!-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Denny Tjahjanto, Max-Planck-Institut für Eisenforschung GmbH !> @brief homogenization manager, organizing deformation partitioning and stress homogenization !-------------------------------------------------------------------------------------------------- module homogenization use prec, only: & #ifdef FEM tOutputData, & #endif pInt, & pReal !-------------------------------------------------------------------------------------------------- ! General variables for the homogenization at a material point implicit none private real(pReal), dimension(:,:,:,:), allocatable, public :: & materialpoint_F0, & !< def grad of IP at start of FE increment materialpoint_F, & !< def grad of IP to be reached at end of FE increment materialpoint_P !< first P--K stress of IP real(pReal), dimension(:,:,:,:,:,:), allocatable, public :: & materialpoint_dPdF !< tangent of first P--K stress at IP #ifdef FEM type(tOutputData), dimension(:), allocatable, public :: & homogOutput type(tOutputData), dimension(:,:), allocatable, public :: & crystalliteOutput, & phaseOutput #else real(pReal), dimension(:,:,:), allocatable, public :: & materialpoint_results !< results array of material point #endif integer(pInt), public, protected :: & materialpoint_sizeResults, & homogenization_maxSizePostResults, & field_maxSizePostResults real(pReal), dimension(:,:,:,:), allocatable, private :: & materialpoint_subF0, & !< def grad of IP at beginning of homogenization increment materialpoint_subF !< def grad of IP to be reached at end of homog inc real(pReal), dimension(:,:), allocatable, private :: & materialpoint_subFrac, & materialpoint_subStep, & materialpoint_subdt integer(pInt), private :: & homogenization_maxSizeState logical, dimension(:,:), allocatable, private :: & materialpoint_requested, & materialpoint_converged logical, dimension(:,:,:), allocatable, private :: & materialpoint_doneAndHappy enum, bind(c) enumerator :: undefined_ID, & temperature_ID, & damage_ID, & vacancy_concentration_ID end enum integer(pInt), dimension(:), allocatable, public, protected :: & field_sizePostResults integer(pInt), dimension(:,:), allocatable, private :: & field_sizePostResult character(len=64), dimension(:,:), allocatable, private :: & field_output !< name of each post result output integer(pInt), dimension(:), allocatable, private :: & field_Noutput !< number of outputs per homog instance integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & field_outputID !< ID of each post result output public :: & homogenization_init, & materialpoint_stressAndItsTangent, & field_getLocalDamage, & field_getFieldDamage, & field_putFieldDamage, & field_getLocalTemperature, & field_putFieldTemperature, & field_getHeatGeneration, & field_getLocalVacancyConcentration, & field_putFieldVacancyConcentration, & field_getDamageMobility, & field_getDamageDiffusion33, & field_getThermalConductivity33, & field_getMassDensity, & field_getSpecificHeat, & field_getVacancyMobility33, & field_getVacancyDiffusion33, & field_getVacancyEnergy, & materialpoint_postResults, & field_postResults private :: & homogenization_partitionDeformation, & homogenization_updateState, & homogenization_averageStressAndItsTangent, & homogenization_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !-------------------------------------------------------------------------------------------------- subroutine homogenization_init() #ifdef HDF use hdf5, only: & HID_T use IO, only : & HDF5_mappingHomogenization #endif use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use math, only: & math_I3 use debug, only: & debug_level, & debug_homogenization, & debug_levelBasic, & debug_e, & debug_g use mesh, only: & mesh_maxNips, & mesh_NcpElems, & mesh_element, & FE_Nips, & FE_geomtype use lattice, only: & lattice_referenceTemperature use constitutive, only: & constitutive_maxSizePostResults, & constitutive_damage_maxSizePostResults, & constitutive_thermal_maxSizePostResults, & constitutive_vacancy_maxSizePostResults use crystallite, only: & #ifdef FEM crystallite_sizePostResults, & #endif crystallite_maxSizePostResults use material use homogenization_none use homogenization_isostrain use homogenization_RGC use IO use numerics, only: & worldrank implicit none integer(pInt), parameter :: FILEUNIT = 200_pInt integer(pInt) :: e,i,p,myInstance integer(pInt), dimension(:,:), pointer :: thisSize integer(pInt), dimension(:) , pointer :: thisNoutput character(len=64), dimension(:,:), pointer :: thisOutput character(len=32) :: outputName !< name of output, intermediate fix until HDF5 output is ready logical :: knownHomogenization #ifdef HDF integer(pInt), dimension(:,:), allocatable :: mapping integer(pInt), dimension(:), allocatable :: InstancePosition allocate(mapping(mesh_ncpelems,4),source=0_pInt) allocate(InstancePosition(material_Nhomogenization),source=0_pInt) #endif integer(pInt), parameter :: MAXNCHUNKS = 2_pInt integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions integer(pInt) :: section = 0_pInt character(len=65536) :: & tag = '', & line = '' !-------------------------------------------------------------------------------------------------- ! parse homogenization from config file if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present... call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file if (any(homogenization_type == HOMOGENIZATION_NONE_ID)) & call homogenization_none_init() if (any(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)) & call homogenization_isostrain_init(FILEUNIT) if (any(homogenization_type == HOMOGENIZATION_RGC_ID)) & call homogenization_RGC_init(FILEUNIT) close(FILEUNIT) !-------------------------------------------------------------------------------------------------- ! parse field from config file allocate(field_sizePostResults(material_Nhomogenization), source=0_pInt) allocate(field_sizePostResult(maxval(homogenization_Noutput),material_Nhomogenization), & source=0_pInt) allocate(field_Noutput(material_Nhomogenization), source=0_pInt) allocate(field_outputID(maxval(homogenization_Noutput),material_Nhomogenization), & source=undefined_ID) allocate(field_output(maxval(homogenization_Noutput),material_Nhomogenization)) field_output = '' if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present... call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file rewind(FILEUNIT) do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization)! wind forward to <homogenization> line = IO_read(FILEUNIT) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of homogenization part line = IO_read(FILEUNIT) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(FILEUNIT, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt cycle endif if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran positions = IO_stringPos(line,MAXNCHUNKS) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('(output)') select case(IO_lc(IO_stringValue(line,positions,2_pInt))) case('temperature') field_Noutput(section) = field_Noutput(section) + 1_pInt field_outputID(field_Noutput(section),section) = temperature_ID field_sizePostResult(field_Noutput(section),section) = 1_pInt field_sizePostResults(section) = field_sizePostResults(section) + 1_pInt field_output(field_Noutput(section),section) = IO_lc(IO_stringValue(line,positions,2_pInt)) case('damage') field_Noutput(section) = field_Noutput(section) + 1_pInt field_outputID(field_Noutput(section),section) = damage_ID field_sizePostResult(field_Noutput(section),section) = 1_pInt field_sizePostResults(section) = field_sizePostResults(section) + 1_pInt field_output(field_Noutput(section),section) = IO_lc(IO_stringValue(line,positions,2_pInt)) case('vacancy_concentration') field_Noutput(section) = field_Noutput(section) + 1_pInt field_outputID(field_Noutput(section),section) = vacancy_concentration_ID field_sizePostResult(field_Noutput(section),section) = 1_pInt field_sizePostResults(section) = field_sizePostResults(section) + 1_pInt field_output(field_Noutput(section),section) = IO_lc(IO_stringValue(line,positions,2_pInt)) end select end select endif enddo parsingFile close(FILEUNIT) !