"""Miscellaneous helper functionality.""" import sys import datetime import os import subprocess import shlex import re import fractions from collections import abc from functools import reduce from typing import Union, Tuple, Iterable, Callable, Dict, List, Any, Literal, Optional from pathlib import Path import numpy as np import h5py from . import version from ._typehints import IntSequence, FloatSequence # limit visibility __all__=[ 'srepr', 'emph', 'deemph', 'warn', 'strikeout', 'run', 'natural_sort', 'show_progress', 'scale_to_coprime', 'project_equal_angle', 'project_equal_area', 'hybrid_IA', 'execution_stamp', 'shapeshifter', 'shapeblender', 'extend_docstring', 'extended_docstring', 'Bravais_to_Miller', 'Miller_to_Bravais', 'DREAM3D_base_group', 'DREAM3D_cell_data_group', 'dict_prune', 'dict_flatten' ] # https://svn.blender.org/svnroot/bf-blender/trunk/blender/build_files/scons/tools/bcolors.py # https://stackoverflow.com/questions/287871 _colors = { 'header' : '\033[95m', 'OK_blue': '\033[94m', 'OK_green': '\033[92m', 'warning': '\033[93m', 'fail': '\033[91m', 'end_color': '\033[0m', 'bold': '\033[1m', 'dim': '\033[2m', 'underline': '\033[4m', 'crossout': '\033[9m' } #################################################################################################### # Functions #################################################################################################### def srepr(msg, glue: str = '\n') -> str: r""" Join items with glue string. Parameters ---------- msg : object with __repr__ or sequence of objects with __repr__ Items to join. glue : str, optional Glue used for joining operation. Defaults to '\n'. Returns ------- joined : str String representation of the joined items. """ if (not hasattr(msg, 'strip') and (hasattr(msg, '__getitem__') or hasattr(msg, '__iter__'))): return glue.join(str(x) for x in msg) else: return msg if isinstance(msg,str) else repr(msg) def emph(msg) -> str: """ Format with emphasis. Parameters ---------- msg : object with __repr__ or sequence of objects with __repr__ Message to format. Returns ------- formatted : str Formatted string representation of the joined items. """ return _colors['bold']+srepr(msg)+_colors['end_color'] def deemph(msg) -> str: """ Format with deemphasis. Parameters ---------- msg : object with __repr__ or sequence of objects with __repr__ Message to format. Returns ------- formatted : str Formatted string representation of the joined items. """ return _colors['dim']+srepr(msg)+_colors['end_color'] def warn(msg) -> str: """ Format for warning. Parameters ---------- msg : object with __repr__ or sequence of objects with __repr__ Message to format. Returns ------- formatted : str Formatted string representation of the joined items. """ return _colors['warning']+emph(msg)+_colors['end_color'] def strikeout(msg) -> str: """ Format as strikeout. Parameters ---------- msg : object with __repr__ or iterable of objects with __repr__ Message to format. Returns ------- formatted : str Formatted string representation of the joined items. """ return _colors['crossout']+srepr(msg)+_colors['end_color'] def run(cmd: str, wd: str = './', env: Dict[str, str] = None, timeout: int = None) -> Tuple[str, str]: """ Run a command. Parameters ---------- cmd : str Command to be executed. wd : str, optional Working directory of process. Defaults to './'. env : dict, optional Environment for execution. timeout : integer, optional Timeout in seconds. Returns ------- stdout, stderr : (str, str) Output of the executed command. """ print(f"running '{cmd}' in '{wd}'") process = subprocess.run(shlex.split(cmd), stdout = subprocess.PIPE, stderr = subprocess.PIPE, env = os.environ if env is None else env, cwd = wd, encoding = 'utf-8', timeout = timeout) if process.returncode != 0: print(process.stdout) print(process.stderr) raise RuntimeError(f"'{cmd}' failed with returncode {process.returncode}") return process.stdout, process.stderr execute = run def natural_sort(key: str) -> List[Union[int, str]]: """ Natural sort. For use in python's 'sorted'. References ---------- https://en.wikipedia.org/wiki/Natural_sort_order """ convert = lambda text: int(text) if text.isdigit() else text return [ convert(c) for c in re.split('([0-9]+)', key) ] def show_progress(iterable: Iterable, N_iter: int = None, prefix: str = '', bar_length: int = 50) -> Any: """ Decorate a loop with a progress bar. Use similar like enumerate. Parameters ---------- iterable : iterable Iterable to be decorated. N_iter : int, optional Total number of iterations. Required if iterable is not a sequence. prefix : str, optional Prefix string. bar_length : int, optional Length of progress bar in characters. Defaults to 50. """ if isinstance(iterable,abc.Sequence): if N_iter is None: N = len(iterable) else: raise ValueError('N_iter given for sequence') else: if N_iter is None: raise ValueError('N_iter not given') N = N_iter if N <= 1: for item in iterable: yield item else: status = ProgressBar(N,prefix,bar_length) for i,item in enumerate(iterable): yield item status.update(i) def scale_to_coprime(v: FloatSequence) -> np.ndarray: """ Scale vector to co-prime (relatively prime) integers. Parameters ---------- v : sequence of float, len (:) Vector to scale. Returns ------- m : numpy.ndarray, shape (:) Vector scaled to co-prime numbers. """ MAX_DENOMINATOR = 1000000 def get_square_denominator(x): """Denominator of the square of a number.""" return fractions.Fraction(x ** 2).limit_denominator(MAX_DENOMINATOR).denominator def lcm(a,b): """Least common multiple.""" try: return np.lcm(a,b) # numpy > 1.18 except AttributeError: return a * b // np.gcd(a, b) v_ = np.array(v) m = (v_ * reduce(lcm, map(lambda x: int(get_square_denominator(x)),v_))**0.5).astype(int) m = m//reduce(np.gcd,m) with np.errstate(invalid='ignore'): if not np.allclose(np.ma.masked_invalid(v_/m),v_[np.argmax(abs(v_))]/m[np.argmax(abs(v_))]): raise ValueError(f'Invalid result {m} for input {v_}. Insufficient precision?') return m def project_equal_angle(vector: np.ndarray, direction: Literal['x', 'y', 'z'] = 'z', normalize: bool = True, keepdims: bool = False) -> np.ndarray: """ Apply equal-angle projection to vector. Parameters ---------- vector : numpy.ndarray, shape (...,3) Vector coordinates to be projected. direction : {'x', 'y', 'z'} Projection direction. Defaults to 'z'. normalize : bool Ensure unit length of input vector. Defaults to True. keepdims : bool Maintain three-dimensional output coordinates. Defaults to False. Returns ------- coordinates : numpy.ndarray, shape (...,2 | 3) Projected coordinates. Notes ----- Two-dimensional output uses right-handed frame spanned by the next and next-next axis relative to the projection direction, e.g. x-y when projecting along z and z-x when projecting along y. Examples -------- >>> import damask >>> import numpy as np >>> project_equal_angle(np.ones(3)) [0.3660254, 0.3660254] >>> project_equal_angle(np.ones(3),direction='x',normalize=False,keepdims=True) [0, 0.5, 0.5] >>> project_equal_angle([0,1,1],direction='y',normalize=True,keepdims=False) [0.41421356, 0] """ shift = 'zyx'.index(direction) v = np.roll(vector/np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector, shift,axis=-1) return np.roll(np.block([v[...,:2]/(1.0+np.abs(v[...,2:3])),np.zeros_like(v[...,2:3])]), -shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2] def