!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH
!> @brief homogenization manager, organizing deformation partitioning and stress homogenization 
!--------------------------------------------------------------------------------------------------
module homogenization
 use prec, only: &
#ifdef FEM
   tOutputData, &
#endif
   pInt, &
   pReal

!--------------------------------------------------------------------------------------------------
! General variables for the homogenization at a  material point
 implicit none
 private
   real(pReal),   dimension(:,:,:,:),     allocatable, public :: &
   materialpoint_F0, &                                                                              !< def grad of IP at start of FE increment
   materialpoint_F, &                                                                               !< def grad of IP to be reached at end of FE increment
   materialpoint_P                                                                                  !< first P--K stress of IP
 real(pReal),   dimension(:,:,:,:,:,:), allocatable, public ::  &
   materialpoint_dPdF                                                                               !< tangent of first P--K stress at IP
#ifdef FEM
 type(tOutputData), dimension(:),       allocatable, public :: &
   homogOutput
 type(tOutputData), dimension(:,:),     allocatable, public :: &
   crystalliteOutput, &
   phaseOutput
#else
 real(pReal),   dimension(:,:,:),       allocatable, public :: &
   materialpoint_results                                                                            !< results array of material point
#endif
 integer(pInt),                                      public, protected  :: &
   materialpoint_sizeResults, &
   homogenization_maxSizePostResults, &
   field_maxSizePostResults

 real(pReal),   dimension(:,:,:,:),     allocatable, private :: &
   materialpoint_subF0, &                                                                           !< def grad of IP at beginning of homogenization increment
   materialpoint_subF                                                                               !< def grad of IP to be reached at end of homog inc
 real(pReal),   dimension(:,:),         allocatable, private :: &
   materialpoint_subFrac, &
   materialpoint_subStep, &
   materialpoint_subdt
 integer(pInt),                                      private :: &
   homogenization_maxSizeState
 logical,       dimension(:,:),         allocatable, private :: &
   materialpoint_requested, &
   materialpoint_converged
 logical,       dimension(:,:,:),       allocatable, private :: &
   materialpoint_doneAndHappy
 enum, bind(c) 
   enumerator :: undefined_ID, &
                 temperature_ID, &
                 damage_ID, &
                 vacancy_concentration_ID
 end enum
 integer(pInt),               dimension(:),   allocatable, public, protected :: &
   field_sizePostResults
 integer(pInt),               dimension(:,:), allocatable, private :: &
   field_sizePostResult
 
 character(len=64),           dimension(:,:), allocatable, private :: &
  field_output                                                                   !< name of each post result output
 integer(pInt),               dimension(:),   allocatable, private :: &
   field_Noutput                                                                 !< number of outputs per homog instance
 integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
  field_outputID                                                                 !< ID of each post result output

 public ::  &
   homogenization_init, &
   materialpoint_stressAndItsTangent, &
   field_getLocalDamage, &
   field_getFieldDamage, &
   field_putFieldDamage, &
   field_getLocalTemperature, &
   field_putFieldTemperature, &
   field_getHeatGeneration, &
   field_getLocalVacancyConcentration, &
   field_putFieldVacancyConcentration, &
   field_getDamageMobility, &
   field_getDamageDiffusion33, &
   field_getThermalConductivity33, &
   field_getMassDensity, &
   field_getSpecificHeat, &
   field_getVacancyMobility33, &
   field_getVacancyDiffusion33, &
   field_getVacancyEnergy, &
   materialpoint_postResults, &
   field_postResults
 private :: &
   homogenization_partitionDeformation, &
   homogenization_updateState, &
   homogenization_averageStressAndItsTangent, &
   homogenization_postResults

contains


!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!--------------------------------------------------------------------------------------------------
subroutine homogenization_init()
#ifdef HDF
 use hdf5, only: &
   HID_T
 use IO, only : &
   HDF5_mappingHomogenization
#endif
 use, intrinsic :: iso_fortran_env                                                                  ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
 use math, only: &
   math_I3
 use debug, only: &
   debug_level, &
   debug_homogenization, &
   debug_levelBasic, &
   debug_e, &
   debug_g
 use mesh, only: &
   mesh_maxNips, &
   mesh_NcpElems, &
   mesh_element, & 
   FE_Nips, &
   FE_geomtype
 use lattice, only: &
   lattice_referenceTemperature
 use constitutive, only: &
   constitutive_maxSizePostResults, &
   constitutive_damage_maxSizePostResults, &
   constitutive_thermal_maxSizePostResults, &
   constitutive_vacancy_maxSizePostResults
 use crystallite, only: &
#ifdef FEM
   crystallite_sizePostResults, &
#endif
   crystallite_maxSizePostResults
 use material
 use homogenization_none
 use homogenization_isostrain
 use homogenization_RGC
 use IO
 use numerics, only: &
   worldrank

 implicit none
 integer(pInt), parameter :: FILEUNIT = 200_pInt
 integer(pInt) :: e,i,p,myInstance
 integer(pInt), dimension(:,:), pointer :: thisSize
 integer(pInt), dimension(:)  , pointer :: thisNoutput
 character(len=64), dimension(:,:), pointer :: thisOutput
 character(len=32) :: outputName                                                                    !< name of output, intermediate fix until HDF5 output is ready
 logical :: knownHomogenization
#ifdef HDF
 integer(pInt), dimension(:,:), allocatable :: mapping
 integer(pInt), dimension(:), allocatable :: InstancePosition
 allocate(mapping(mesh_ncpelems,4),source=0_pInt)
 allocate(InstancePosition(material_Nhomogenization),source=0_pInt)
#endif
 integer(pInt),                                      parameter  :: MAXNCHUNKS = 2_pInt
 integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS)             :: positions
 integer(pInt) :: section = 0_pInt
 character(len=65536) :: &
   tag  = '', &
   line = ''

!--------------------------------------------------------------------------------------------------
! parse homogenization from config file
 if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) &                                  ! no local material configuration present...
   call IO_open_file(FILEUNIT,material_configFile)                                                  ! ... open material.config file
 if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) &
   call homogenization_none_init()
 if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) &
   call homogenization_isostrain_init(FILEUNIT)
 if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) &
   call homogenization_RGC_init(FILEUNIT)
 close(FILEUNIT)
 
!--------------------------------------------------------------------------------------------------
! parse field from config file
 allocate(field_sizePostResults(material_Nhomogenization),          source=0_pInt)
 allocate(field_sizePostResult(maxval(homogenization_Noutput),material_Nhomogenization), &
                                                                    source=0_pInt)
 allocate(field_Noutput(material_Nhomogenization),                  source=0_pInt)
 allocate(field_outputID(maxval(homogenization_Noutput),material_Nhomogenization), &
                                                                    source=undefined_ID)
 allocate(field_output(maxval(homogenization_Noutput),material_Nhomogenization))
 field_output = ''

 if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) &                                  ! no local material configuration present...
   call IO_open_file(FILEUNIT,material_configFile)                                                  ! ... open material.config file
 rewind(FILEUNIT)
 do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization>
   line = IO_read(FILEUNIT)
 enddo