-------------------------------------------------------------------------------------------------- ! write description file for homogenization output if (worldrank == 0_pInt) then call IO_write_jobFile(FILEUNIT,'outputHomogenization') do p = 1,material_Nhomogenization i = homogenization_typeInstance(p) ! which instance of this homogenization type knownHomogenization = .true. ! assume valid select case(homogenization_type(p)) ! split per homogenization type case (HOMOGENIZATION_NONE_ID) outputName = HOMOGENIZATION_NONE_label thisNoutput => null() thisOutput => null() thisSize => null() case (HOMOGENIZATION_ISOSTRAIN_ID) outputName = HOMOGENIZATION_ISOSTRAIN_label thisNoutput => homogenization_isostrain_Noutput thisOutput => homogenization_isostrain_output thisSize => homogenization_isostrain_sizePostResult case (HOMOGENIZATION_RGC_ID) outputName = HOMOGENIZATION_RGC_label thisNoutput => homogenization_RGC_Noutput thisOutput => homogenization_RGC_output thisSize => homogenization_RGC_sizePostResult case default knownHomogenization = .false. end select write(FILEUNIT,'(/,a,/)') '['//trim(homogenization_name(p))//']' if (knownHomogenization) then write(FILEUNIT,'(a)') '(type)'//char(9)//trim(outputName) write(FILEUNIT,'(a,i4)') '(ngrains)'//char(9),homogenization_Ngrains(p) if (homogenization_type(p) /= HOMOGENIZATION_NONE_ID) then do e = 1,thisNoutput(i) write(FILEUNIT,'(a,i4)') trim(thisOutput(e,i))//char(9),thisSize(e,i) enddo endif endif do e = 1_pInt,field_Noutput(p) write(FILEUNIT,'(a,i4)') trim(field_output(e,p))//char(9),field_sizePostResult(e,p) enddo enddo close(FILEUNIT) endif !-------------------------------------------------------------------------------------------------- ! allocate and initialize global variables allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) materialpoint_F0 = spread(spread(math_I3,3,mesh_maxNips),4,mesh_NcpElems) ! initialize to identity allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) materialpoint_F = materialpoint_F0 ! initialize to identity allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems), source=.false.) allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems), source=.true.) allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems), source=.true.) !-------------------------------------------------------------------------------------------------- ! allocate and initialize global state and postresutls variables elementLooping: do e = 1,mesh_NcpElems myInstance = homogenization_typeInstance(mesh_element(3,e)) IpLooping: do i = 1,FE_Nips(FE_geomtype(mesh_element(2,e))) #ifdef HDF InstancePosition(myInstance) = InstancePosition(myInstance)+1_pInt mapping(e,1:4) = [instancePosition(myinstance),myinstance,e,i] #endif enddo IpLooping enddo elementLooping #ifdef HDF call HDF5_mappingHomogenization(mapping) #endif homogenization_maxSizePostResults = 0_pInt field_maxSizePostResults = 0_pInt do p = 1,material_Nhomogenization homogenization_maxSizePostResults = max(homogenization_maxSizePostResults,homogState(p)%sizePostResults) field_maxSizePostResults = max(field_maxSizePostResults,field_sizePostResults(p)) enddo #ifdef FEM allocate(homogOutput (material_Nhomogenization )) allocate(crystalliteOutput(material_Ncrystallite, homogenization_maxNgrains)) allocate(phaseOutput (material_Nphase, homogenization_maxNgrains)) do p = 1, material_Nhomogenization homogOutput(p)%sizeResults = homogState(p)%sizePostResults + field_sizePostResults(p) homogOutput(p)%sizeIpCells = count(material_homog==p) allocate(homogOutput(p)%output(homogOutput(p)%sizeResults,homogOutput(p)%sizeIpCells)) enddo do p = 1, material_Ncrystallite; do e = 1, homogenization_maxNgrains crystalliteOutput(p,e)%sizeResults = crystallite_sizePostResults(p) crystalliteOutput(p,e)%sizeIpCells = count(microstructure_crystallite(mesh_element(4,:)) == p .and. & homogenization_Ngrains (mesh_element(3,:)) >= e)*mesh_maxNips allocate(crystalliteOutput(p,e)%output(crystalliteOutput(p,e)%sizeResults,crystalliteOutput(p,e)%sizeIpCells)) enddo; enddo do p = 1, material_Nphase; do e = 1, homogenization_maxNgrains phaseOutput(p,e)%sizeResults = plasticState(p)%sizePostResults + & damageState (p)%sizePostResults + & thermalState(p)%sizePostResults + & vacancyState(p)%sizePostResults phaseOutput(p,e)%sizeIpCells = count(material_phase(e,:,:) == p) allocate(phaseOutput(p,e)%output(phaseOutput(p,e)%sizeResults,phaseOutput(p,e)%sizeIpCells)) enddo; enddo #else materialpoint_sizeResults = 1 & ! grain count + 1 + homogenization_maxSizePostResults & ! homogSize & homogResult + field_maxSizePostResults & ! field size & field result + homogenization_maxNgrains * (1 + crystallite_maxSizePostResults & ! crystallite size & crystallite results + 1 + constitutive_maxSizePostResults & ! constitutive size & constitutive results + constitutive_damage_maxSizePostResults & + constitutive_thermal_maxSizePostResults & + constitutive_vacancy_maxSizePostResults) allocate(materialpoint_results(materialpoint_sizeResults,mesh_maxNips,mesh_NcpElems)) #endif mainProcess: if (worldrank == 0) then write(6,'(/,a)') ' <<<+- homogenization init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" endif mainProcess if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then #ifdef TODO write(6,'(a32,1x,7(i8,1x))') 'homogenization_state0: ', shape(homogenization_state0) write(6,'(a32,1x,7(i8,1x))') 'homogenization_subState0: ', shape(homogenization_subState0) write(6,'(a32,1x,7(i8,1x))') 'homogenization_state: ', shape(homogenization_state) #endif write(6,'(a32,1x,7(i8,1x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F0: ', shape(materialpoint_F0) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_F: ', shape(materialpoint_F) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF0: ', shape(materialpoint_subF0) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subF: ', shape(materialpoint_subF) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_P: ', shape(materialpoint_P) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subStep: ', shape(materialpoint_subStep) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_subdt: ', shape(materialpoint_subdt) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_requested: ', shape(materialpoint_requested) write(6,'(a32,1x,7(i8,1x))') 'materialpoint_converged: ', shape(materialpoint_converged) write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy) #ifndef FEM write(6,'(a32,1x,7(i8,1x),/)') 'materialpoint_results: ', shape(materialpoint_results) #endif write(6,'(a32,1x,7(i8,1x))') 'maxSizePostResults: ', homogenization_maxSizePostResults endif flush(6) if (debug_g < 1 .or. debug_g > homogenization_Ngrains(mesh_element(3,debug_e))) & call IO_error(602_pInt,ext_msg='component (grain)') end subroutine homogenization_init !