project_equal_area(vector: np.ndarray, direction: Literal['x', 'y', 'z'] = 'z', normalize: bool = True, keepdims: bool = False) -> np.ndarray: """ Apply equal-area projection to vector. Parameters ---------- vector : numpy.ndarray, shape (...,3) Vector coordinates to be projected. direction : {'x', 'y', 'z'} Projection direction. Defaults to 'z'. normalize : bool Ensure unit length of input vector. Defaults to True. keepdims : bool Maintain three-dimensional output coordinates. Defaults to False. Returns ------- coordinates : numpy.ndarray, shape (...,2 | 3) Projected coordinates. Notes ----- Two-dimensional output uses right-handed frame spanned by the next and next-next axis relative to the projection direction, e.g. x-y when projecting along z and z-x when projecting along y. Examples -------- >>> import damask >>> import numpy as np >>> project_equal_area(np.ones(3)) [0.45970084, 0.45970084] >>> project_equal_area(np.ones(3),direction='x',normalize=False,keepdims=True) [0.0, 0.70710678, 0.70710678] >>> project_equal_area([0,1,1],direction='y',normalize=True,keepdims=False) [0.5411961, 0.0] """ shift = 'zyx'.index(direction) v = np.roll(vector/np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector, shift,axis=-1) return np.roll(np.block([v[...,:2]/np.sqrt(1.0+np.abs(v[...,2:3])),np.zeros_like(v[...,2:3])]), -shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2] def execution_stamp(class_name: str, function_name: str = None) -> str: """Timestamp the execution of a (function within a) class.""" now = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S%z') _function_name = '' if function_name is None else f'.{function_name}' return f'damask.{class_name}{_function_name} v{version} ({now})' def hybrid_IA(dist: np.ndarray, N: int, rng_seed: Union[int, IntSequence] = None) -> np.ndarray: """ Hybrid integer approximation. Parameters ---------- dist : numpy.ndarray Distribution to be approximated N : int Number of samples to draw. rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional A seed to initialize the BitGenerator. Defaults to None. If None, then fresh, unpredictable entropy will be pulled from the OS. """ N_opt_samples,N_inv_samples = (max(np.count_nonzero(dist),N),0) # random subsampling if too little samples requested scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0) while (not np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples): repeats = np.rint(scale*dist).astype(int) N_inv_samples = np.sum(repeats) scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \ if N_inv_samples < N_opt_samples else \ (scale_,0.5*(scale_ + scale), 1.0) return np.repeat(np.arange(len(dist)),repeats)[np.random.default_rng(rng_seed).permutation(N_inv_samples)[:N]] def shapeshifter(fro: Tuple[int, ...], to: Tuple[int, ...], mode: Literal['left','right'] = 'left', keep_ones: bool = False) -> Tuple[Optional[int], ...]: """ Return dimensions that reshape 'fro' to become broadcastable to 'to'. Parameters ---------- fro : tuple Original shape of array. to : tuple Target shape of array after broadcasting. len(to) cannot be less than len(fro). mode : {'left', 'right'}, optional Indicates whether new axes are preferably added to either left or right of the original shape. Defaults to 'left'. keep_ones : bool, optional Treat '1' in fro as literal value instead of dimensional placeholder. Defaults to False. Returns ------- new_dims : tuple Dimensions for reshape. Example ------- >>> import numpy as np >>> from damask import util >>> a = np.ones((3,4,2)) >>> b = np.ones(4) >>> b_extended = b.reshape(util.shapeshifter(b.shape,a.shape)) >>> (a * np.broadcast_to(b_extended,a.shape)).shape (3,4,2) """ if len(fro) == 0 and len(to) == 0: return () beg = dict(left ='(^.