!-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief Basic scheme solver !> @details this solver follows closely the original large strain formulation presented by !> Suquet. The iterative procedure is solved using a fix-point iteration !-------------------------------------------------------------------------------------------------- module DAMASK_spectral_SolverBasic use prec, only: & pInt, & pReal use math, only: & math_I3 use DAMASK_spectral_Utilities, only: & solutionState implicit none character (len=*), parameter, public :: & DAMASK_spectral_SolverBasic_label = 'basic' !-------------------------------------------------------------------------------------------------- ! pointwise data real(pReal), private, dimension(:,:,:,:,:), allocatable :: F, F_lastInc, P real(pReal), private, dimension(:,:,:,:), allocatable :: coordinates real(pReal), private, dimension(:,:,:), allocatable :: temperature !-------------------------------------------------------------------------------------------------- ! stress, stiffness and compliance average etc. real(pReal), private, dimension(3,3) :: & F_aim = math_I3, & F_aim_lastInc = math_I3 real(pReal), private,dimension(3,3,3,3) :: & C = 0.0_pReal contains !-------------------------------------------------------------------------------------------------- !> @brief allocates all neccessary fields and fills them with data, potentially from restart info !-------------------------------------------------------------------------------------------------- subroutine basic_init() use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment) use IO, only: & IO_read_JobBinaryFile, & IO_write_JobBinaryFile, & IO_intOut use FEsolving, only: & restartInc use DAMASK_interface, only: & getSolverJobName use DAMASK_spectral_Utilities, only: & Utilities_init, & Utilities_constitutiveResponse, & Utilities_updateGamma, & debugrestart use mesh, only: & res, & geomdim implicit none integer(pInt) :: i,j,k real(pReal), dimension(3,3) :: temp33_Real call Utilities_Init() write(6,'(a)') '' write(6,'(a)') ' <<<+- DAMASK_spectral_solverBasic init -+>>>' write(6,'(a)') ' $Id$' #include "compilation_info.f90" write(6,'(a)') '' allocate (F ( 3,3,res(1), res(2),res(3)), source = 0.0_pReal) allocate (F_lastInc ( 3,3,res(1), res(2),res(3)), source = 0.0_pReal) allocate (P ( 3,3,res(1), res(2),res(3)), source = 0.0_pReal) allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal) allocate (temperature( res(1), res(2),res(3)), source = 0.0_pReal) !-------------------------------------------------------------------------------------------------- ! init fields if (restartInc == 1_pInt) then ! no deformation (no restart) F = spread(spread(spread(math_I3,3,res(1)),4,res(2)),5,res(3)) ! initialize to identity F_lastInc = F do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) & - geomdim/real(2_pInt*res,pReal) enddo; enddo; enddo elseif (restartInc > 1_pInt) then ! using old values from file if (debugRestart) write(6,'(a,'//IO_intOut(restartInc-1_pInt)//',a)') & 'Reading values of increment', restartInc - 1_pInt, 'from file' call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',& trim(getSolverJobName()),size(F)) read (777,rec=1) F close (777) call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',& trim(getSolverJobName()),size(F_lastInc)) read (777,rec=1) F_lastInc close (777) call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim)) read (777,rec=1) F_aim close (777) call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc)) read (777,rec=1) F_aim_lastInc close (777) coordinates = 0.0 ! change it later!!! endif !no rotation bc call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),1.0_pReal,F_lastInc,coordinates) call Utilities_constitutiveResponse(coordinates,F,F_lastInc,temperature,0.0_pReal,& P,C,temp33_Real,.false.,math_I3) !-------------------------------------------------------------------------------------------------- ! reference stiffness if (restartInc == 1_pInt) then call IO_write_jobBinaryFile(777,'C_ref',size(C)) write (777,rec=1) C close(777) elseif (restartInc > 1_pInt) then call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C)) read (777,rec=1) C close (777) endif call Utilities_updateGamma(C) end subroutine basic_init !