 parsingFile: do while (trim(line) /= IO_EOF)                                                       ! read through sections of homogenization part
   line = IO_read(FILEUNIT)
   if (IO_isBlank(line)) cycle                                                                      ! skip empty lines
   if (IO_getTag(line,'<','>') /= '') then                                                          ! stop at next part
     line = IO_read(FILEUNIT, .true.)                                                               ! reset IO_read
     exit                                                                                           
   endif
   if (IO_getTag(line,'[',']') /= '') then                                                          ! next section
     section = section + 1_pInt
     cycle
   endif
   if (section > 0_pInt ) then                                                                      ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran
     positions = IO_stringPos(line,MAXNCHUNKS)
     tag = IO_lc(IO_stringValue(line,positions,1_pInt))                                           ! extract key
     select case(tag)
       case ('(output)')
         select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
           case('temperature')
             field_Noutput(section) = field_Noutput(section) + 1_pInt
             field_outputID(field_Noutput(section),section) = temperature_ID
             field_sizePostResult(field_Noutput(section),section) = 1_pInt
             field_sizePostResults(section) = field_sizePostResults(section) + 1_pInt
             field_output(field_Noutput(section),section) = IO_lc(IO_stringValue(line,positions,2_pInt))
           case('damage')
             field_Noutput(section) = field_Noutput(section) + 1_pInt
             field_outputID(field_Noutput(section),section) = damage_ID
             field_sizePostResult(field_Noutput(section),section) = 1_pInt
             field_sizePostResults(section) = field_sizePostResults(section) + 1_pInt
             field_output(field_Noutput(section),section) = IO_lc(IO_stringValue(line,positions,2_pInt))
           case('vacancy_concentration')
             field_Noutput(section) = field_Noutput(section) + 1_pInt
             field_outputID(field_Noutput(section),section) = vacancy_concentration_ID
             field_sizePostResult(field_Noutput(section),section) = 1_pInt
             field_sizePostResults(section) = field_sizePostResults(section) + 1_pInt
             field_output(field_Noutput(section),section) = IO_lc(IO_stringValue(line,positions,2_pInt))

         end select

     end select
   endif
 enddo parsingFile
 close(FILEUNIT)

!--------------------------------------------------------------------------------------------------
! write description file for homogenization output
 if (worldrank == 0_pInt) then
   call IO_write_jobFile(FILEUNIT,'outputHomogenization')
   do p = 1,material_Nhomogenization
     i = homogenization_typeInstance(p)                                                               ! which instance of this homogenization type
     knownHomogenization = .true.                                                                     ! assume valid
     select case(homogenization_type(p))                                                              ! split per homogenization type
       case (HOMOGENIZATION_NONE_ID)
         outputName = HOMOGENIZATION_NONE_label
         thisNoutput => null()
         thisOutput => null()
         thisSize   => null()
       case (HOMOGENIZATION_ISOSTRAIN_ID)
         outputName = HOMOGENIZATION_ISOSTRAIN_label
         thisNoutput => homogenization_isostrain_Noutput
         thisOutput => homogenization_isostrain_output
         thisSize   => homogenization_isostrain_sizePostResult
       case (HOMOGENIZATION_RGC_ID)
         outputName = HOMOGENIZATION_RGC_label
         thisNoutput => homogenization_RGC_Noutput
         thisOutput => homogenization_RGC_output
         thisSize   => homogenization_RGC_sizePostResult
       case default
         knownHomogenization = .false.
     end select   
     write(FILEUNIT,'(/,a,/)')  '['//trim(homogenization_name(p))//']'
     if (knownHomogenization) then
       write(FILEUNIT,'(a)') '(type)'//char(9)//trim(outputName)
       write(FILEUNIT,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p)
       if (homogenization_type(p) /= HOMOGENIZATION_NONE_ID) then
         do e = 1,thisNoutput(i)
           write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i)
         enddo
       endif  
     endif  
     do e = 1_pInt,field_Noutput(p)
       write(FILEUNIT,'(a,i4)') trim(field_output(e,p))//char(9),field_sizePostResult(e,p)
     enddo
   enddo
   close(FILEUNIT)
 endif  

!--------------------------------------------------------------------------------------------------
! allocate and initialize global variables
 allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems),       source=0.0_pReal)
 allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems),             source=0.0_pReal)
 materialpoint_F0 = spread(spread(math_I3,3,mesh_maxNips),4,mesh_NcpElems)                          ! initialize to identity
 allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems),              source=0.0_pReal)
 materialpoint_F = materialpoint_F0                                                                 ! initialize to identity
 allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems),          source=0.0_pReal)
 allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems),           source=0.0_pReal)
 allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems),              source=0.0_pReal)
 allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems),            source=0.0_pReal)
 allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems),            source=0.0_pReal)
 allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems),              source=0.0_pReal)
 allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems),          source=.false.)
 allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems),          source=.true.)
 allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems),     source=.true.)

!--------------------------------------------------------------------------------------------------
! allocate and initialize global state and postresutls variables
 elementLooping: do e = 1,mesh_NcpElems
   myInstance = homogenization_typeInstance(mesh_element(3,e))
   IpLooping: do i = 1,FE_Nips(FE_geomtype(mesh_element(2,e)))
#ifdef HDF
       InstancePosition(myInstance) = InstancePosition(myInstance)+1_pInt
       mapping(e,1:4) = [instancePosition(myinstance),myinstance,e,i]
#endif
   enddo IpLooping
 enddo elementLooping
#ifdef HDF
 call  HDF5_mappingHomogenization(mapping)
#endif

 homogenization_maxSizePostResults = 0_pInt
 field_maxSizePostResults = 0_pInt
 do p = 1,material_Nhomogenization
   homogenization_maxSizePostResults = max(homogenization_maxSizePostResults,homogState(p)%sizePostResults)
   field_maxSizePostResults          = max(field_maxSizePostResults,field_sizePostResults(p))
 enddo  

#ifdef FEM
 allocate(homogOutput      (material_Nhomogenization                         ))
 allocate(crystalliteOutput(material_Ncrystallite,  homogenization_maxNgrains))
 allocate(phaseOutput      (material_Nphase,        homogenization_maxNgrains))
 do p = 1, material_Nhomogenization 
   homogOutput(p)%sizeResults = homogState(p)%sizePostResults + field_sizePostResults(p)
   homogOutput(p)%sizeIpCells = count(material_homog==p)
   allocate(homogOutput(p)%output(homogOutput(p)%sizeResults,homogOutput(p)%sizeIpCells))
 enddo                                                        
 do p = 1, material_Ncrystallite; do e = 1, homogenization_maxNgrains
   crystalliteOutput(p,e)%sizeResults = crystallite_sizePostResults(p)
   crystalliteOutput(p,e)%sizeIpCells = count(microstructure_crystallite(mesh_element(4,:)) == p .and. &
                                              homogenization_Ngrains    (mesh_element(3,:)) >= e)*mesh_maxNips
   allocate(crystalliteOutput(p,e)%output(crystalliteOutput(p,e)%sizeResults,crystalliteOutput(p,e)%sizeIpCells))
 enddo; enddo                                                        
 do p = 1, material_Nphase; do e = 1, homogenization_maxNgrains
   phaseOutput(p,e)%sizeResults = plasticState(p)%sizePostResults + &
                                  damageState (p)%sizePostResults + &
                                  thermalState(p)%sizePostResults + &
                                  vacancyState(p)%sizePostResults
   phaseOutput(p,e)%sizeIpCells = count(material_phase(e,:,:) == p)
   allocate(phaseOutput(p,e)%output(phaseOutput(p,e)%sizeResults,phaseOutput(p,e)%sizeIpCells))
 enddo; enddo                                                        
#else
 materialpoint_sizeResults = 1 &                                                                    ! grain count
                           + 1 + homogenization_maxSizePostResults &                                ! homogSize & homogResult
                               + field_maxSizePostResults &                                         ! field size & field result  
                           + homogenization_maxNgrains * (1 + crystallite_maxSizePostResults &      ! crystallite size & crystallite results
                                                        + 1 + constitutive_maxSizePostResults &     ! constitutive size & constitutive results
                                                            + constitutive_damage_maxSizePostResults &     
                                                            + constitutive_thermal_maxSizePostResults &    
                                                            + constitutive_vacancy_maxSizePostResults)   
 allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems))
#endif
 