*\\b)', right='(^.*?\\b)') sep = dict(left ='(.*\\b)', right='(.*?\\b)') end = dict(left ='(.*?$)', right='(.*$)') fro = (1,) if len(fro) == 0 else fro to = (1,) if len(to) == 0 else to try: match = re.match(beg[mode] +f',{sep[mode]}'.join(map(lambda x: f'{x}' if x>1 or (keep_ones and len(fro)>1) else '\\d+',fro)) +f',{end[mode]}',','.join(map(str,to))+',') assert match grp = match.groups() except AssertionError: raise ValueError(f'Shapes can not be shifted {fro} --> {to}') fill: Tuple[Optional[int], ...] = () for g,d in zip(grp,fro+(None,)): fill += (1,)*g.count(',')+(d,) return fill[:-1] def shapeblender(a: Tuple[int, ...], b: Tuple[int, ...]) -> Tuple[int, ...]: """ Return a shape that overlaps the rightmost entries of 'a' with the leftmost of 'b'. Parameters ---------- a : tuple Shape of first array. b : tuple Shape of second array. Examples -------- >>> shapeblender((4,4,3),(3,2,1)) (4,4,3,2,1) >>> shapeblender((1,2),(1,2,3)) (1,2,3) >>> shapeblender((1,),(2,2,1)) (1,2,2,1) >>> shapeblender((3,2),(3,2)) (3,2) """ i = min(len(a),len(b)) while i > 0 and a[-i:] != b[:i]: i -= 1 return a + b[i:] def extend_docstring(extra_docstring: str) -> Callable: """ Decorator: Append to function's docstring. Parameters ---------- extra_docstring : str Docstring to append. """ def _decorator(func): func.__doc__ += extra_docstring return func return _decorator def extended_docstring(f: Callable, extra_docstring: str) -> Callable: """ Decorator: Combine another function's docstring with a given docstring. Parameters ---------- f : function Function of which the docstring is taken. extra_docstring : str Docstring to append. """ def _decorator(func): func.__doc__ = f.__doc__ + extra_docstring return func return _decorator def DREAM3D_base_group(fname: Union[str, Path]) -> str: """ Determine the base group of a DREAM.3D file. The base group is defined as the group (folder) that contains a 'SPACING' dataset in a '_SIMPL_GEOMETRY' group. Parameters ---------- fname : str or pathlib.Path Filename of the DREAM.3D (HDF5) file. Returns ------- path : str Path to the base group. """ with h5py.File(fname,'r') as f: base_group = f.visit(lambda path: path.rsplit('/',2)[0] if '_SIMPL_GEOMETRY/SPACING' in path else None) if base_group is None: raise ValueError(f'Could not determine base group in file {fname}.') return base_group def DREAM3D_cell_data_group(fname: Union[str, Path]) -> str: """ Determine the cell data group of a DREAM.3D file. The cell data group is defined as the group (folder) that contains a dataset in the base group whose length matches the total number of points as specified in '_SIMPL_GEOMETRY/DIMENSIONS'. Parameters ---------- fname : str or pathlib.Path Filename of the DREAM.3D (HDF5) file. Returns ------- path : str Path to the cell data group. """ base_group = DREAM3D_base_group(fname) with h5py.File(fname,'r') as f: cells = tuple(f['/'.join([base_group,'_SIMPL_GEOMETRY','DIMENSIONS'])][()][::-1]) cell_data_group = f[base_group].visititems(lambda path,obj: path.split('/')[0] \ if isinstance(obj,h5py._hl.dataset.Dataset) and np.shape(obj)[:-1] == cells \ else None) if cell_data_group is None: raise ValueError(f'Could not determine cell data group in file {fname}/{base_group}.') return cell_data_group def Bravais_to_Miller(*, uvtw: np.ndarray = None, hkil: np.ndarray = None) -> np.ndarray: """ Transform 4 Miller–Bravais indices to 3 Miller indices of crystal direction [uvw] or plane normal (hkl). Parameters ---------- uvtw|hkil : numpy.ndarray, shape (...,4) Miller–Bravais indices of