!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Michigan State University !> @brief material subroutine for variable heat source !-------------------------------------------------------------------------------------------------- module source_thermal_externalheat use prec use debug use discretization use material use config implicit none private integer, dimension(:), allocatable, public, protected :: & source_thermal_externalheat_offset, & !< which source is my current thermal dissipation mechanism? source_thermal_externalheat_instance !< instance of thermal dissipation source mechanism integer, dimension(:,:), allocatable, target, public :: & source_thermal_externalheat_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & source_thermal_externalheat_output !< name of each post result output integer, dimension(:), allocatable, target, public :: & source_thermal_externalheat_Noutput !< number of outputs per instance of this source type :: tParameters !< container type for internal constitutive parameters real(pReal), dimension(:), allocatable :: & time, & heat_rate integer :: & nIntervals end type tParameters type(tParameters), dimension(:), allocatable :: param !< containers of constitutive parameters (len Ninstance) public :: & source_thermal_externalheat_init, & source_thermal_externalheat_dotState, & source_thermal_externalheat_getRateAndItsTangent contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine source_thermal_externalheat_init integer :: maxNinstance,instance,source,sourceOffset,NofMyPhase,p write(6,'(/,a)') ' <<<+- source_'//SOURCE_thermal_externalheat_label//' init -+>>>' maxNinstance = count(phase_source == SOURCE_thermal_externalheat_ID) if (maxNinstance == 0) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(source_thermal_externalheat_offset(material_Nphase), source=0) allocate(source_thermal_externalheat_instance(material_Nphase), source=0) do p = 1, material_Nphase source_thermal_externalheat_instance(p) = count(phase_source(:,1:p) == SOURCE_thermal_externalheat_ID) do source = 1, phase_Nsources(p) if (phase_source(source,p) == SOURCE_thermal_externalheat_ID) & source_thermal_externalheat_offset(p) = source enddo enddo allocate(source_thermal_externalheat_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0) allocate(source_thermal_externalheat_output (maxval(phase_Noutput),maxNinstance)) source_thermal_externalheat_output = '' allocate(source_thermal_externalheat_Noutput(maxNinstance), source=0) allocate(param(maxNinstance)) do p=1, size(config_phase) if (all(phase_source(:,p) /= SOURCE_thermal_externalheat_ID)) cycle instance = source_thermal_externalheat_instance(p) sourceOffset = source_thermal_externalheat_offset(p) NofMyPhase = count(material_phaseAt==p) * discretization_nIP param(instance)%time = config_phase(p)%getFloats('externalheat_time') param(instance)%nIntervals = size(param(instance)%time) - 1 param(instance)%heat_rate = config_phase(p)%getFloats('externalheat_rate',requiredSize = size(param(instance)%time)) call material_allocateSourceState(p,sourceOffset,NofMyPhase,1,1,0) enddo end subroutine source_thermal_externalheat_init !-------------------------------------------------------------------------------------------------- !> @brief rate of change of state !> @details state only contains current time to linearly interpolate given heat powers !-------------------------------------------------------------------------------------------------- subroutine source_thermal_externalheat_dotState(phase, of) integer, intent(in) :: & phase, & of integer :: & sourceOffset sourceOffset = source_thermal_externalheat_offset(phase) sourceState(phase)%p(sourceOffset)%dotState(1,of) = 1.0_pReal ! state is current time end subroutine source_thermal_externalheat_dotState !-------------------------------------------------------------------------------------------------- !> @brief returns local heat generation rate !-------------------------------------------------------------------------------------------------- subroutine source_thermal_externalheat_getRateAndItsTangent(TDot, dTDot_dT, phase, of) integer, intent(in) :: & phase, & of real(pReal), intent(out) :: & TDot, & dTDot_dT integer :: & instance, sourceOffset, interval real(pReal) :: & frac_time instance = source_thermal_externalheat_instance(phase) sourceOffset = source_thermal_externalheat_offset(phase) do interval = 1, param(instance)%nIntervals ! scan through all rate segments frac_time = (sourceState(phase)%p(sourceOffset)%state(1,of) - & param(instance)%time(interval)) / & (param(instance)%time(interval+1) - & param(instance)%time(interval)) ! fractional time within segment if ( (frac_time < 0.0_pReal .and. interval == 1) & .or. (frac_time >= 1.0_pReal .and. interval == param(instance)%nIntervals) & .or. (frac_time >= 0.0_pReal .and. frac_time < 1.0_pReal) ) & TDot = param(instance)%heat_rate(interval ) * (1.0_pReal - frac_time) + & param(instance)%heat_rate(interval+1) * frac_time ! interpolate heat rate between segment boundaries... ! ...or extrapolate if outside of bounds enddo dTDot_dT = 0.0 end subroutine source_thermal_externalheat_getRateAndItsTangent end module source_thermal_externalheat