 mainProcess: if (worldrank == 0) then 
   write(6,'(/,a)')   ' <<<+-  homogenization init  -+>>>'
   write(6,'(a)')     ' $Id$'
   write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
 endif mainProcess

 if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
#ifdef TODO
   write(6,'(a32,1x,7(i8,1x))')   'homogenization_state0:          ', shape(homogenization_state0)
   write(6,'(a32,1x,7(i8,1x))')   'homogenization_subState0:       ', shape(homogenization_subState0)
   write(6,'(a32,1x,7(i8,1x))')   'homogenization_state:           ', shape(homogenization_state)
#endif
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_dPdF:             ', shape(materialpoint_dPdF)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_F0:               ', shape(materialpoint_F0)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_F:                ', shape(materialpoint_F)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_subF0:            ', shape(materialpoint_subF0)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_subF:             ', shape(materialpoint_subF)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_P:                ', shape(materialpoint_P)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_subFrac:          ', shape(materialpoint_subFrac)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_subStep:          ', shape(materialpoint_subStep)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_subdt:            ', shape(materialpoint_subdt)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_requested:        ', shape(materialpoint_requested)
   write(6,'(a32,1x,7(i8,1x))')   'materialpoint_converged:        ', shape(materialpoint_converged)
   write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy:     ', shape(materialpoint_doneAndHappy)
#ifndef FEM
   write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_results:          ', shape(materialpoint_results)
#endif
   write(6,'(a32,1x,7(i8,1x))')   'maxSizePostResults: ', homogenization_maxSizePostResults
 endif
 flush(6)
 
 if (debug_g < 1 .or. debug_g > homogenization_Ngrains(mesh_element(3,debug_e))) &
   call IO_error(602_pInt,ext_msg='component (grain)')
 
end subroutine homogenization_init


!--------------------------------------------------------------------------------------------------
!> @brief  parallelized calculation of stress and corresponding tangent at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_stressAndItsTangent(updateJaco,dt)
 use numerics, only: &
   subStepMinHomog, &
   subStepSizeHomog, &
   stepIncreaseHomog, &
   nHomog, &
   nMPstate
 use math, only: & 
   math_transpose33
 use FEsolving, only: &
   FEsolving_execElem, &
   FEsolving_execIP, &
   terminallyIll
 use mesh, only: &
   mesh_element, &
   mesh_NcpElems, &
   mesh_maxNips
 use material, only: &
   plasticState, &
   damageState, &
   thermalState, &
   vacancyState, &
   homogState, &
   mappingHomogenization, &  
   mappingConstitutive, &
   homogenization_Ngrains
  
   
 use crystallite, only: &
   crystallite_F0, &
   crystallite_Fp0, &
   crystallite_Fp, &
   crystallite_Fi0, &
   crystallite_Fi, &
   crystallite_Lp0, &
   crystallite_Lp, &
   crystallite_Li0, &
   crystallite_Li, &
   crystallite_dPdF, &
   crystallite_dPdF0, &
   crystallite_Tstar0_v, &
   crystallite_Tstar_v, &
   crystallite_partionedF0, &
   crystallite_partionedF, &
   crystallite_partionedFp0, &
   crystallite_partionedLp0, &
   crystallite_partionedFi0, &
   crystallite_partionedLi0, &
   crystallite_partioneddPdF0, &
   crystallite_partionedTstar0_v, &
   crystallite_dt, &
   crystallite_requested, &
   crystallite_converged, &
   crystallite_stressAndItsTangent, &
   crystallite_orientations
 use debug, only: &
   debug_level, &
   debug_homogenization, &
   debug_levelBasic, &
   debug_levelSelective, &
   debug_e, &
   debug_i, &
   debug_MaterialpointLoopDistribution, &
   debug_MaterialpointStateLoopDistribution
 use math, only: &
   math_pDecomposition
                          
 implicit none
 real(pReal), intent(in) :: dt                                                                      !< time increment
 logical,     intent(in) :: updateJaco                                                              !< initiating Jacobian update
 integer(pInt) :: &
   NiterationHomog, &
   NiterationMPstate, &
   g, &                                                                                             !< grain number
   i, &                                                                                             !< integration point number
   e, &                                                                                             !< element number
   myNgrains

!--------------------------------------------------------------------------------------------------
! initialize to starting condition
 if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
   !$OMP CRITICAL (write2out)
     write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i

     write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', &
                                     math_transpose33(materialpoint_F0(1:3,1:3,debug_i,debug_e))
     write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', &
                                     math_transpose33(materialpoint_F(1:3,1:3,debug_i,debug_e))
   !$OMP END CRITICAL (write2out)
 endif

!--------------------------------------------------------------------------------------------------
! initialize restoration points of ...
 do e = FEsolving_execElem(1),FEsolving_execElem(2)
   myNgrains = homogenization_Ngrains(mesh_element(3,e))
   forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)

     plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
     plasticState(mappingConstitutive(2,g,i,e))%state0(         :,mappingConstitutive(1,g,i,e))
     damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
     damageState( mappingConstitutive(2,g,i,e))%state0(         :,mappingConstitutive(1,g,i,e))
     thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
     thermalState(mappingConstitutive(2,g,i,e))%state0(         :,mappingConstitutive(1,g,i,e))
     vacancyState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
     vacancyState(mappingConstitutive(2,g,i,e))%state0(         :,mappingConstitutive(1,g,i,e))

     crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e)                       ! ...plastic def grads
     crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e)                       ! ...plastic velocity grads
     crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e)                       ! ...intermediate def grads
     crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e)                       ! ...intermediate velocity grads
     crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e)   ! ...stiffness
     crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e)                         ! ...def grads
     crystallite_partionedTstar0_v(1:6,g,i,e) = crystallite_Tstar0_v(1:6,g,i,e)                     ! ...2nd PK stress

   endforall
   forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e))
     materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e)                               ! ...def grad
     materialpoint_subFrac(i,e) = 0.0_pReal
     materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog                                        ! <<added to adopt flexibility in cutback size>>
     materialpoint_converged(i,e) = .false.                                                         ! pretend failed step of twice the required size
     materialpoint_requested(i,e) = .true.                                                          ! everybody requires calculation
   endforall
   forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
     homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
       homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
       homogState(mappingHomogenization(2,i,e))%State0(   :,mappingHomogenization(1,i,e))      ! ...internal homogenization state
 enddo
 NiterationHomog = 0_pInt
 
 cutBackLooping: do while (.not. terminallyIll .and. &
      any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog))

