!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for thermal source due to plastic dissipation !> @details to be done !-------------------------------------------------------------------------------------------------- module source_thermal_dissipation use prec use debug use discretization use material use config implicit none private integer, dimension(:), allocatable :: & source_thermal_dissipation_offset, & !< which source is my current thermal dissipation mechanism? source_thermal_dissipation_instance !< instance of thermal dissipation source mechanism type :: tParameters !< container type for internal constitutive parameters real(pReal) :: & kappa end type tParameters type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstance) public :: & source_thermal_dissipation_init, & source_thermal_dissipation_getRateAndItsTangent contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine source_thermal_dissipation_init integer :: Ninstance,instance,source,sourceOffset,NofMyPhase,p write(6,'(/,a)') ' <<<+- source_'//SOURCE_thermal_dissipation_label//' init -+>>>'; flush(6) Ninstance = count(phase_source == SOURCE_thermal_dissipation_ID) if (Ninstance == 0) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0) & write(6,'(a16,1x,i5,/)') '# instances:',Ninstance allocate(source_thermal_dissipation_offset(material_Nphase), source=0) allocate(source_thermal_dissipation_instance(material_Nphase), source=0) allocate(param(Ninstance)) do p = 1, material_Nphase source_thermal_dissipation_instance(p) = count(phase_source(:,1:p) == SOURCE_thermal_dissipation_ID) do source = 1, phase_Nsources(p) if (phase_source(source,p) == SOURCE_thermal_dissipation_ID) & source_thermal_dissipation_offset(p) = source enddo enddo do p=1, size(config_phase) if (all(phase_source(:,p) /= SOURCE_THERMAL_DISSIPATION_ID)) cycle instance = source_thermal_dissipation_instance(p) param(instance)%kappa = config_phase(p)%getFloat('dissipation_coldworkcoeff') NofMyPhase = count(material_phaseAt==p) * discretization_nIP sourceOffset = source_thermal_dissipation_offset(p) call material_allocateSourceState(p,sourceOffset,NofMyPhase,0,0,0) enddo end subroutine source_thermal_dissipation_init !-------------------------------------------------------------------------------------------------- !> @brief returns dissipation rate !-------------------------------------------------------------------------------------------------- subroutine source_thermal_dissipation_getRateAndItsTangent(TDot, dTDOT_dT, Tstar, Lp, phase) integer, intent(in) :: & phase real(pReal), intent(in), dimension(3,3) :: & Tstar real(pReal), intent(in), dimension(3,3) :: & Lp real(pReal), intent(out) :: & TDot, & dTDOT_dT integer :: & instance instance = source_thermal_dissipation_instance(phase) TDot = param(instance)%kappa*sum(abs(Tstar*Lp)) dTDOT_dT = 0.0_pReal end subroutine source_thermal_dissipation_getRateAndItsTangent end module source_thermal_dissipation