import numpy as np from . import Lattice from . import Rotation class Orientation: # make subclass or Rotation? """ Crystallographic orientation. A crystallographic orientation contains a rotation and a lattice. """ __slots__ = ['rotation','lattice'] def __repr__(self): """Report lattice type and orientation.""" return self.lattice.__repr__()+'\n'+self.rotation.__repr__() def __init__(self, rotation, lattice): """ New orientation from rotation and lattice. Parameters ---------- rotation : Rotation Rotation specifying the lattice orientation. lattice : Lattice Lattice type of the crystal. """ if isinstance(lattice, Lattice): self.lattice = lattice else: self.lattice = Lattice(lattice) # assume string if isinstance(rotation, Rotation): self.rotation = rotation else: self.rotation = Rotation.from_quaternion(rotation) # assume quaternion def disorientation(self, other, SST = True, symmetries = False): """ Disorientation between myself and given other orientation. Rotation axis falls into SST if SST == True. Currently requires same symmetry for both orientations. Look into A. Heinz and P. Neumann 1991 for cases with differing sym. """ if self.lattice.symmetry != other.lattice.symmetry: raise NotImplementedError('disorientation between different symmetry classes not supported yet.') mySymEqs = self.equivalentOrientations() if SST else self.equivalentOrientations([0]) # take all or only first sym operation otherSymEqs = other.equivalentOrientations() for i,sA in enumerate(mySymEqs): aInv = sA.rotation.inversed() for j,sB in enumerate(otherSymEqs): b = sB.rotation r = b*aInv for k in range(2): r.inverse() breaker = self.lattice.symmetry.inFZ(r.as_Rodrigues(vector=True)) \ and (not SST or other.lattice.symmetry.inDisorientationSST(r.as_Rodrigues(vector=True))) if breaker: break if breaker: break if breaker: break return (Orientation(r,self.lattice), i,j, k == 1) if symmetries else r # disorientation ... # ... own sym, other sym, # self-->other: True, self<--other: False def inFZ_vec(self): """ Check if orientations falls into Fundamental Zone. self.rotation.as_Rodrigues() working fine self.rotation.as_Rodrigues(vector=True) doesn't work for several rotations i apply dirty fix """ if not self.rotation.shape: return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True)) else: return [self.lattice.symmetry.inFZ(\ Rotation._qu2ro(self.rotation.as_quaternion())[l][...,:3]\ *Rotation._qu2ro(self.rotation.as_quaternion())[l][...,3])\ for l in range(self.rotation.shape[0])] def inFZ(self): return self.lattice.symmetry.inFZ(self.rotation.as_Rodrigues(vector=True)) @property def equivalent(self): """ Return orientations which are symmetrically equivalent. One dimension (length according to symmetrically equivalent orientations) is added to the left of the rotation array. """ symmetry_operations = self.lattice.symmetry.symmetry_operations q = np.block([self.rotation.quaternion]*symmetry_operations.shape[0]) r = Rotation(q.reshape(symmetry_operations.shape+self.rotation.quaternion.shape)) return self.__class__(symmetry_operations.broadcast_to(r.shape)@r,self.lattice) def equivalentOrientations(self,members=[]): """List of orientations which are symmetrically equivalent.""" try: iter(members) # asking for (even empty) list of members? except TypeError: return self.__class__(self.lattice.symmetry.symmetryOperations(members)*self.rotation,self.lattice) # no, return rotation object else: return [self.__class__(q*self.rotation,self.lattice) \ for q in self.lattice.symmetry.symmetryOperations(members)] # yes, return list of rotations def relatedOrientations_vec(self,model): """List of orientations related by the given orientation relationship.""" r = self.lattice.relationOperations(model) if not self.rotation.shape: return [self.__class__(o*self.rotation,r['lattice']) for o in r['rotations']] else: return np.reshape(\ [self.__class__(o*Rotation.from_quaternion(self.rotation.as_quaternion()[l])\ ,r['lattice']) for o in r['rotations'] for l in range(self.rotation.shape[0])] ,(len(r['rotations']),self.rotation.shape[0])) def relatedOrientations(self,model): """List of orientations related by the given orientation relationship.""" r = self.lattice.relationOperations(model) return [self.__class__(o*self.rotation,r['lattice']) for o in r['rotations']] def reduced(self): """Transform orientation to fall into fundamental zone according to symmetry.""" for me in self.equivalentOrientations(): if self.lattice.symmetry.inFZ(me.rotation.as_Rodrigues(vector=True)): break return self.__class__(me.rotation,self.lattice) def inversePole(self, axis, proper = False, SST = True): """Axis rotated according to orientation (using crystal symmetry to ensure location falls into SST).""" if SST: # pole requested to be within SST for i,o in enumerate(self.equivalentOrientations()): # test all symmetric equivalent quaternions pole = o.rotation*axis # align crystal direction to axis if self.lattice.symmetry.inSST(pole,proper): break # found SST version else: pole = self.rotation*axis # align crystal direction to axis return (pole,i if SST else 0) def IPFcolor(self,axis): """TSL color of inverse pole figure for given axis.""" color = np.zeros(3,'d') for o in self.equivalentOrientations(): pole = o.rotation*axis # align crystal direction to axis inSST,color = self.lattice.symmetry.inSST(pole,color=True) if inSST: break return color def IPF_color(self,axis): """TSL color of inverse pole figure for given axis.""" color = np.zeros(self.rotation.shape) eq = self.equivalent pole = eq.rotation @ np.broadcast_to(axis,eq.rotation.shape+(3,)) in_SST, color = self.lattice.symmetry.in_SST(pole,color=True) return color[in_SST] @staticmethod def fromAverage(orientations, weights = []): """Create orientation from average of list of orientations.""" if not all(isinstance(item, Orientation) for item in orientations): raise TypeError("Only instances of Orientation can be averaged.") closest = [] ref = orientations[0] for o in orientations: closest.append(o.equivalentOrientations( ref.disorientation(o, SST = False, # select (o[ther]'s) sym orientation symmetries = True)[2]).rotation) # with lowest misorientation return Orientation(Rotation.fromAverage(closest,weights),ref.lattice) def average(self,other): """Calculate the average rotation.""" return Orientation.fromAverage([self,other])