   !$OMP PARALLEL DO PRIVATE(myNgrains)
   elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
     myNgrains = homogenization_Ngrains(mesh_element(3,e))
     IpLooping1: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
              
       converged: if ( materialpoint_converged(i,e) ) then
#ifndef _OPENMP
         if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt &
            .and. ((e == debug_e .and. i == debug_i) & 
                   .or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0_pInt)) then
           write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', &
             materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', &
             materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i
         endif
#endif
         
!--------------------------------------------------------------------------------------------------
! calculate new subStep and new subFrac
         materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
         !$OMP FLUSH(materialpoint_subFrac)
         materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), &
                                          stepIncreaseHomog*materialpoint_subStep(i,e))                   ! introduce flexibility for step increase/acceleration
         !$OMP FLUSH(materialpoint_subStep)
                  
         steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then
         
           ! wind forward grain starting point of...
           crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads
           crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp(1:3,1:3,1:myNgrains,i,e)    ! ...plastic def grads
           crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp(1:3,1:3,1:myNgrains,i,e)    ! ...plastic velocity grads
           crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fi(1:3,1:3,1:myNgrains,i,e)    ! ...intermediate def grads
           crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Li(1:3,1:3,1:myNgrains,i,e)    ! ...intermediate velocity grads
           crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e)! ...stiffness
           crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar_v(1:6,1:myNgrains,i,e)  ! ...2nd PK stress
           forall (g = 1:myNgrains)
             plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
             plasticState(mappingConstitutive(2,g,i,e))%state(          :,mappingConstitutive(1,g,i,e))
             damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
             damageState( mappingConstitutive(2,g,i,e))%state(          :,mappingConstitutive(1,g,i,e))
             thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
             thermalState(mappingConstitutive(2,g,i,e))%state(          :,mappingConstitutive(1,g,i,e))
             vacancyState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = &
             vacancyState(mappingConstitutive(2,g,i,e))%state(          :,mappingConstitutive(1,g,i,e))
           end forall    
           if (homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
             homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = &
             homogState(mappingHomogenization(2,i,e))%state(    :,mappingHomogenization(1,i,e))
           materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e)                             ! ...def grad
           !$OMP FLUSH(materialpoint_subF0)
         elseif (materialpoint_requested(i,e)) then steppingNeeded                                        ! already at final time (??)
           if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
             !$OMP CRITICAL (distributionHomog)
               debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = &
               debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1
             !$OMP END CRITICAL (distributionHomog)
           endif
         endif steppingNeeded

       else converged
         if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. &                         ! single grain already tried internal subStepping in crystallite
              subStepSizeHomog * materialpoint_subStep(i,e) <=  subStepMinHomog ) then                      ! would require too small subStep
                                                                                                            ! cutback makes no sense
           !$OMP FLUSH(terminallyIll)
           if (.not. terminallyIll) then                                                                    ! so first signals terminally ill...
             !$OMP CRITICAL (write2out)
               write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill'
             !$OMP END CRITICAL (write2out)
           endif
           !$OMP CRITICAL (setTerminallyIll)
             terminallyIll = .true.                                                                         ! ...and kills all others
           !$OMP END CRITICAL (setTerminallyIll)
         else                                                                                               ! cutback makes sense
           materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e)                       ! crystallite had severe trouble, so do a significant cutback
           !$OMP FLUSH(materialpoint_subStep)
           
#ifndef _OPENMP
           if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt &
              .and. ((e == debug_e .and. i == debug_i) &
                    .or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0_pInt)) then
             write(6,'(a,1x,f12.8,a,i8,1x,i2/)') &
               '<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',&
               materialpoint_subStep(i,e),' at el ip',e,i 
           endif
#endif
  
!--------------------------------------------------------------------------------------------------
! restore...
           crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e)      ! ...plastic def grads
           crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e)      ! ...plastic velocity grads
           crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e)      ! ...intermediate def grads
           crystallite_Li(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e)      ! ...intermediate velocity grads
           crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness
           crystallite_Tstar_v(1:6,1:myNgrains,i,e) = crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e)    ! ...2nd PK stress
           forall (g = 1:myNgrains)
             plasticState(mappingConstitutive(2,g,i,e))%state(          :,mappingConstitutive(1,g,i,e)) = &
             plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
             damageState( mappingConstitutive(2,g,i,e))%state(          :,mappingConstitutive(1,g,i,e)) = &
             damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
             thermalState(mappingConstitutive(2,g,i,e))%state(          :,mappingConstitutive(1,g,i,e)) = &
             thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
             vacancyState(mappingConstitutive(2,g,i,e))%state(          :,mappingConstitutive(1,g,i,e)) = &
             vacancyState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
           end forall    
           if (homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) &
             homogState(mappingHomogenization(2,i,e))%state(    :,mappingHomogenization(1,i,e)) = &
             homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e))
         endif       
       endif converged
     
       if (materialpoint_subStep(i,e) > subStepMinHomog) then
         materialpoint_requested(i,e) = .true.
         materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + &
                                         materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e))
         materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
         materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.]
       endif
     enddo IpLooping1
   enddo elementLooping1
   !$OMP END PARALLEL DO

   NiterationMPstate = 0_pInt
   
   convergenceLooping: do while (.not. terminallyIll .and. &
             any(            materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
                 .and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
                ) .and. &
             NiterationMPstate < nMPstate)
     NiterationMPstate = NiterationMPstate + 1

!--------------------------------------------------------------------------------------------------
! deformation partitioning
! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state, 
! results in crystallite_partionedF
     !$OMP PARALLEL DO PRIVATE(myNgrains)
     elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
       myNgrains = homogenization_Ngrains(mesh_element(3,e))
       IpLooping2: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
         if (      materialpoint_requested(i,e) .and. &                                             ! process requested but...
             .not. materialpoint_doneAndHappy(1,i,e)) then                                          ! ...not yet done material points
           call homogenization_partitionDeformation(i,e)                                            ! partition deformation onto constituents
           crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e)                               ! propagate materialpoint dt to grains
           crystallite_requested(1:myNgrains,i,e) = .true.                                          ! request calculation for constituents
         else
           crystallite_requested(1:myNgrains,i,e) = .false.                                         ! calculation for constituents not required anymore
         endif
       enddo IpLooping2
     enddo elementLooping2
     !$OMP END PARALLEL DO
 
!--------------------------------------------------------------------------------------------------
! crystallite integration
! based on crystallite_partionedF0,.._partionedF
! incrementing by crystallite_dt
     call crystallite_stressAndItsTangent(updateJaco)                                                ! request stress and tangent calculation for constituent grains