crystallographic direction [uvtw] or plane normal (hkil). Returns ------- uvw|hkl : numpy.ndarray, shape (...,3) Miller indices of [uvw] direction or (hkl) plane normal. """ if (uvtw is not None) ^ (hkil is None): raise KeyError('Specify either "uvtw" or "hkil"') axis,basis = (np.array(uvtw),np.array([[1,0,-1,0], [0,1,-1,0], [0,0, 0,1]])) \ if hkil is None else \ (np.array(hkil),np.array([[1,0,0,0], [0,1,0,0], [0,0,0,1]])) return np.einsum('il,...l',basis,axis) def Miller_to_Bravais(*, uvw: np.ndarray = None, hkl: np.ndarray = None) -> np.ndarray: """ Transform 3 Miller indices to 4 Miller–Bravais indices of crystal direction [uvtw] or plane normal (hkil). Parameters ---------- uvw|hkl : numpy.ndarray, shape (...,3) Miller indices of crystallographic direction [uvw] or plane normal (hkl). Returns ------- uvtw|hkil : numpy.ndarray, shape (...,4) Miller–Bravais indices of [uvtw] direction or (hkil) plane normal. """ if (uvw is not None) ^ (hkl is None): raise KeyError('Specify either "uvw" or "hkl"') axis,basis = (np.array(uvw),np.array([[ 2,-1, 0], [-1, 2, 0], [-1,-1, 0], [ 0, 0, 3]])/3) \ if hkl is None else \ (np.array(hkl),np.array([[ 1, 0, 0], [ 0, 1, 0], [-1,-1, 0], [ 0, 0, 1]])) return np.einsum('il,...l',basis,axis) def dict_prune(d: Dict) -> Dict: """ Recursively remove empty dictionaries. Parameters ---------- d : dict Dictionary to prune. Returns ------- pruned : dict Pruned dictionary. """ # https://stackoverflow.com/questions/48151953 new = {} for k,v in d.items(): if isinstance(v, dict): v = dict_prune(v) if not isinstance(v,dict) or v != {}: new[k] = v return new def dict_flatten(d: Dict) -> Dict: """ Recursively remove keys of single-entry dictionaries. Parameters ---------- d : dict Dictionary to flatten. Returns ------- flattened : dict Flattened dictionary. """ if isinstance(d,dict) and len(d) == 1: entry = d[list(d.keys())[0]] new = dict_flatten(entry.copy()) if isinstance(entry,dict) else entry else: new = {k: (dict_flatten(v) if isinstance(v, dict) else v) for k,v in d.items()} return new #################################################################################################### # Classes #################################################################################################### class ProgressBar: """ Report progress of an interation as a status bar. Works for 0-based loops, ETA is estimated by linear extrapolation. """ def __init__(self, total: int, prefix: str, bar_length: int): """ Set current time as basis for ETA estimation. Parameters ---------- total : int Total # of iterations. prefix : str Prefix string. bar_length : int Character length of bar. """ self.total = total self.prefix = prefix self.bar_length = bar_length self.time_start = self.time_last_update = datetime.datetime.now() self.fraction_last = 0.0 sys.stderr.write(f"{self.prefix} {'░'*self.bar_length} 0% ETA n/a") sys.stderr.flush() def update(self, iteration: int) -> None: fraction = (iteration+1) / self.total if filled_length := int(self.bar_length * fraction) > int(self.bar_length * self.fraction_last) or \ datetime.datetime.now() - self.time_last_update > datetime.timedelta(seconds=10): self.time_last_update = datetime.datetime.now() bar = '█' * filled_length + '░' * (self.bar_length - filled_length) remaining_time = (datetime.datetime.now() - self.time_start) \ * (self.total - (iteration+1)) / (iteration+1) remaining_time -= datetime.timedelta(microseconds=remaining_time.microseconds) # remove μs sys.stderr.write(f'\r{self.prefix} {bar} {fraction:>4.0%} ETA {remaining_time}') sys.stderr.flush() self.fraction_last = fraction if iteration == self.total - 1: sys.stderr.write('\n') sys.stderr.flush()