-------------------------------------------------------------------------------------------------- !> @brief parallelized calculation of stress and corresponding tangent at material points !-------------------------------------------------------------------------------------------------- subroutine materialpoint_stressAndItsTangent(updateJaco,dt) use numerics, only: & subStepMinHomog, & subStepSizeHomog, & stepIncreaseHomog, & nHomog, & nMPstate use math, only: & math_transpose33 use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP, & terminallyIll use mesh, only: & mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: & plasticState, & damageState, & thermalState, & vacancyState, & homogState, & mappingHomogenization, & mappingConstitutive, & homogenization_Ngrains use crystallite, only: & crystallite_F0, & crystallite_Fp0, & crystallite_Fp, & crystallite_Fi0, & crystallite_Fi, & crystallite_Lp0, & crystallite_Lp, & crystallite_Li0, & crystallite_Li, & crystallite_dPdF, & crystallite_dPdF0, & crystallite_Tstar0_v, & crystallite_Tstar_v, & crystallite_partionedF0, & crystallite_partionedF, & crystallite_partionedFp0, & crystallite_partionedLp0, & crystallite_partionedFi0, & crystallite_partionedLi0, & crystallite_partioneddPdF0, & crystallite_partionedTstar0_v, & crystallite_dt, & crystallite_requested, & crystallite_converged, & crystallite_stressAndItsTangent, & crystallite_orientations use debug, only: & debug_level, & debug_homogenization, & debug_levelBasic, & debug_levelSelective, & debug_e, & debug_i, & debug_MaterialpointLoopDistribution, & debug_MaterialpointStateLoopDistribution use math, only: & math_pDecomposition implicit none real(pReal), intent(in) :: dt !< time increment logical, intent(in) :: updateJaco !< initiating Jacobian update integer(pInt) :: & NiterationHomog, & NiterationMPstate, & g, & !< grain number i, & !< integration point number e, & !< element number myNgrains !-------------------------------------------------------------------------------------------------- ! initialize to starting condition if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(/a,i5,1x,i2)') '<< HOMOG >> Material Point start at el ip ', debug_e, debug_i write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F0', & math_transpose33(materialpoint_F0(1:3,1:3,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< HOMOG >> F', & math_transpose33(materialpoint_F(1:3,1:3,debug_i,debug_e)) !$OMP END CRITICAL (write2out) endif !-------------------------------------------------------------------------------------------------- ! initialize restoration points of ... do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains) plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = & plasticState(mappingConstitutive(2,g,i,e))%state0( :,mappingConstitutive(1,g,i,e)) damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = & damageState( mappingConstitutive(2,g,i,e))%state0( :,mappingConstitutive(1,g,i,e)) thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = & thermalState(mappingConstitutive(2,g,i,e))%state0( :,mappingConstitutive(1,g,i,e)) vacancyState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = & vacancyState(mappingConstitutive(2,g,i,e))%state0( :,mappingConstitutive(1,g,i,e)) crystallite_partionedFp0(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) ! ...plastic def grads crystallite_partionedLp0(1:3,1:3,g,i,e) = crystallite_Lp0(1:3,1:3,g,i,e) ! ...plastic velocity grads crystallite_partionedFi0(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e) ! ...intermediate def grads crystallite_partionedLi0(1:3,1:3,g,i,e) = crystallite_Li0(1:3,1:3,g,i,e) ! ...intermediate velocity grads crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness crystallite_partionedF0(1:3,1:3,g,i,e) = crystallite_F0(1:3,1:3,g,i,e) ! ...def grads crystallite_partionedTstar0_v(1:6,g,i,e) = crystallite_Tstar0_v(1:6,g,i,e) ! ...2nd PK stress endforall forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e)) materialpoint_subF0(1:3,1:3,i,e) = materialpoint_F0(1:3,1:3,i,e) ! ...def grad materialpoint_subFrac(i,e) = 0.0_pReal materialpoint_subStep(i,e) = 1.0_pReal/subStepSizeHomog ! <<added to adopt flexibility in cutback size>> materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size materialpoint_requested(i,e) = .true. ! everybody requires calculation endforall forall(i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), & homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) & homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = & homogState(mappingHomogenization(2,i,e))%State0( :,mappingHomogenization(1,i,e)) ! ...internal homogenization state enddo NiterationHomog = 0_pInt cutBackLooping: do while (.not. terminallyIll .and. & any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinHomog)) !$OMP PARALLEL DO PRIVATE(myNgrains) elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) IpLooping1: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) converged: if ( materialpoint_converged(i,e) ) then #ifndef _OPENMP if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i) & .or. .not. iand(debug_level(debug_homogenization),debug_levelSelective) /= 0_pInt)) then write(6,'(a,1x,f12.8,1x,a,1x,f12.8,1x,a,i8,1x,i2/)') '<< HOMOG >> winding forward from', & materialpoint_subFrac(i,e), 'to current materialpoint_subFrac', & materialpoint_subFrac(i,e)+materialpoint_subStep(i,e),'in materialpoint_stressAndItsTangent at el ip',e,i endif #endif !-------------------------------------------------------------------------------------------------- ! calculate new subStep and new subFrac materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e) !$OMP FLUSH(materialpoint_subFrac) materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), & stepIncreaseHomog*materialpoint_subStep(i,e)) ! introduce flexibility for step increase/acceleration !$OMP FLUSH(materialpoint_subStep) steppingNeeded: if (materialpoint_subStep(i,e) > subStepMinHomog) then ! wind forward grain starting point of... crystallite_partionedF0(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedF(1:3,1:3,1:myNgrains,i,e) ! ...def grads crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fp(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) = crystallite_Lp(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Fi(1:3,1:3,1:myNgrains,i,e) ! ...intermediate def grads crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) = crystallite_Li(1:3,1:3,1:myNgrains,i,e) ! ...intermediate velocity grads crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e)! ...stiffness crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) = crystallite_Tstar_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress forall (g = 1:myNgrains) plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = & plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = & damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = & thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) vacancyState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) = & vacancyState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) end forall if (homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) & homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) = & homogState(mappingHomogenization(2,i,e))%state( :,mappingHomogenization(1,i,e)) materialpoint_subF0(1:3,1:3,i,e) = materialpoint_subF(1:3,1:3,i,e) ! ...def grad !