!--------------------------------------------------------------------------------------------------
! state update
     !$OMP PARALLEL DO
     elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
       IpLooping3: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
         if (      materialpoint_requested(i,e) .and. &
             .not. materialpoint_doneAndHappy(1,i,e)) then
           if (.not. all(crystallite_converged(:,i,e))) then
             materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.]
             materialpoint_converged(i,e) = .false.
           else
             materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e)
             materialpoint_converged(i,e) = all(homogenization_updateState(i,e))                     ! converged if done and happy
           endif
           !$OMP FLUSH(materialpoint_converged)
           if (materialpoint_converged(i,e)) then
             if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then
               !$OMP CRITICAL (distributionMPState)
                 debug_MaterialpointStateLoopdistribution(NiterationMPstate) = &
                   debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1_pInt
               !$OMP END CRITICAL (distributionMPState)
             endif
           endif
         endif
       enddo IpLooping3
     enddo elementLooping3
     !$OMP END PARALLEL DO

   enddo convergenceLooping

   NiterationHomog = NiterationHomog + 1_pInt

 enddo cutBackLooping

 if (.not. terminallyIll ) then   
   call crystallite_orientations()                                                                  ! calculate crystal orientations
   !$OMP PARALLEL DO
   elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
     IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
       call homogenization_averageStressAndItsTangent(i,e)
     enddo IpLooping4
   enddo elementLooping4
   !$OMP END PARALLEL DO
 else
   !$OMP CRITICAL (write2out)
   write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill'
   !$OMP END CRITICAL (write2out)
 endif
 
end subroutine materialpoint_stressAndItsTangent


!--------------------------------------------------------------------------------------------------
!> @brief parallelized calculation of result array at material points
!--------------------------------------------------------------------------------------------------
subroutine materialpoint_postResults
 use FEsolving, only: &
   FEsolving_execElem, &
   FEsolving_execIP
 use mesh, only: &
#ifdef FEM
   mesh_maxNips, &
#endif
   mesh_element
 use material, only: &
   mappingHomogenization, &
#ifdef FEM
   mappingConstitutive, &  
   homogenization_maxNgrains, &
   material_Ncrystallite, &
   material_Nphase, & 
#endif
   homogState, &
   plasticState, &
   damageState, &
   thermalState, &
   vacancyState, &
   material_phase, &
   homogenization_Ngrains, &
   microstructure_crystallite
 use constitutive, only: &
#ifdef FEM
   constitutive_maxSizePostResults, &
   constitutive_damage_maxSizePostResults, &
   constitutive_thermal_maxSizePostResults, &
   constitutive_vacancy_maxSizePostResults, & 
#endif
   constitutive_postResults
 use crystallite, only: &
#ifdef FEM
   crystallite_maxSizePostResults, &
#endif
   crystallite_sizePostResults, &
   crystallite_postResults

 implicit none
 integer(pInt) :: &
   thePos, &
   theSize, &
   myNgrains, &
   myCrystallite, &
   g, &                                                                                             !< grain number
   i, &                                                                                             !< integration point number
   e                                                                                                !< element number
#ifdef FEM
 integer(pInt) :: &
   myHomog, &
   myPhase, &
   crystalliteCtr(material_Ncrystallite,  homogenization_maxNgrains), &
   phaseCtr      (material_Nphase,        homogenization_maxNgrains)   
 real(pReal), dimension(1+crystallite_maxSizePostResults + &
                        1+constitutive_maxSizePostResults + &
                          constitutive_damage_maxSizePostResults + &
                          constitutive_thermal_maxSizePostResults + &
                          constitutive_vacancy_maxSizePostResults) :: & 
   crystalliteResults



 crystalliteCtr = 0_pInt; phaseCtr = 0_pInt
 elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
   myNgrains = homogenization_Ngrains(mesh_element(3,e))
   myCrystallite = microstructure_crystallite(mesh_element(4,e))
   IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
     myHomog = mappingHomogenization(2,i,e)
     thePos =  mappingHomogenization(1,i,e)
     homogOutput(myHomog)%output(1: &
                                 homogState(myHomog)%sizePostResults, &
                                 thePos) = homogenization_postResults(i,e)
     homogOutput(myHomog)%output(homogState(myHomog)%sizePostResults+1: &
                                 homogState(myHomog)%sizePostResults+field_sizePostResults(myHomog), &
                                 thePos) = field_postResults(i,e)
     
     grainLooping :do g = 1,myNgrains
       myPhase = mappingConstitutive(2,g,i,e)
       crystalliteResults(1:1+crystallite_sizePostResults(myCrystallite) + &
                            1+plasticState(myPhase)%sizePostResults + &
                              damageState (myPhase)%sizePostResults + &
                              thermalState(myPhase)%sizePostResults + &
                              vacancyState(myPhase)%sizePostResults) = crystallite_postResults(g,i,e)
       if (microstructure_crystallite(mesh_element(4,e)) == myCrystallite .and. &
           homogenization_Ngrains    (mesh_element(3,e)) >= g) then
         crystalliteCtr(myCrystallite,g) = crystalliteCtr(myCrystallite,g) + 1_pInt
         crystalliteOutput(myCrystallite,g)% &
           output(1:crystalliteOutput(myCrystallite,g)%sizeResults,crystalliteCtr(myCrystallite,g)) = &  
             crystalliteResults(2:1+crystallite_sizePostResults(myCrystallite))
       endif
       if (material_phase(g,i,e) == myPhase) then
         phaseCtr(myPhase,g) = phaseCtr(myPhase,g) + 1_pInt
         phaseOutput(myPhase,g)% &
           output(1:phaseOutput(myPhase,g)%sizeResults,phaseCtr(myPhase,g)) = &  
             crystalliteResults(3 + crystallite_sizePostResults(myCrystallite): &
                                    plasticState(myphase)%sizePostResults + &                    
                                    damageState (myphase)%sizePostResults + &     
                                    thermalState(myphase)%sizePostResults + &
                                    vacancyState(myphase)%sizePostResults)
       endif
     enddo grainLooping
   enddo IpLooping
 enddo elementLooping
#else

 !$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize)
   elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2)
     myNgrains = homogenization_Ngrains(mesh_element(3,e))
     myCrystallite = microstructure_crystallite(mesh_element(4,e))
     IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
       thePos = 0_pInt
       
       theSize = homogState(mappingHomogenization(2,i,e))%sizePostResults
       materialpoint_results(thePos+1,i,e) = real(theSize,pReal)                                    ! tell size of homogenization results
       thePos = thePos + 1_pInt

       if (theSize > 0_pInt) then                                                                   ! any homogenization results to mention?
         materialpoint_results(thePos+1:thePos+theSize,i,e) = homogenization_postResults(i,e)       ! tell homogenization results
         thePos = thePos + theSize
       endif

       theSize = field_sizePostResults(mappingHomogenization(2,i,e))
       if (theSize > 0_pInt) then                                                                   ! any homogenization results to mention?
         materialpoint_results(thePos+1:thePos+theSize,i,e) = field_postResults(i,e)                ! tell field results 
         thePos = thePos + theSize
       endif
       
       materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal)                                  ! tell number of grains at materialpoint
       thePos = thePos + 1_pInt

       grainLooping :do g = 1,myNgrains
         theSize = 1 + crystallite_sizePostResults(myCrystallite) + &
                   1 + plasticState(material_phase(g,i,e))%sizePostResults + &                    !ToDo
                       damageState(material_phase(g,i,e))%sizePostResults + &     
                       thermalState(material_phase(g,i,e))%sizePostResults + &
                       vacancyState(material_phase(g,i,e))%sizePostResults
         materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(g,i,e)        ! tell crystallite results
         thePos = thePos + theSize
       enddo grainLooping
     enddo IpLooping
   enddo elementLooping
 !$OMP END PARALLEL DO
#endif

end subroutine materialpoint_postResults
 
 
!--------------------------------------------------------------------------------------------------
!> @brief  partition material point def grad onto constituents
!--------------------------------------------------------------------------------------------------
subroutine homogenization_partitionDeformation(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   homogenization_type, &
   homogenization_maxNgrains, &
   HOMOGENIZATION_NONE_ID, &
   HOMOGENIZATION_ISOSTRAIN_ID, &
   HOMOGENIZATION_RGC_ID
 use crystallite, only: &
   crystallite_partionedF0, &
   crystallite_partionedF
 use homogenization_isostrain, only: &
   homogenization_isostrain_partitionDeformation
 use homogenization_RGC, only: &
   homogenization_RGC_partitionDeformation