-------------------------------------------------------------------------------------------------- !> @brief solution for the basic scheme with internal iterations !-------------------------------------------------------------------------------------------------- type(solutionState) function basic_solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,temperature_bc,rotation_BC) use numerics, only: & itmax, & itmin, & update_gamma use math, only: & math_mul33x33 ,& math_rotate_backward33, & math_transpose33, & math_mul3333xx33 use mesh, only: & res,& geomdim, & deformed_fft use IO, only: & IO_write_JobBinaryFile, & IO_intOut use DAMASK_spectral_Utilities, only: & boundaryCondition, & field_real, & Utilities_forwardField, & Utilities_maskedCompliance, & Utilities_forwardFFT, & Utilities_divergenceRMS, & Utilities_fourierConvolution, & Utilities_backwardFFT, & Utilities_updateGamma, & Utilities_constitutiveResponse use FEsolving, only: & restartWrite, & terminallyIll implicit none !-------------------------------------------------------------------------------------------------- ! input data for solution real(pReal), intent(in) :: timeinc, timeinc_old, temperature_bc, guessmode type(boundaryCondition), intent(in) :: P_BC,F_BC real(pReal), dimension(3,3), intent(in) :: rotation_BC real(pReal), dimension(3,3,3,3) :: S real(pReal), dimension(3,3) :: deltaF_aim, & F_aim_lab, & F_aim_lab_lastIter, & P_av !-------------------------------------------------------------------------------------------------- ! loop variables, convergence etc. real(pReal) :: err_div, err_stress integer(pInt) :: iter, row, column, i, j, k logical :: ForwardData real(pReal) :: defgradDet, defgradDetMax, defgradDetMin real(pReal), dimension(3,3) :: temp33_Real !-------------------------------------------------------------------------------------------------- ! restart information for spectral solver if (restartWrite) then write(6,'(a)') 'writing converged results for restart' call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_lastInc)) write (777,rec=1) F_LastInc close (777) call IO_write_jobBinaryFile(777,'C',size(C)) write (777,rec=1) C close(777) endif !-------------------------------------------------------------------------------------------------- ! winding forward of deformation aim in loadcase system if (F_BC%myType=='l') then ! calculate deltaF_aim from given L and current F deltaF_aim = timeinc * F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim) elseif(F_BC%myType=='fdot') then ! deltaF_aim = fDot *timeinc where applicable deltaF_aim = timeinc * F_BC%maskFloat * F_BC%values endif temp33_Real = F_aim F_aim = F_aim & + guessmode * P_BC%maskFloat * (F_aim - F_aim_lastInc)*timeinc/timeinc_old & + deltaF_aim F_aim_lastInc = temp33_Real F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame !-------------------------------------------------------------------------------------------------- ! update local deformation gradient and coordinates deltaF_aim = math_rotate_backward33(deltaF_aim,rotation_BC) call Utilities_forwardField(deltaF_aim,timeinc,timeinc_old,guessmode,F_lastInc,F) call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),1.0_pReal,F_lastInc,coordinates) !-------------------------------------------------------------------------------------------------- ! update stiffness (and gamma operator) S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C) if (update_gamma) call Utilities_updateGamma(C) iter = 0_pInt ForwardData = .True. convergenceLoop: do while(iter < itmax) iter = iter + 1_pInt !-------------------------------------------------------------------------------------------------- ! report begin of new iteration write(6,'(a)') '' write(6,'(a)') '==================================================================' write(6,'(3(a,'//IO_intOut(itmax)//'))') ' Iter.', itmin, '<',iter, '<', itmax + 1_pInt write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =', & math_transpose33(F_aim) F_aim_lab_lastIter = math_rotate_backward33(F_aim,rotation_BC) !-------------------------------------------------------------------------------------------------- ! evaluate constitutive response call Utilities_constitutiveResponse(coordinates,F_lastInc,F,temperature,timeinc,& P,C,P_av,ForwardData,rotation_BC) basic_solution%termIll = terminallyIll ForwardData = .False. !