$OMP FLUSH(materialpoint_subF0) elseif (materialpoint_requested(i,e)) then steppingNeeded ! already at final time (??) if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionHomog) debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) = & debug_MaterialpointLoopDistribution(min(nHomog+1,NiterationHomog)) + 1 !$OMP END CRITICAL (distributionHomog) endif endif steppingNeeded else converged if ( (myNgrains == 1_pInt .and. materialpoint_subStep(i,e) <= 1.0 ) .or. & ! single grain already tried internal subStepping in crystallite subStepSizeHomog * materialpoint_subStep(i,e) <= subStepMinHomog ) then ! would require too small subStep ! cutback makes no sense !$OMP FLUSH(terminallyIll) if (.not. terminallyIll) then ! so first signals terminally ill... !$OMP CRITICAL (write2out) write(6,*) 'Integration point ', i,' at element ', e, ' terminally ill' !$OMP END CRITICAL (write2out) endif !$OMP CRITICAL (setTerminallyIll) terminallyIll = .true. ! ...and kills all others !$OMP END CRITICAL (setTerminallyIll) else ! cutback makes sense materialpoint_subStep(i,e) = subStepSizeHomog * materialpoint_subStep(i,e) ! crystallite had severe trouble, so do a significant cutback !$OMP FLUSH(materialpoint_subStep) #ifndef _OPENMP if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i) & .or. .not. iand(debug_level(debug_homogenization), debug_levelSelective) /= 0_pInt)) then write(6,'(a,1x,f12.8,a,i8,1x,i2/)') & '<< HOMOG >> cutback step in materialpoint_stressAndItsTangent with new materialpoint_subStep:',& materialpoint_subStep(i,e),' at el ip',e,i endif #endif !-------------------------------------------------------------------------------------------------- ! restore... crystallite_Fp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic def grads crystallite_Lp(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLp0(1:3,1:3,1:myNgrains,i,e) ! ...plastic velocity grads crystallite_Fi(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedFi0(1:3,1:3,1:myNgrains,i,e) ! ...intermediate def grads crystallite_Li(1:3,1:3,1:myNgrains,i,e) = crystallite_partionedLi0(1:3,1:3,1:myNgrains,i,e) ! ...intermediate velocity grads crystallite_dPdF(1:3,1:3,1:3,1:3,1:myNgrains,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,1:myNgrains,i,e) ! ...stiffness crystallite_Tstar_v(1:6,1:myNgrains,i,e) = crystallite_partionedTstar0_v(1:6,1:myNgrains,i,e) ! ...2nd PK stress forall (g = 1:myNgrains) plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = & plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = & damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = & thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) vacancyState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = & vacancyState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e)) end forall if (homogState(mappingHomogenization(2,i,e))%sizeState > 0_pInt) & homogState(mappingHomogenization(2,i,e))%state( :,mappingHomogenization(1,i,e)) = & homogState(mappingHomogenization(2,i,e))%subState0(:,mappingHomogenization(1,i,e)) endif endif converged if (materialpoint_subStep(i,e) > subStepMinHomog) then materialpoint_requested(i,e) = .true. materialpoint_subF(1:3,1:3,i,e) = materialpoint_subF0(1:3,1:3,i,e) + & materialpoint_subStep(i,e) * (materialpoint_F(1:3,1:3,i,e) - materialpoint_F0(1:3,1:3,i,e)) materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt materialpoint_doneAndHappy(1:2,i,e) = [.false.,.true.] endif enddo IpLooping1 enddo elementLooping1 !$OMP END PARALLEL DO NiterationMPstate = 0_pInt convergenceLooping: do while (.not. terminallyIll .and. & any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) & .and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) & ) .and. & NiterationMPstate < nMPstate) NiterationMPstate = NiterationMPstate + 1 !-------------------------------------------------------------------------------------------------- ! deformation partitioning ! based on materialpoint_subF0,.._subF,crystallite_partionedF0, and homogenization_state, ! results in crystallite_partionedF !$OMP PARALLEL DO PRIVATE(myNgrains) elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) IpLooping2: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if ( materialpoint_requested(i,e) .and. & ! process requested but... .not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents else crystallite_requested(1:myNgrains,i,e) = .false. ! calculation for constituents not required anymore endif enddo IpLooping2 enddo elementLooping2 !$OMP END PARALLEL DO !-------------------------------------------------------------------------------------------------- ! crystallite integration ! based on crystallite_partionedF0,.._partionedF ! incrementing by crystallite_dt call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains !-------------------------------------------------------------------------------------------------- ! state update !$OMP PARALLEL DO elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2) IpLooping3: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) if ( materialpoint_requested(i,e) .and. & .not. materialpoint_doneAndHappy(1,i,e)) then if (.not. all(crystallite_converged(:,i,e))) then materialpoint_doneAndHappy(1:2,i,e) = [.true.,.false.] materialpoint_converged(i,e) = .false. else materialpoint_doneAndHappy(1:2,i,e) = homogenization_updateState(i,e) materialpoint_converged(i,e) = all(homogenization_updateState(i,e)) ! converged if done and happy endif !$OMP FLUSH(materialpoint_converged) if (materialpoint_converged(i,e)) then if (iand(debug_level(debug_homogenization), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionMPState) debug_MaterialpointStateLoopdistribution(NiterationMPstate) = & debug_MaterialpointStateLoopdistribution(NiterationMPstate) + 1_pInt !$OMP END CRITICAL (distributionMPState) endif endif endif enddo IpLooping3 enddo elementLooping3 !$OMP END PARALLEL DO enddo convergenceLooping NiterationHomog = NiterationHomog + 1_pInt enddo cutBackLooping if (.not. terminallyIll ) then call crystallite_orientations() ! calculate crystal orientations !$OMP PARALLEL DO elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2) IpLooping4: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) call homogenization_averageStressAndItsTangent(i,e) enddo IpLooping4 enddo elementLooping4 !$OMP END PARALLEL DO else !$OMP CRITICAL (write2out) write(6,'(/,a,/)') '<< HOMOG >> Material Point terminally ill' !