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point
   el                                                                                               !< element number

 chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))

   case (HOMOGENIZATION_NONE_ID) chosenHomogenization
     crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el) = 0.0_pReal
     crystallite_partionedF(1:3,1:3,1:1,ip,el) = &
       spread(materialpoint_subF(1:3,1:3,ip,el),3,1)

   case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
     call homogenization_isostrain_partitionDeformation(&
                          crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
                          materialpoint_subF(1:3,1:3,ip,el),&
                          el)
   case (HOMOGENIZATION_RGC_ID) chosenHomogenization
     call homogenization_RGC_partitionDeformation(&
                         crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
                         materialpoint_subF(1:3,1:3,ip,el),&
                         ip, &
                         el)
 end select chosenHomogenization

end subroutine homogenization_partitionDeformation


!--------------------------------------------------------------------------------------------------
!> @brief update the internal state of the homogenization scheme and tell whether "done" and 
!> "happy" with result
!--------------------------------------------------------------------------------------------------
function homogenization_updateState(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   homogenization_type, &
   homogenization_maxNgrains, &
   HOMOGENIZATION_RGC_ID
 use crystallite, only: &
   crystallite_P, &
   crystallite_dPdF, &
   crystallite_partionedF,&
   crystallite_partionedF0
 use homogenization_RGC, only: &
   homogenization_RGC_updateState

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point
   el                                                                                               !< element number
 logical, dimension(2) :: homogenization_updateState
 
 chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))

   case (HOMOGENIZATION_RGC_ID) chosenHomogenization
     homogenization_updateState = &

        homogenization_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
                                        crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
                                        crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),&
                                        materialpoint_subF(1:3,1:3,ip,el),&
                                        materialpoint_subdt(ip,el), &
                                        crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
                                        ip, &
                                        el)
   case default chosenHomogenization
     homogenization_updateState = .true.
 end select chosenHomogenization

end function homogenization_updateState


!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine homogenization_averageStressAndItsTangent(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   homogenization_type, &
   homogenization_maxNgrains, &
   HOMOGENIZATION_NONE_ID, &
   HOMOGENIZATION_ISOSTRAIN_ID, &
   HOMOGENIZATION_RGC_ID
 use crystallite, only: &
   crystallite_P,crystallite_dPdF
 use homogenization_isostrain, only: &
   homogenization_isostrain_averageStressAndItsTangent
 use homogenization_RGC, only: &
   homogenization_RGC_averageStressAndItsTangent

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point
   el                                                                                               !< element number
 
 chosenHomogenization: select case(homogenization_type(mesh_element(3,el)))
   case (HOMOGENIZATION_NONE_ID) chosenHomogenization
       materialpoint_P(1:3,1:3,ip,el) = sum(crystallite_P(1:3,1:3,1:1,ip,el),3)
       materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) &
        = sum(crystallite_dPdF(1:3,1:3,1:3,1:3,1:1,ip,el),5)
   case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
     call homogenization_isostrain_averageStressAndItsTangent(&
       materialpoint_P(1:3,1:3,ip,el), &
       materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
       crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
       crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
       el)
   case (HOMOGENIZATION_RGC_ID) chosenHomogenization
     call homogenization_RGC_averageStressAndItsTangent(&
       materialpoint_P(1:3,1:3,ip,el), &
       materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),&
       crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), &
       crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), &
       el)
 end select chosenHomogenization

end subroutine homogenization_averageStressAndItsTangent

!--------------------------------------------------------------------------------------------------
!> @brief Returns average specific heat at each integration point 
!--------------------------------------------------------------------------------------------------
function field_getSpecificHeat(ip,el)
 use mesh, only: &
   mesh_element
 use lattice, only: &
   lattice_specificHeat
 use material, only: &
   material_phase, &
   material_homog, &
   field_thermal_type, &
   FIELD_THERMAL_local_ID, &
   FIELD_THERMAL_nonlocal_ID, &
   homogenization_Ngrains

 implicit none
 real(pReal)  :: field_getSpecificHeat
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

 field_getSpecificHeat =0.0_pReal
                                                
 select case(field_thermal_type(material_homog(ip,el)))                                                   
   
   case (FIELD_THERMAL_local_ID)
    field_getSpecificHeat = 0.0_pReal
      
   case (FIELD_THERMAL_nonlocal_ID)
    do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
     field_getSpecificHeat = field_getSpecificHeat + lattice_specificHeat(material_phase(ipc,ip,el))
    enddo
      
 end select   

 field_getSpecificHeat = field_getSpecificHeat /homogenization_Ngrains(mesh_element(3,el))

end function field_getSpecificHeat

!--------------------------------------------------------------------------------------------------
!> @brief Returns average mass density at each integration point 
!--------------------------------------------------------------------------------------------------
function field_getMassDensity(ip,el)
 use mesh, only: &
   mesh_element
 use lattice, only: &
   lattice_massDensity
 use material, only: &
   material_phase, &
   material_homog, &
   field_thermal_type, &
   FIELD_THERMAL_local_ID, &
   FIELD_THERMAL_nonlocal_ID, &
   homogenization_Ngrains


 implicit none
 real(pReal)  :: field_getMassDensity
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

 field_getMassDensity =0.0_pReal
                                                
 select case(field_thermal_type(material_homog(ip,el)))                                                   
   
   case (FIELD_THERMAL_local_ID)
     field_getMassDensity = 0.0_pReal
      
   case (FIELD_THERMAL_nonlocal_ID)
    do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
      field_getMassDensity = field_getMassDensity + lattice_massDensity(material_phase(ipc,ip,el))
    enddo
      
 end select   

 field_getMassDensity = field_getMassDensity /homogenization_Ngrains(mesh_element(3,el))

end function field_getMassDensity
!-------------------------------------------------------------------------------------------
!> @brief Returns average conductivity tensor for thermal field at each integration point 
!-------------------------------------------------------------------------------------------
function field_getThermalConductivity33(ip,el)
 use mesh, only: &
   mesh_element
 use lattice, only: &
   lattice_thermalConductivity33
 use material, only: &
   material_phase, &
   material_homog, &
   field_thermal_type, &
   FIELD_THERMAL_nonlocal_ID, &
   homogenization_Ngrains
 use crystallite, only: &
   crystallite_push33ToRef


 implicit none
 real(pReal), dimension(3,3) :: field_getThermalConductivity33
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

 field_getThermalConductivity33 =0.0_pReal
                                                
 select case(field_thermal_type(material_homog(ip,el)))                                                   
   case (FIELD_THERMAL_nonlocal_ID)
     do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
       field_getThermalConductivity33 = field_getThermalConductivity33 + &
        crystallite_push33ToRef(ipc,ip,el,lattice_thermalConductivity33(:,:,material_phase(ipc,ip,el)))
    enddo
      
 end select   

 field_getThermalConductivity33 = field_getThermalConductivity33 /homogenization_Ngrains(mesh_element(3,el))

