pReal forall(o=1_pInt:3_pInt,p=1_pInt:3_pInt) dFe_dLi3333(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j) dFi_dLi3333(1:3,o,1:3,p) = -dt*math_I3(o,p)*invFi_current end forall forall(o=1_pInt:3_pInt,p=1_pInt:3_pInt) & dFi_dLi3333(1:3,1:3,o,p) = math_mul33x33(math_mul33x33(Fi_new,dFi_dLi3333(1:3,1:3,o,p)),Fi_new) dRLi_dLi = math_identity2nd(9_pInt) & - math_Plain3333to99(math_mul3333xx3333(dLi_dT3333, math_mul3333xx3333(dT_dFe3333, dFe_dLi3333) + & math_mul3333xx3333(dT_dFi3333, dFi_dLi3333))) & - math_Plain3333to99(math_mul3333xx3333(dLi_dFi3333, dFi_dLi3333)) work = math_plain33to9(residuumLi) call dgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li if (ierr /= 0_pInt) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on dR/dLi inversion at el ip ipc ', & el,mesh_element(1,el),ip,ipc if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g)& .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,*) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLi',transpose(dRLi_dLi) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLi',transpose(math_Plain3333to99(dFe_dLi3333)) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFi_constitutive',transpose(math_Plain3333to99(dT_dFi3333)) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLi_dT_constitutive',transpose(math_Plain3333to99(dLi_dT3333)) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Li_constitutive',math_transpose33(Li_constitutive) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Liguess',math_transpose33(Liguess) endif endif #endif return endif deltaLi = - math_plain9to33(work) endif jacoCounterLi = jacoCounterLi + 1_pInt ! increase counter for jaco update Liguess = Liguess + steplengthLi * deltaLi enddo LiLoop if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) & !$OMP CRITICAL (distributionStress) debug_StressLoopLiDistribution(NiterationStressLi,numerics_integrationMode) = & debug_StressLoopLiDistribution(NiterationStressLi,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionStress) !* calculate new plastic and elastic deformation gradient invFp_new = math_mul33x33(invFp_current,B) invFp_new = invFp_new / math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det Fp_new = math_inv33(invFp_new) failedInversionInvFp: if (all(dEq(Fp_new,0.0_pReal))) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on invFp_new inversion at el ip ipc ',& el,mesh_element(1,el),ip,ipc, ' ; iteration ', NiterationStressLp if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) & write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> invFp_new',math_transpose33(invFp_new) endif #endif return endif failedInversionInvFp Fe_new = math_mul33x33(math_mul33x33(Fg_new,invFp_new),invFi_new) ! calc resulting Fe !* calculate 1st Piola-Kirchhoff stress crystallite_P(1:3,1:3,ipc,ip,el) = math_mul33x33(math_mul33x33(Fg_new,invFp_new), & math_mul33x33(math_Mandel6to33(Tstar_v), & math_transpose33(invFp_new))) !* store local values in global variables crystallite_Lp(1:3,1:3,ipc,ip,el) = Lpguess crystallite_Li(1:3,1:3,ipc,ip,el) = Liguess crystallite_Tstar_v(1:6,ipc,ip,el) = Tstar_v crystallite_Fp(1:3,1:3,ipc,ip,el) = Fp_new crystallite_Fi(1:3,1:3,ipc,ip,el) = Fi_new crystallite_Fe(1:3,1:3,ipc,ip,el) = Fe_new crystallite_invFp(1:3,1:3,ipc,ip,el) = invFp_new crystallite_invFi(1:3,1:3,ipc,ip,el) = invFi_new !* set return flag to true crystallite_integrateStress = .true. #ifndef _OPENMP if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> P / MPa',math_transpose33(crystallite_P(1:3,1:3,ipc,ip,el))*1.0e-6_pReal write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Cauchy / MPa', & math_mul33x33(crystallite_P(1:3,1:3,ipc,ip,el), math_transpose33(Fg_new)) * 1.0e-6_pReal / math_det33(Fg_new) write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fe Lp Fe^-1', & math_transpose33(math_mul33x33(Fe_new, math_mul33x33(crystallite_Lp(1:3,1:3,ipc,ip,el), math_inv33(Fe_new)))) ! transpose to get correct print out order write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp',math_transpose33(crystallite_Fp(1:3,1:3,ipc,ip,el)) write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fi',math_transpose33(crystallite_Fi(1:3,1:3,ipc,ip,el)) endif #endif end function crystallite_integrateStress !-------------------------------------------------------------------------------------------------- !> @brief calculates orientations and disorientations (in case of single grain ips) !-------------------------------------------------------------------------------------------------- subroutine crystallite_orientations use math, only: & math_rotationalPart33, & math_RtoQ, & math_qConj use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use material, only: & material_phase, & homogenization_Ngrains, & plasticState use mesh, only: & mesh_element, & mesh_ipNeighborhood, & FE_NipNeighbors, & FE_geomtype, & FE_celltype use lattice, only: & lattice_qDisorientation, & lattice_structure use plastic_nonlocal, only: & plastic_nonlocal_updateCompatibility implicit none integer(pInt) & c, & !