$OMP END CRITICAL (write2out) endif end subroutine materialpoint_stressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief parallelized calculation of result array at material points !-------------------------------------------------------------------------------------------------- subroutine materialpoint_postResults use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP use mesh, only: & #ifdef FEM mesh_maxNips, & #endif mesh_element use material, only: & mappingHomogenization, & #ifdef FEM mappingConstitutive, & homogenization_maxNgrains, & material_Ncrystallite, & material_Nphase, & #endif homogState, & plasticState, & damageState, & thermalState, & vacancyState, & material_phase, & homogenization_Ngrains, & microstructure_crystallite use constitutive, only: & #ifdef FEM constitutive_maxSizePostResults, & constitutive_damage_maxSizePostResults, & constitutive_thermal_maxSizePostResults, & constitutive_vacancy_maxSizePostResults, & #endif constitutive_postResults use crystallite, only: & #ifdef FEM crystallite_maxSizePostResults, & #endif crystallite_sizePostResults, & crystallite_postResults implicit none integer(pInt) :: & thePos, & theSize, & myNgrains, & myCrystallite, & g, & !< grain number i, & !< integration point number e !< element number #ifdef FEM integer(pInt) :: & myHomog, & myPhase, & crystalliteCtr(material_Ncrystallite, homogenization_maxNgrains), & phaseCtr (material_Nphase, homogenization_maxNgrains) real(pReal), dimension(1+crystallite_maxSizePostResults + & 1+constitutive_maxSizePostResults + & constitutive_damage_maxSizePostResults + & constitutive_thermal_maxSizePostResults + & constitutive_vacancy_maxSizePostResults) :: & crystalliteResults crystalliteCtr = 0_pInt; phaseCtr = 0_pInt elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) myCrystallite = microstructure_crystallite(mesh_element(4,e)) IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) myHomog = mappingHomogenization(2,i,e) thePos = mappingHomogenization(1,i,e) homogOutput(myHomog)%output(1: & homogState(myHomog)%sizePostResults, & thePos) = homogenization_postResults(i,e) homogOutput(myHomog)%output(homogState(myHomog)%sizePostResults+1: & homogState(myHomog)%sizePostResults+field_sizePostResults(myHomog), & thePos) = field_postResults(i,e) grainLooping :do g = 1,myNgrains myPhase = mappingConstitutive(2,g,i,e) crystalliteResults(1:1+crystallite_sizePostResults(myCrystallite) + & 1+plasticState(myPhase)%sizePostResults + & damageState (myPhase)%sizePostResults + & thermalState(myPhase)%sizePostResults + & vacancyState(myPhase)%sizePostResults) = crystallite_postResults(g,i,e) if (microstructure_crystallite(mesh_element(4,e)) == myCrystallite .and. & homogenization_Ngrains (mesh_element(3,e)) >= g) then crystalliteCtr(myCrystallite,g) = crystalliteCtr(myCrystallite,g) + 1_pInt crystalliteOutput(myCrystallite,g)% & output(1:crystalliteOutput(myCrystallite,g)%sizeResults,crystalliteCtr(myCrystallite,g)) = & crystalliteResults(2:1+crystallite_sizePostResults(myCrystallite)) endif if (material_phase(g,i,e) == myPhase) then phaseCtr(myPhase,g) = phaseCtr(myPhase,g) + 1_pInt phaseOutput(myPhase,g)% & output(1:phaseOutput(myPhase,g)%sizeResults,phaseCtr(myPhase,g)) = & crystalliteResults(3 + crystallite_sizePostResults(myCrystallite): & plasticState(myphase)%sizePostResults + & damageState (myphase)%sizePostResults + & thermalState(myphase)%sizePostResults + & vacancyState(myphase)%sizePostResults) endif enddo grainLooping enddo IpLooping enddo elementLooping #else !$OMP PARALLEL DO PRIVATE(myNgrains,myCrystallite,thePos,theSize) elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) myCrystallite = microstructure_crystallite(mesh_element(4,e)) IpLooping: do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) thePos = 0_pInt theSize = homogState(mappingHomogenization(2,i,e))%sizePostResults materialpoint_results(thePos+1,i,e) = real(theSize,pReal) ! tell size of homogenization results thePos = thePos + 1_pInt if (theSize > 0_pInt) then ! any homogenization results to mention? materialpoint_results(thePos+1:thePos+theSize,i,e) = homogenization_postResults(i,e) ! tell homogenization results thePos = thePos + theSize endif theSize = field_sizePostResults(mappingHomogenization(2,i,e)) if (theSize > 0_pInt) then ! any homogenization results to mention? materialpoint_results(thePos+1:thePos+theSize,i,e) = field_postResults(i,e) ! tell field results thePos = thePos + theSize endif materialpoint_results(thePos+1,i,e) = real(myNgrains,pReal) ! tell number of grains at materialpoint thePos = thePos + 1_pInt grainLooping :do g = 1,myNgrains theSize = 1 + crystallite_sizePostResults(myCrystallite) + & 1 + plasticState(material_phase(g,i,e))%sizePostResults + & !ToDo damageState(material_phase(g,i,e))%sizePostResults + & thermalState(material_phase(g,i,e))%sizePostResults + & vacancyState(material_phase(g,i,e))%sizePostResults materialpoint_results(thePos+1:thePos+theSize,i,e) = crystallite_postResults(g,i,e) ! tell crystallite results thePos = thePos + theSize enddo grainLooping enddo IpLooping enddo elementLooping !$OMP END PARALLEL DO #endif end subroutine materialpoint_postResults !-------------------------------------------------------------------------------------------------- !> @brief partition material point def grad onto constituents !-------------------------------------------------------------------------------------------------- subroutine homogenization_partitionDeformation(ip,el) use mesh, only: & mesh_element use material, only: & homogenization_type, & homogenization_maxNgrains, & HOMOGENIZATION_NONE_ID, & HOMOGENIZATION_ISOSTRAIN_ID, & HOMOGENIZATION_RGC_ID use crystallite, only: & crystallite_partionedF0, & crystallite_partionedF use homogenization_isostrain, only: & homogenization_isostrain_partitionDeformation use homogenization_RGC, only: & homogenization_RGC_partitionDeformation implicit none integer(pInt), intent(in) :: & ip, & !< integration point el !< element number chosenHomogenization: select case(homogenization_type(mesh_element(3,el))) case (HOMOGENIZATION_NONE_ID) chosenHomogenization crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el) = 0.0_pReal crystallite_partionedF(1:3,1:3,1:1,ip,el) = & spread(materialpoint_subF(1:3,1:3,ip,el),3,1) case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization call homogenization_isostrain_partitionDeformation(& crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), & materialpoint_subF(1:3,1:3,ip,el),& el) case (HOMOGENIZATION_RGC_ID) chosenHomogenization call homogenization_RGC_partitionDeformation(& crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), & materialpoint_subF(1:3,1:3,ip,el),& ip, & el) end select chosenHomogenization end subroutine homogenization_partitionDeformation !-------------------------------------------------------------------------------------------------- !> @brief update the internal state of the homogenization scheme and tell whether "done" and !> "happy" with result !