end function field_getThermalConductivity33
!--------------------------------------------------------------------------------------------------
!> @brief Returns average diffusion tensor for damage field at each integration point 
!--------------------------------------------------------------------------------------------------
function field_getDamageDiffusion33(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   material_homog, &
   field_damage_type, &
   FIELD_DAMAGE_NONLOCAL_ID, &
   homogenization_Ngrains
 use crystallite, only: &
   crystallite_push33ToRef
 use constitutive, only: &
   constitutive_getDamageDiffusion33

 implicit none
 real(pReal), dimension(3,3) :: field_getDamageDiffusion33
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

 field_getDamageDiffusion33 =0.0_pReal
                                                
 select case(field_damage_type(material_homog(ip,el)))                                                   
   case (FIELD_DAMAGE_NONLOCAL_ID)
     do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
      field_getDamageDiffusion33 = field_getDamageDiffusion33 + &
        crystallite_push33ToRef(ipc,ip,el,constitutive_getDamageDiffusion33(ipc,ip,el))
     enddo
      
 end select   

 field_getDamageDiffusion33 = field_getDamageDiffusion33 /homogenization_Ngrains(mesh_element(3,el))

end function field_getDamageDiffusion33

!--------------------------------------------------------------------------------------------------
!> @brief Returns average mobility for damage field at each integration point 
!--------------------------------------------------------------------------------------------------
real(pReal) function field_getDamageMobility(ip,el)
 use mesh, only: &
   mesh_element
 use lattice, only: &
   lattice_damageMobility
 use material, only: &
   material_phase, &
   material_homog, &
   field_damage_type, &
   FIELD_DAMAGE_NONLOCAL_ID, &
   homogenization_Ngrains

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc
 
 field_getDamageMobility =0.0_pReal
                                                
 select case(field_damage_type(material_homog(ip,el)))                                                   
   case (FIELD_DAMAGE_NONLOCAL_ID)
     do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
       field_getDamageMobility = field_getDamageMobility + lattice_DamageMobility(material_phase(ipc,ip,el))
     enddo
      
 end select   

 field_getDamageMobility = field_getDamageMobility /homogenization_Ngrains(mesh_element(3,el))

end function field_getDamageMobility

!--------------------------------------------------------------------------------------------------
!> @brief Returns average diffusion tensor for vacancy field at each integration point 
!--------------------------------------------------------------------------------------------------
function field_getVacancyDiffusion33(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   material_homog, &
   field_vacancy_type, &
   FIELD_VACANCY_NONLOCAL_ID, &
   homogenization_Ngrains
 use crystallite, only: &
   crystallite_push33ToRef
 use constitutive, only: &
   constitutive_getVacancyDiffusion33

 implicit none
 real(pReal), dimension(3,3) :: field_getVacancyDiffusion33
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

 field_getVacancyDiffusion33 = 0.0_pReal
                                                
 select case(field_vacancy_type(material_homog(ip,el)))                                                   
   case (FIELD_VACANCY_NONLOCAL_ID)
     do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
      field_getVacancyDiffusion33 = field_getVacancyDiffusion33 + &
        crystallite_push33ToRef(ipc,ip,el, &
                                constitutive_getVacancyDiffusion33(ipc,ip,el))
     enddo
      
 end select   

 field_getVacancyDiffusion33 = field_getVacancyDiffusion33/ &
                               homogenization_Ngrains(mesh_element(3,el))

end function field_getVacancyDiffusion33

!--------------------------------------------------------------------------------------------------
!> @brief Returns average mobility for vacancy field at each integration point 
!--------------------------------------------------------------------------------------------------
function field_getVacancyMobility33(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   material_homog, &
   field_vacancy_type, &
   FIELD_VACANCY_NONLOCAL_ID, &
   homogenization_Ngrains
 use crystallite, only: &
   crystallite_push33ToRef
 use constitutive, only: &
   constitutive_getVacancyMobility33

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 real(pReal), dimension(3,3) :: &
   field_getVacancyMobility33
 integer(pInt) :: &
   ipc
   
 
 field_getVacancyMobility33 = 0.0_pReal
                                                
 select case(field_vacancy_type(material_homog(ip,el)))                                                   
   case (FIELD_VACANCY_NONLOCAL_ID)
     do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
       field_getVacancyMobility33 = field_getVacancyMobility33 + &
        crystallite_push33ToRef(ipc,ip,el, &
                                constitutive_getVacancyMobility33(ipc,ip,el))
     enddo
      
 end select   

 field_getVacancyMobility33 = field_getVacancyMobility33/ &
                              homogenization_Ngrains(mesh_element(3,el))

end function field_getVacancyMobility33

!--------------------------------------------------------------------------------------------------
!> @brief Returns average driving for vacancy chemical potential at each integration point 
!--------------------------------------------------------------------------------------------------
real(pReal) function field_getVacancyEnergy(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   material_homog, &
   field_vacancy_type, &
   FIELD_VACANCY_NONLOCAL_ID, &
   homogenization_Ngrains
 use constitutive, only: &
   constitutive_getVacancyEnergy

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc
   
 
 field_getVacancyEnergy = 0.0_pReal
                                                
 select case(field_vacancy_type(material_homog(ip,el)))                                                   
   case (FIELD_VACANCY_NONLOCAL_ID)
     do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
       field_getVacancyEnergy = field_getVacancyEnergy + &
         constitutive_getVacancyEnergy(ipc,ip,el)
     enddo
      
 end select   

 field_getVacancyEnergy = field_getVacancyEnergy/ &
                          homogenization_Ngrains(mesh_element(3,el))

end function field_getVacancyEnergy

!--------------------------------------------------------------------------------------------------
!> @brief ToDo
!--------------------------------------------------------------------------------------------------
real(pReal) function field_getLocalDamage(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   homogenization_Ngrains
 use constitutive, only: &
   constitutive_getLocalDamage

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

!--------------------------------------------------------------------------------------------------
! computing the damage value needed to be passed to field solver
 field_getLocalDamage =0.0_pReal
                                                
 do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
   field_getLocalDamage = field_getLocalDamage + constitutive_getLocalDamage(ipc,ip,el)
 enddo

 field_getLocalDamage = field_getLocalDamage/homogenization_Ngrains(mesh_element(3,el))

end function field_getLocalDamage

!--------------------------------------------------------------------------------------------------
!> @brief ToDo
!--------------------------------------------------------------------------------------------------
real(pReal) function field_getFieldDamage(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   homogenization_Ngrains
 use constitutive, only: &
   constitutive_getDamage

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

!--------------------------------------------------------------------------------------------------
! computing the damage value needed to be passed to field solver
 field_getFieldDamage = 0.0_pReal
                                                
 do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
   field_getFieldDamage = field_getFieldDamage + constitutive_getDamage(ipc,ip,el)
 enddo

 field_getFieldDamage = field_getFieldDamage/homogenization_Ngrains(mesh_element(3,el))

end function field_getFieldDamage

!--------------------------------------------------------------------------------------------------
!> @brief Sets the regularised damage value in field state
!--------------------------------------------------------------------------------------------------
subroutine field_putFieldDamage(ip,el,fieldDamageValue)  ! naming scheme
 use material, only: &
   fieldDamage, &
   material_homog, &
   mappingHomogenization, &
   field_damage_type, &
   FIELD_DAMAGE_NONLOCAL_ID