< counter in integration point component loop i, & !< counter in integration point loop e, & !< counter in element loop n, & !< counter in neighbor loop neighboring_e, & !< neighbor element neighboring_i, & !< neighbor integration point myPhase, & ! phase neighboringPhase real(pReal), dimension(4) :: & orientation ! --- CALCULATE ORIENTATION AND LATTICE ROTATION --- !$OMP PARALLEL DO PRIVATE(orientation) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do c = 1_pInt,homogenization_Ngrains(mesh_element(3,e)) ! somehow this subroutine is not threadsafe, so need critical statement here; not clear, what exactly the problem is !$OMP CRITICAL (polarDecomp) orientation = math_RtoQ(transpose(math_rotationalPart33(crystallite_Fe(1:3,1:3,c,i,e)))) !$OMP END CRITICAL (polarDecomp) crystallite_rotation(1:4,c,i,e) = lattice_qDisorientation(crystallite_orientation0(1:4,c,i,e), &! active rotation from initial orientation) ! to current orientation (with no symmetry) crystallite_orientation(1:4,c,i,e) = orientation enddo; enddo; enddo !$OMP END PARALLEL DO ! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL --- ! --- we use crystallite_orientation from above, so need a separate loop nonlocalPresent: if (any(plasticState%nonLocal)) then !$OMP PARALLEL DO PRIVATE(myPhase,neighboring_e,neighboring_i,neighboringPhase) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) myPhase = material_phase(1,i,e) ! get my phase (non-local models make no sense with more than one grain per material point) if (plasticState(myPhase)%nonLocal) then ! if nonlocal model ! --- calculate disorientation between me and my neighbor --- do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e)))) ! loop through my neighbors neighboring_e = mesh_ipNeighborhood(1,n,i,e) neighboring_i = mesh_ipNeighborhood(2,n,i,e) if (neighboring_e > 0 .and. neighboring_i > 0) then ! if neighbor exists neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase if (plasticState(neighboringPhase)%nonLocal) then ! neighbor got also nonlocal plasticity if (lattice_structure(myPhase) == lattice_structure(neighboringPhase)) then ! if my neighbor has same crystal structure like me crystallite_disorientation(:,n,1,i,e) = & lattice_qDisorientation( crystallite_orientation(1:4,1,i,e), & crystallite_orientation(1:4,1,neighboring_i,neighboring_e), & lattice_structure(myPhase)) ! calculate disorientation for given symmetry else ! for neighbor with different phase crystallite_disorientation(:,n,1,i,e) = [0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal]! 180 degree rotation about 100 axis endif else ! for neighbor with local plasticity crystallite_disorientation(:,n,1,i,e) = [-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal]! homomorphic identity endif else ! no existing neighbor crystallite_disorientation(:,n,1,i,e) = [-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal] ! homomorphic identity endif enddo ! --- calculate compatibility and transmissivity between me and my neighbor --- call plastic_nonlocal_updateCompatibility(crystallite_orientation,i,e) endif enddo; enddo !$OMP END PARALLEL DO endif nonlocalPresent end subroutine crystallite_orientations !-------------------------------------------------------------------------------------------------- !> @brief return results of particular grain !-------------------------------------------------------------------------------------------------- function crystallite_postResults(ipc, ip, el) use math, only: & math_qToEuler, & math_qToEulerAxisAngle, & math_mul33x33, & math_transpose33, & math_det33, & math_I3, & inDeg, & math_Mandel6to33, & math_qMul, & math_qConj use mesh, only: & mesh_element, & mesh_ipVolume, & mesh_maxNipNeighbors, & mesh_ipNeighborhood, & FE_NipNeighbors, & FE_geomtype, & FE_celltype use material, only: & plasticState, & sourceState, & microstructure_crystallite, & crystallite_Noutput, & material_phase, & material_texture, & homogenization_Ngrains use constitutive, only: & constitutive_homogenizedC, & constitutive_postResults implicit none integer(pInt), intent(in):: & el, & !< element index ip, & !< integration point index ipc !