-------------------------------------------------------------------------------------------------- function homogenization_updateState(ip,el) use mesh, only: & mesh_element use material, only: & homogenization_type, & homogenization_maxNgrains, & HOMOGENIZATION_RGC_ID use crystallite, only: & crystallite_P, & crystallite_dPdF, & crystallite_partionedF,& crystallite_partionedF0 use homogenization_RGC, only: & homogenization_RGC_updateState implicit none integer(pInt), intent(in) :: & ip, & !< integration point el !< element number logical, dimension(2) :: homogenization_updateState chosenHomogenization: select case(homogenization_type(mesh_element(3,el))) case (HOMOGENIZATION_RGC_ID) chosenHomogenization homogenization_updateState = & homogenization_RGC_updateState(crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_partionedF(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_partionedF0(1:3,1:3,1:homogenization_maxNgrains,ip,el),& materialpoint_subF(1:3,1:3,ip,el),& materialpoint_subdt(ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), & ip, & el) case default chosenHomogenization homogenization_updateState = .true. end select chosenHomogenization end function homogenization_updateState !-------------------------------------------------------------------------------------------------- !> @brief derive average stress and stiffness from constituent quantities !-------------------------------------------------------------------------------------------------- subroutine homogenization_averageStressAndItsTangent(ip,el) use mesh, only: & mesh_element use material, only: & homogenization_type, & homogenization_maxNgrains, & HOMOGENIZATION_NONE_ID, & HOMOGENIZATION_ISOSTRAIN_ID, & HOMOGENIZATION_RGC_ID use crystallite, only: & crystallite_P,crystallite_dPdF use homogenization_isostrain, only: & homogenization_isostrain_averageStressAndItsTangent use homogenization_RGC, only: & homogenization_RGC_averageStressAndItsTangent implicit none integer(pInt), intent(in) :: & ip, & !< integration point el !< element number chosenHomogenization: select case(homogenization_type(mesh_element(3,el))) case (HOMOGENIZATION_NONE_ID) chosenHomogenization materialpoint_P(1:3,1:3,ip,el) = sum(crystallite_P(1:3,1:3,1:1,ip,el),3) materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el) & = sum(crystallite_dPdF(1:3,1:3,1:3,1:3,1:1,ip,el),5) case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization call homogenization_isostrain_averageStressAndItsTangent(& materialpoint_P(1:3,1:3,ip,el), & materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), & el) case (HOMOGENIZATION_RGC_ID) chosenHomogenization call homogenization_RGC_averageStressAndItsTangent(& materialpoint_P(1:3,1:3,ip,el), & materialpoint_dPdF(1:3,1:3,1:3,1:3,ip,el),& crystallite_P(1:3,1:3,1:homogenization_maxNgrains,ip,el), & crystallite_dPdF(1:3,1:3,1:3,1:3,1:homogenization_maxNgrains,ip,el), & el) end select chosenHomogenization end subroutine homogenization_averageStressAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief Returns average specific heat at each integration point !-------------------------------------------------------------------------------------------------- function field_getSpecificHeat(ip,el) use mesh, only: & mesh_element use lattice, only: & lattice_specificHeat use material, only: & material_phase, & material_homog, & field_thermal_type, & FIELD_THERMAL_local_ID, & FIELD_THERMAL_nonlocal_ID, & homogenization_Ngrains implicit none real(pReal) :: field_getSpecificHeat integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getSpecificHeat =0.0_pReal select case(field_thermal_type(material_homog(ip,el))) case (FIELD_THERMAL_local_ID) field_getSpecificHeat = 0.0_pReal case (FIELD_THERMAL_nonlocal_ID) do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getSpecificHeat = field_getSpecificHeat + lattice_specificHeat(material_phase(ipc,ip,el)) enddo end select field_getSpecificHeat = field_getSpecificHeat /homogenization_Ngrains(mesh_element(3,el)) end function field_getSpecificHeat !-------------------------------------------------------------------------------------------------- !> @brief Returns average mass density at each integration point !-------------------------------------------------------------------------------------------------- function field_getMassDensity(ip,el) use mesh, only: & mesh_element use lattice, only: & lattice_massDensity use material, only: & material_phase, & material_homog, & field_thermal_type, & FIELD_THERMAL_local_ID, & FIELD_THERMAL_nonlocal_ID, & homogenization_Ngrains implicit none real(pReal) :: field_getMassDensity integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getMassDensity =0.0_pReal select case(field_thermal_type(material_homog(ip,el))) case (FIELD_THERMAL_local_ID) field_getMassDensity = 0.0_pReal case (FIELD_THERMAL_nonlocal_ID) do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getMassDensity = field_getMassDensity + lattice_massDensity(material_phase(ipc,ip,el)) enddo end select field_getMassDensity = field_getMassDensity /homogenization_Ngrains(mesh_element(3,el)) end function field_getMassDensity !------------------------------------------------------------------------------------------- !> @brief Returns average conductivity tensor for thermal field at each integration point !------------------------------------------------------------------------------------------- function field_getThermalConductivity33(ip,el) use mesh, only: & mesh_element use lattice, only: & lattice_thermalConductivity33 use material, only: & material_phase, & material_homog, & field_thermal_type, & FIELD_THERMAL_nonlocal_ID, & homogenization_Ngrains use crystallite, only: & crystallite_push33ToRef implicit none real(pReal), dimension(3,3) :: field_getThermalConductivity33 integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getThermalConductivity33 =0.0_pReal select case(field_thermal_type(material_homog(ip,el))) case (FIELD_THERMAL_nonlocal_ID) do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getThermalConductivity33 = field_getThermalConductivity33 + & crystallite_push33ToRef(ipc,ip,el,lattice_thermalConductivity33(:,:,material_phase(ipc,ip,el))) enddo end select field_getThermalConductivity33 = field_getThermalConductivity33 /homogenization_Ngrains(mesh_element(3,el)) end function field_getThermalConductivity33 !-------------------------------------------------------------------------------------------------- !> @brief Returns average diffusion tensor for damage field at each integration point !-------------------------------------------------------------------------------------------------- function field_getDamageDiffusion33(ip,el) use mesh, only: & mesh_element use material, only: & material_homog, & field_damage_type, & FIELD_DAMAGE_NONLOCAL_ID, & homogenization_Ngrains use crystallite, only: & crystallite_push33ToRef use constitutive, only: & constitutive_getDamageDiffusion33 implicit none real(pReal), dimension(3,3) :: field_getDamageDiffusion33 integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getDamageDiffusion33 =0.0_pReal select case(field_damage_type(material_homog(ip,el))) case (FIELD_DAMAGE_NONLOCAL_ID) do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getDamageDiffusion33 = field_getDamageDiffusion33 + & crystallite_push33ToRef(ipc,ip,el,constitutive_getDamageDiffusion33(ipc,ip,el)) enddo end select field_getDamageDiffusion33 = field_getDamageDiffusion33 /homogenization_Ngrains(mesh_element(3,el)) end function field_getDamageDiffusion33 !