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el       
 real(pReal), intent(in) :: &
   fieldDamageValue   

 select case(field_damage_type(material_homog(ip,el)))                                                   
   case (FIELD_DAMAGE_NONLOCAL_ID)
    fieldDamage(material_homog(ip,el))% &
      field(1, mappingHomogenization(1,ip,el)) = fieldDamageValue 

 end select 

end subroutine field_putFieldDamage

!--------------------------------------------------------------------------------------------------
!> @brief ToDo
!--------------------------------------------------------------------------------------------------
real(pReal) function field_getLocalTemperature(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   homogenization_Ngrains
 use constitutive, only: &
   constitutive_getAdiabaticTemperature

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

 
 field_getLocalTemperature = 0.0_pReal
 do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
   field_getLocalTemperature = field_getLocalTemperature + &
                               constitutive_getAdiabaticTemperature(ipc,ip,el)                     ! array/function/subroutine which is faster
 enddo
 field_getLocalTemperature = field_getLocalTemperature/homogenization_Ngrains(mesh_element(3,el))

end function field_getLocalTemperature

!--------------------------------------------------------------------------------------------------
!> @brief Sets the regularised temperature value in field state
!--------------------------------------------------------------------------------------------------
subroutine field_putFieldTemperature(ip,el,fieldThermalValue) 
 use material, only: &
   material_homog, &
   fieldThermal, &
   mappingHomogenization, &
   field_thermal_type, &
   FIELD_THERMAL_nonlocal_ID

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el
 real(pReal), intent(in) :: &
   fieldThermalValue

 select case(field_thermal_type(material_homog(ip,el)))                                                   
   case (FIELD_THERMAL_nonlocal_ID)
     fieldThermal(material_homog(ip,el))% &
        field(1,mappingHomogenization(1,ip,el)) = fieldThermalValue 

 end select 

end subroutine field_putFieldTemperature

!--------------------------------------------------------------------------------------------------
!> @brief return heat generation rate
!--------------------------------------------------------------------------------------------------
real(pReal) function field_getHeatGeneration(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   homogenization_Ngrains
 use crystallite, only: &
   crystallite_Tstar_v, &
   crystallite_Lp
 use constitutive, only: &
   constitutive_getHeatGeneration

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc
 
 field_getHeatGeneration = 0.0_pReal
 do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
   field_getHeatGeneration = field_getHeatGeneration + &
                             constitutive_getHeatGeneration(crystallite_Tstar_v(1:6,ipc,ip,el), &
                                                            crystallite_Lp (1:3,1:3,ipc,ip,el), &
                                                            ipc,ip,el)                     
 enddo
 field_getHeatGeneration = field_getHeatGeneration/homogenization_Ngrains(mesh_element(3,el))

end function field_getHeatGeneration

!--------------------------------------------------------------------------------------------------
!> @brief ToDo
!--------------------------------------------------------------------------------------------------
real(pReal) function field_getLocalVacancyConcentration(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   homogenization_Ngrains
 use constitutive, only: &
   constitutive_getLocalVacancyConcentration

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el                                                                                               !< element number
 integer(pInt) :: &
   ipc

 
 field_getLocalVacancyConcentration = 0.0_pReal
 do ipc = 1, homogenization_Ngrains(mesh_element(3,el))
   field_getLocalVacancyConcentration = field_getLocalVacancyConcentration + &
                               constitutive_getLocalVacancyConcentration(ipc,ip,el)                     ! array/function/subroutine which is faster
 enddo
 field_getLocalVacancyConcentration = field_getLocalVacancyConcentration/ &
                                      homogenization_Ngrains(mesh_element(3,el))

end function field_getLocalVacancyConcentration

!--------------------------------------------------------------------------------------------------
!> @brief Sets the diffused vacancy concentration in field state
!--------------------------------------------------------------------------------------------------
subroutine field_putFieldVacancyConcentration(ip,el,fieldVacancyConcentration) 
 use material, only: &
   material_homog, &
   fieldVacancy, &
   mappingHomogenization, &
   field_vacancy_type, &
   FIELD_VACANCY_nonlocal_ID

 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point number
   el
 real(pReal), intent(in) :: &
   fieldVacancyConcentration

 select case(field_vacancy_type(material_homog(ip,el)))                                                   
   case (FIELD_VACANCY_nonlocal_ID)
     fieldVacancy(material_homog(ip,el))% &
        field(1,mappingHomogenization(1,ip,el)) = fieldVacancyConcentration 

 end select 

end subroutine field_putFieldVacancyConcentration

!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion. call only, 
!> if homogenization_sizePostResults(i,e) > 0 !!
!--------------------------------------------------------------------------------------------------
function homogenization_postResults(ip,el)
 use mesh, only: &
   mesh_element
 use material, only: &
   mappingHomogenization, &
   homogState, &
   homogenization_type, &
   HOMOGENIZATION_NONE_ID, &
   HOMOGENIZATION_ISOSTRAIN_ID, &
   HOMOGENIZATION_RGC_ID
 use homogenization_isostrain, only: &
   homogenization_isostrain_postResults
 use homogenization_RGC, only: &
   homogenization_RGC_postResults
 
 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point
   el                                                                                               !< element number
 real(pReal), dimension(homogState(mappingHomogenization(2,ip,el))%sizePostResults) :: &
   homogenization_postResults

 homogenization_postResults = 0.0_pReal
 chosenHomogenization: select case (homogenization_type(mesh_element(3,el)))
   case (HOMOGENIZATION_NONE_ID) chosenHomogenization

   case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization
     homogenization_postResults = homogenization_isostrain_postResults(&
                                  ip, &
                                  el, &
                                  materialpoint_P(1:3,1:3,ip,el), &
                                  materialpoint_F(1:3,1:3,ip,el))
   case (HOMOGENIZATION_RGC_ID) chosenHomogenization
     homogenization_postResults = homogenization_RGC_postResults(&
                                  ip, &
                                  el, &
                                  materialpoint_P(1:3,1:3,ip,el), &
                                  materialpoint_F(1:3,1:3,ip,el))
 end select chosenHomogenization

end function homogenization_postResults

!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion. call only, 
!> if homogenization_sizePostResults(i,e) > 0 !!
!--------------------------------------------------------------------------------------------------
function field_postResults(ip,el)
 use material, only: &
   mappingHomogenization, &
   fieldThermal, &
   fieldDamage, &
   fieldVacancy
 
 implicit none
 integer(pInt), intent(in) :: &
   ip, &                                                                                            !< integration point
   el                                                                                               !< element number
 real(pReal), dimension(field_sizePostResults(mappingHomogenization(2,ip,el))) :: &
   field_postResults
 integer(pInt) :: &
   c, homog, pos, o 

 field_postResults = 0.0_pReal
 homog = mappingHomogenization(2,ip,el)
 pos   = mappingHomogenization(1,ip,el)
 c = 0_pInt
 do o = 1_pInt,field_Noutput(homog)
   select case(field_outputID(o,homog))
     case (temperature_ID)
       field_postResults(c+1_pInt) = fieldThermal(homog)%field(1,pos)
       c = c + 1_pInt
     case (damage_ID)
       field_postResults(c+1_pInt) = fieldDamage(homog)%field(1,pos)
       c = c + 1_pInt
     case (vacancy_concentration_ID)
       field_postResults(c+1_pInt) = fieldVacancy(homog)%field(1,pos)
       c = c + 1_pInt
   end select
 enddo

end function field_postResults

end module homogenization