< grain index real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,el))) + & 1+plasticState(material_phase(ipc,ip,el))%sizePostResults + & sum(sourceState(material_phase(ipc,ip,el))%p(:)%sizePostResults)) :: & crystallite_postResults real(pReal), dimension(3,3) :: & Ee real(pReal), dimension(4) :: & rotation real(pReal) :: & detF integer(pInt) :: & o, & c, & crystID, & mySize, & n crystID = microstructure_crystallite(mesh_element(4,el)) crystallite_postResults = 0.0_pReal c = 0_pInt crystallite_postResults(c+1) = real(crystallite_sizePostResults(crystID),pReal) ! size of results from cryst c = c + 1_pInt do o = 1_pInt,crystallite_Noutput(crystID) mySize = 0_pInt select case(crystallite_outputID(o,crystID)) case (phase_ID) mySize = 1_pInt crystallite_postResults(c+1) = real(material_phase(ipc,ip,el),pReal) ! phaseID of grain case (texture_ID) mySize = 1_pInt crystallite_postResults(c+1) = real(material_texture(ipc,ip,el),pReal) ! textureID of grain case (volume_ID) mySize = 1_pInt detF = math_det33(crystallite_partionedF(1:3,1:3,ipc,ip,el)) ! V_current = det(F) * V_reference crystallite_postResults(c+1) = detF * mesh_ipVolume(ip,el) & / real(homogenization_Ngrains(mesh_element(3,el)),pReal) ! grain volume (not fraction but absolute) case (orientation_ID) mySize = 4_pInt crystallite_postResults(c+1:c+mySize) = crystallite_orientation(1:4,ipc,ip,el) ! grain orientation as quaternion case (eulerangles_ID) mySize = 3_pInt crystallite_postResults(c+1:c+mySize) = inDeg & * math_qToEuler(crystallite_orientation(1:4,ipc,ip,el)) ! grain orientation as Euler angles in degree case (grainrotation_ID) mySize = 4_pInt crystallite_postResults(c+1:c+mySize) = & math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree case (grainrotationx_ID) mySize = 1_pInt rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates crystallite_postResults(c+1) = inDeg * rotation(1) * rotation(4) ! angle in degree case (grainrotationy_ID) mySize = 1_pInt rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates crystallite_postResults(c+1) = inDeg * rotation(2) * rotation(4) ! angle in degree case (grainrotationz_ID) mySize = 1_pInt rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates crystallite_postResults(c+1) = inDeg * rotation(3) * rotation(4) ! angle in degree ! remark: tensor output is of the form 11,12,13, 21,22,23, 31,32,33 ! thus row index i is slow, while column index j is fast. reminder: "row is slow" case (defgrad_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = & reshape(math_transpose33(crystallite_partionedF(1:3,1:3,ipc,ip,el)),[mySize]) case (e_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = 0.5_pReal * reshape((math_mul33x33( & math_transpose33(crystallite_partionedF(1:3,1:3,ipc,ip,el)), & crystallite_partionedF(1:3,1:3,ipc,ip,el)) - math_I3),[mySize]) case (fe_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = & reshape(math_transpose33(crystallite_Fe(1:3,1:3,ipc,ip,el)),[mySize]) case (ee_ID) Ee = 0.5_pReal *(math_mul33x33(math_transpose33(crystallite_Fe(1:3,1:3,ipc,ip,el)), & crystallite_Fe(1:3,1:3,ipc,ip,el)) - math_I3) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = reshape(Ee,[mySize]) case (fp_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = & reshape(math_transpose33(crystallite_Fp(1:3,1:3,ipc,ip,el)),[mySize]) case (fi_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = & reshape(math_transpose33(crystallite_Fi(1:3,1:3,ipc,ip,el)),[mySize]) case (lp_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = & reshape(math_transpose33(crystallite_Lp(1:3,1:3,ipc,ip,el)),[mySize]) case (li_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = & reshape(math_transpose33(crystallite_Li(1:3,1:3,ipc,ip,el)),[mySize]) case (p_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = & reshape(math_transpose33(crystallite_P(1:3,1:3,ipc,ip,el)),[mySize]) case (s_ID) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = & reshape(math_Mandel6to33(crystallite_Tstar_v(1:6,ipc,ip,el)),[mySize]) case (elasmatrix_ID) mySize = 36_pInt crystallite_postResults(c+1:c+mySize) = reshape(constitutive_homogenizedC(ipc,ip,el),[mySize]) case(neighboringelement_ID) mySize = mesh_maxNipNeighbors crystallite_postResults(c+1:c+mySize) = 0.0_pReal forall (n = 1_pInt:FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))) & crystallite_postResults(c+n) = real(mesh_ipNeighborhood(1,n,ip,el),pReal) case(neighboringip_ID) mySize = mesh_maxNipNeighbors crystallite_postResults(c+1:c+mySize) = 0.0_pReal forall (n = 1_pInt:FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))) & crystallite_postResults(c+n) = real(mesh_ipNeighborhood(2,n,ip,el),pReal) end select c = c + mySize enddo crystallite_postResults(c+1) = real(plasticState(material_phase(ipc,ip,el))%sizePostResults,pReal) ! size of constitutive results c = c + 1_pInt if (size(crystallite_postResults)-c > 0_pInt) & crystallite_postResults(c+1:size(crystallite_postResults)) = & constitutive_postResults(crystallite_Tstar_v(1:6,ipc,ip,el), crystallite_Fe, & ipc, ip, el) end function crystallite_postResults end module crystallite