-------------------------------------------------------------------------------------------------- !> @brief Returns average mobility for damage field at each integration point !-------------------------------------------------------------------------------------------------- real(pReal) function field_getDamageMobility(ip,el) use mesh, only: & mesh_element use lattice, only: & lattice_damageMobility use material, only: & material_phase, & material_homog, & field_damage_type, & FIELD_DAMAGE_NONLOCAL_ID, & homogenization_Ngrains implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getDamageMobility =0.0_pReal select case(field_damage_type(material_homog(ip,el))) case (FIELD_DAMAGE_NONLOCAL_ID) do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getDamageMobility = field_getDamageMobility + lattice_DamageMobility(material_phase(ipc,ip,el)) enddo end select field_getDamageMobility = field_getDamageMobility /homogenization_Ngrains(mesh_element(3,el)) end function field_getDamageMobility !-------------------------------------------------------------------------------------------------- !> @brief Returns average diffusion tensor for vacancy field at each integration point !-------------------------------------------------------------------------------------------------- function field_getVacancyDiffusion33(ip,el) use mesh, only: & mesh_element use material, only: & material_homog, & field_vacancy_type, & FIELD_VACANCY_NONLOCAL_ID, & homogenization_Ngrains use crystallite, only: & crystallite_push33ToRef use constitutive, only: & constitutive_getVacancyDiffusion33 implicit none real(pReal), dimension(3,3) :: field_getVacancyDiffusion33 integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getVacancyDiffusion33 = 0.0_pReal select case(field_vacancy_type(material_homog(ip,el))) case (FIELD_VACANCY_NONLOCAL_ID) do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getVacancyDiffusion33 = field_getVacancyDiffusion33 + & crystallite_push33ToRef(ipc,ip,el, & constitutive_getVacancyDiffusion33(ipc,ip,el)) enddo end select field_getVacancyDiffusion33 = field_getVacancyDiffusion33/ & homogenization_Ngrains(mesh_element(3,el)) end function field_getVacancyDiffusion33 !-------------------------------------------------------------------------------------------------- !> @brief Returns average mobility for vacancy field at each integration point !-------------------------------------------------------------------------------------------------- function field_getVacancyMobility33(ip,el) use mesh, only: & mesh_element use material, only: & material_homog, & field_vacancy_type, & FIELD_VACANCY_NONLOCAL_ID, & homogenization_Ngrains use crystallite, only: & crystallite_push33ToRef use constitutive, only: & constitutive_getVacancyMobility33 implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number real(pReal), dimension(3,3) :: & field_getVacancyMobility33 integer(pInt) :: & ipc field_getVacancyMobility33 = 0.0_pReal select case(field_vacancy_type(material_homog(ip,el))) case (FIELD_VACANCY_NONLOCAL_ID) do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getVacancyMobility33 = field_getVacancyMobility33 + & crystallite_push33ToRef(ipc,ip,el, & constitutive_getVacancyMobility33(ipc,ip,el)) enddo end select field_getVacancyMobility33 = field_getVacancyMobility33/ & homogenization_Ngrains(mesh_element(3,el)) end function field_getVacancyMobility33 !-------------------------------------------------------------------------------------------------- !> @brief Returns average driving for vacancy chemical potential at each integration point !-------------------------------------------------------------------------------------------------- real(pReal) function field_getVacancyEnergy(ip,el) use mesh, only: & mesh_element use material, only: & material_homog, & field_vacancy_type, & FIELD_VACANCY_NONLOCAL_ID, & homogenization_Ngrains use constitutive, only: & constitutive_getVacancyEnergy implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getVacancyEnergy = 0.0_pReal select case(field_vacancy_type(material_homog(ip,el))) case (FIELD_VACANCY_NONLOCAL_ID) do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getVacancyEnergy = field_getVacancyEnergy + & constitutive_getVacancyEnergy(ipc,ip,el) enddo end select field_getVacancyEnergy = field_getVacancyEnergy/ & homogenization_Ngrains(mesh_element(3,el)) end function field_getVacancyEnergy !-------------------------------------------------------------------------------------------------- !> @brief ToDo !-------------------------------------------------------------------------------------------------- real(pReal) function field_getLocalDamage(ip,el) use mesh, only: & mesh_element use material, only: & homogenization_Ngrains use constitutive, only: & constitutive_getLocalDamage implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc !-------------------------------------------------------------------------------------------------- ! computing the damage value needed to be passed to field solver field_getLocalDamage =0.0_pReal do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getLocalDamage = field_getLocalDamage + constitutive_getLocalDamage(ipc,ip,el) enddo field_getLocalDamage = field_getLocalDamage/homogenization_Ngrains(mesh_element(3,el)) end function field_getLocalDamage !-------------------------------------------------------------------------------------------------- !> @brief ToDo !-------------------------------------------------------------------------------------------------- real(pReal) function field_getFieldDamage(ip,el) use mesh, only: & mesh_element use material, only: & homogenization_Ngrains use constitutive, only: & constitutive_getDamage implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc !-------------------------------------------------------------------------------------------------- ! computing the damage value needed to be passed to field solver field_getFieldDamage = 0.0_pReal do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getFieldDamage = field_getFieldDamage + constitutive_getDamage(ipc,ip,el) enddo field_getFieldDamage = field_getFieldDamage/homogenization_Ngrains(mesh_element(3,el)) end function field_getFieldDamage !-------------------------------------------------------------------------------------------------- !> @brief Sets the regularised damage value in field state !-------------------------------------------------------------------------------------------------- subroutine field_putFieldDamage(ip,el,fieldDamageValue) ! naming scheme use material, only: & fieldDamage, & material_homog, & mappingHomogenization, & field_damage_type, & FIELD_DAMAGE_NONLOCAL_ID implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el real(pReal), intent(in) :: & fieldDamageValue select case(field_damage_type(material_homog(ip,el))) case (FIELD_DAMAGE_NONLOCAL_ID) fieldDamage(material_homog(ip,el))% & field(1, mappingHomogenization(1,ip,el)) = fieldDamageValue end select end subroutine field_putFieldDamage !