-------------------------------------------------------------------------------------------------- ! stress BC handling F_aim = F_aim - math_mul3333xx33(S, ((P_av - P_BC%values))) !S = 0.0 for no bc err_stress = maxval(P_BC%maskFloat * (P_av - P_BC%values)) ! mask = 0.0 for no bc F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame !-------------------------------------------------------------------------------------------------- ! updated deformation gradient using fix point algorithm of basic scheme field_real = 0.0_pReal field_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = reshape(P,[res(1),res(2),res(3),3,3],& order=[4,5,1,2,3]) ! field real has a different order call Utilities_forwardFFT() err_div = Utilities_divergenceRMS() call Utilities_fourierConvolution(F_aim_lab_lastIter - F_aim_lab) call Utilities_backwardFFT() F = F - reshape(field_real(1:res(1),1:res(2),1:res(3),1:3,1:3),shape(F),order=[3,4,5,1,2]) ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization basic_solution%converged = basic_Converged(err_div,P_av,err_stress,P_av) if ((basic_solution%converged .and. iter > itmin) .or. basic_solution%termIll) exit enddo convergenceLoop end function basic_solution !-------------------------------------------------------------------------------------------------- !> @brief convergence check for basic scheme based on div of P and deviation from stress aim !-------------------------------------------------------------------------------------------------- logical function basic_Converged(err_div,pAvgDiv,err_stress,pAvgStress) use numerics, only: & itmin, & err_div_tol, & err_stress_tolrel, & err_stress_tolabs use math, only: & math_mul33x33, & math_eigenvalues33, & math_transpose33 implicit none real(pReal), dimension(3,3), intent(in) :: & pAvgDiv,& pAvgStress real(pReal), intent(in) :: & err_div, & err_stress real(pReal) :: & err_stress_tol, & pAvgDivL2 pAvgDivL2 = sqrt(maxval(math_eigenvalues33(math_mul33x33(pAvgDiv,math_transpose33(pAvgDiv))))) ! L_2 norm of average stress (http://mathworld.wolfram.com/SpectralNorm.html) err_stress_tol = min(maxval(abs(pAvgStress))*err_stress_tolrel,err_stress_tolabs) basic_Converged = all([ err_div/pAvgDivL2/err_div_tol,& err_stress/err_stress_tol ] < 1.0_pReal) write(6,'(a,f6.2,a,es11.4,a)') 'error divergence = ', err_div/pAvgDivL2/err_div_tol,& ' (',err_div,' N/m³)' write(6,'(a,f6.2,a,es11.4,a)') 'error stress = ', err_stress/err_stress_tol, & ' (',err_stress,' Pa)' end function basic_Converged subroutine basic_destroy() use DAMASK_spectral_Utilities, only: & Utilities_destroy implicit none call Utilities_destroy() end subroutine basic_destroy end module DAMASK_spectral_SolverBasic !-------------------------------------------------------------------------------------------------- ! calculate some additional output ! if(debugGeneral) then ! maxCorrectionSkew = 0.0_pReal ! maxCorrectionSym = 0.0_pReal ! temp33_Real = 0.0_pReal ! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ! maxCorrectionSym = max(maxCorrectionSym,& ! maxval(math_symmetric33(field_real(i,j,k,1:3,1:3)))) ! maxCorrectionSkew = max(maxCorrectionSkew,& ! maxval(math_skew33(field_real(i,j,k,1:3,1:3)))) ! temp33_Real = temp33_Real + field_real(i,j,k,1:3,1:3) ! enddo; enddo; enddo ! write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',& ! maxCorrectionSym*wgt ! write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',& ! maxCorrectionSkew*wgt ! write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',& ! maxval(math_symmetric33(temp33_real))/& ! maxval(math_skew33(temp33_real)) ! endif !-------------------------------------------------------------------------------------------------- ! calculate bounds of det(F) and report ! if(debugGeneral) then ! defgradDetMax = -huge(1.0_pReal) ! defgradDetMin = +huge(1.0_pReal) ! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1) ! defgradDet = math_det33(F(i,j,k,1:3,1:3)) ! defgradDetMax = max(defgradDetMax,defgradDet) ! defgradDetMin = min(defgradDetMin,defgradDet) ! enddo; enddo; enddo ! write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax ! write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin ! endif