-------------------------------------------------------------------------------------------------- !> @brief ToDo !-------------------------------------------------------------------------------------------------- real(pReal) function field_getLocalTemperature(ip,el) use mesh, only: & mesh_element use material, only: & homogenization_Ngrains use constitutive, only: & constitutive_getAdiabaticTemperature implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getLocalTemperature = 0.0_pReal do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getLocalTemperature = field_getLocalTemperature + & constitutive_getAdiabaticTemperature(ipc,ip,el) ! array/function/subroutine which is faster enddo field_getLocalTemperature = field_getLocalTemperature/homogenization_Ngrains(mesh_element(3,el)) end function field_getLocalTemperature !-------------------------------------------------------------------------------------------------- !> @brief Sets the regularised temperature value in field state !-------------------------------------------------------------------------------------------------- subroutine field_putFieldTemperature(ip,el,fieldThermalValue) use material, only: & material_homog, & fieldThermal, & mappingHomogenization, & field_thermal_type, & FIELD_THERMAL_nonlocal_ID implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el real(pReal), intent(in) :: & fieldThermalValue select case(field_thermal_type(material_homog(ip,el))) case (FIELD_THERMAL_nonlocal_ID) fieldThermal(material_homog(ip,el))% & field(1,mappingHomogenization(1,ip,el)) = fieldThermalValue end select end subroutine field_putFieldTemperature !-------------------------------------------------------------------------------------------------- !> @brief return heat generation rate !-------------------------------------------------------------------------------------------------- real(pReal) function field_getHeatGeneration(ip,el) use mesh, only: & mesh_element use material, only: & homogenization_Ngrains use crystallite, only: & crystallite_Tstar_v, & crystallite_Lp use constitutive, only: & constitutive_getHeatGeneration implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getHeatGeneration = 0.0_pReal do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getHeatGeneration = field_getHeatGeneration + & constitutive_getHeatGeneration(crystallite_Tstar_v(1:6,ipc,ip,el), & crystallite_Lp (1:3,1:3,ipc,ip,el), & ipc,ip,el) enddo field_getHeatGeneration = field_getHeatGeneration/homogenization_Ngrains(mesh_element(3,el)) end function field_getHeatGeneration !-------------------------------------------------------------------------------------------------- !> @brief ToDo !-------------------------------------------------------------------------------------------------- real(pReal) function field_getLocalVacancyConcentration(ip,el) use mesh, only: & mesh_element use material, only: & homogenization_Ngrains use constitutive, only: & constitutive_getLocalVacancyConcentration implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el !< element number integer(pInt) :: & ipc field_getLocalVacancyConcentration = 0.0_pReal do ipc = 1, homogenization_Ngrains(mesh_element(3,el)) field_getLocalVacancyConcentration = field_getLocalVacancyConcentration + & constitutive_getLocalVacancyConcentration(ipc,ip,el) ! array/function/subroutine which is faster enddo field_getLocalVacancyConcentration = field_getLocalVacancyConcentration/ & homogenization_Ngrains(mesh_element(3,el)) end function field_getLocalVacancyConcentration !-------------------------------------------------------------------------------------------------- !> @brief Sets the diffused vacancy concentration in field state !-------------------------------------------------------------------------------------------------- subroutine field_putFieldVacancyConcentration(ip,el,fieldVacancyConcentration) use material, only: & material_homog, & fieldVacancy, & mappingHomogenization, & field_vacancy_type, & FIELD_VACANCY_nonlocal_ID implicit none integer(pInt), intent(in) :: & ip, & !< integration point number el real(pReal), intent(in) :: & fieldVacancyConcentration select case(field_vacancy_type(material_homog(ip,el))) case (FIELD_VACANCY_nonlocal_ID) fieldVacancy(material_homog(ip,el))% & field(1,mappingHomogenization(1,ip,el)) = fieldVacancyConcentration end select end subroutine field_putFieldVacancyConcentration !-------------------------------------------------------------------------------------------------- !> @brief return array of homogenization results for post file inclusion. call only, !> if homogenization_sizePostResults(i,e) > 0 !! !-------------------------------------------------------------------------------------------------- function homogenization_postResults(ip,el) use mesh, only: & mesh_element use material, only: & mappingHomogenization, & homogState, & homogenization_type, & HOMOGENIZATION_NONE_ID, & HOMOGENIZATION_ISOSTRAIN_ID, & HOMOGENIZATION_RGC_ID use homogenization_isostrain, only: & homogenization_isostrain_postResults use homogenization_RGC, only: & homogenization_RGC_postResults implicit none integer(pInt), intent(in) :: & ip, & !< integration point el !< element number real(pReal), dimension(homogState(mappingHomogenization(2,ip,el))%sizePostResults) :: & homogenization_postResults homogenization_postResults = 0.0_pReal chosenHomogenization: select case (homogenization_type(mesh_element(3,el))) case (HOMOGENIZATION_NONE_ID) chosenHomogenization case (HOMOGENIZATION_ISOSTRAIN_ID) chosenHomogenization homogenization_postResults = homogenization_isostrain_postResults(& ip, & el, & materialpoint_P(1:3,1:3,ip,el), & materialpoint_F(1:3,1:3,ip,el)) case (HOMOGENIZATION_RGC_ID) chosenHomogenization homogenization_postResults = homogenization_RGC_postResults(& ip, & el, & materialpoint_P(1:3,1:3,ip,el), & materialpoint_F(1:3,1:3,ip,el)) end select chosenHomogenization end function homogenization_postResults !-------------------------------------------------------------------------------------------------- !> @brief return array of homogenization results for post file inclusion. call only, !> if homogenization_sizePostResults(i,e) > 0 !! !-------------------------------------------------------------------------------------------------- function field_postResults(ip,el) use material, only: & mappingHomogenization, & fieldThermal, & fieldDamage, & fieldVacancy implicit none integer(pInt), intent(in) :: & ip, & !< integration point el !< element number real(pReal), dimension(field_sizePostResults(mappingHomogenization(2,ip,el))) :: & field_postResults integer(pInt) :: & c, homog, pos, o field_postResults = 0.0_pReal homog = mappingHomogenization(2,ip,el) pos = mappingHomogenization(1,ip,el) c = 0_pInt do o = 1_pInt,field_Noutput(homog) select case(field_outputID(o,homog)) case (temperature_ID) field_postResults(c+1_pInt) = fieldThermal(homog)%field(1,pos) c = c + 1_pInt case (damage_ID) field_postResults(c+1_pInt) = fieldDamage(homog)%field(1,pos) c = c + 1_pInt case (vacancy_concentration_ID) field_postResults(c+1_pInt) = fieldVacancy(homog)%field(1,pos) c = c + 1_pInt end select enddo end function field_postResults end module homogenization