!-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for temperature evolution from heat conduction !-------------------------------------------------------------------------------------------------- module thermal_conduction use prec use material use config use lattice use results use crystallite use constitutive use YAML_types implicit none private type :: tParameters character(len=pStringLen), allocatable, dimension(:) :: & output end type tParameters type(tparameters), dimension(:), allocatable :: & param public :: & thermal_conduction_init, & thermal_conduction_getSourceAndItsTangent, & thermal_conduction_getConductivity, & thermal_conduction_getSpecificHeat, & thermal_conduction_getMassDensity, & thermal_conduction_putTemperatureAndItsRate, & thermal_conduction_results contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_init integer :: Ninstances,Nmaterialpoints,h class(tNode), pointer :: & material_homogenization, & homog, & homogThermal print'(/,a)', ' <<<+- thermal_conduction init -+>>>'; flush(6) Ninstances = count(thermal_type == THERMAL_conduction_ID) allocate(param(Ninstances)) material_homogenization => config_material%get('homogenization') do h = 1, size(material_name_homogenization) if (thermal_type(h) /= THERMAL_conduction_ID) cycle homog => material_homogenization%get(h) homogThermal => homog%get('thermal') associate(prm => param(thermal_typeInstance(h))) #if defined (__GFORTRAN__) prm%output = output_asStrings(homogThermal) #else prm%output = homogThermal%get_asStrings('output',defaultVal=emptyStringArray) #endif Nmaterialpoints=count(material_homogenizationAt==h) thermalState(h)%sizeState = 0 allocate(thermalState(h)%state0 (0,Nmaterialpoints)) allocate(thermalState(h)%subState0(0,Nmaterialpoints)) allocate(thermalState(h)%state (0,Nmaterialpoints)) thermalMapping(h)%p => material_homogenizationMemberAt deallocate(temperature (h)%p) allocate (temperature (h)%p(Nmaterialpoints), source=thermal_initialT(h)) deallocate(temperatureRate(h)%p) allocate (temperatureRate(h)%p(Nmaterialpoints), source=0.0_pReal) end associate enddo end subroutine thermal_conduction_init !-------------------------------------------------------------------------------------------------- !> @brief return heat generation rate !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, T, ip, el) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(in) :: & T real(pReal), intent(out) :: & Tdot, dTdot_dT integer :: & homog Tdot = 0.0_pReal dTdot_dT = 0.0_pReal homog = material_homogenizationAt(el) call constitutive_thermal_getRateAndItsTangents(TDot, dTDot_dT, T, crystallite_S,crystallite_Lp ,ip, el) Tdot = Tdot/real(homogenization_Nconstituents(homog),pReal) dTdot_dT = dTdot_dT/real(homogenization_Nconstituents(homog),pReal) end subroutine thermal_conduction_getSourceAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief return homogenized thermal conductivity in reference configuration !-------------------------------------------------------------------------------------------------- function thermal_conduction_getConductivity(ip,el) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal), dimension(3,3) :: & thermal_conduction_getConductivity integer :: & grain thermal_conduction_getConductivity = 0.0_pReal do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el)) thermal_conduction_getConductivity = thermal_conduction_getConductivity + & crystallite_push33ToRef(grain,ip,el,lattice_K(:,:,material_phaseAt(grain,el))) enddo thermal_conduction_getConductivity = thermal_conduction_getConductivity & / real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal) end function thermal_conduction_getConductivity !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized specific heat capacity !-------------------------------------------------------------------------------------------------- function thermal_conduction_getSpecificHeat(ip,el) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal) :: & thermal_conduction_getSpecificHeat integer :: & grain thermal_conduction_getSpecificHeat = 0.0_pReal do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el)) thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat & + lattice_c_p(material_phaseAt(grain,el)) enddo thermal_conduction_getSpecificHeat = thermal_conduction_getSpecificHeat & / real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal) end function thermal_conduction_getSpecificHeat !-------------------------------------------------------------------------------------------------- !> @brief returns homogenized mass density !-------------------------------------------------------------------------------------------------- function thermal_conduction_getMassDensity(ip,el) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal) :: & thermal_conduction_getMassDensity integer :: & grain thermal_conduction_getMassDensity = 0.0_pReal do grain = 1, homogenization_Nconstituents(material_homogenizationAt(el)) thermal_conduction_getMassDensity = thermal_conduction_getMassDensity & + lattice_rho(material_phaseAt(grain,el)) enddo thermal_conduction_getMassDensity = thermal_conduction_getMassDensity & / real(homogenization_Nconstituents(material_homogenizationAt(el)),pReal) end function thermal_conduction_getMassDensity !-------------------------------------------------------------------------------------------------- !> @brief updates thermal state with solution from heat conduction PDE !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_putTemperatureAndItsRate(T,Tdot,ip,el) integer, intent(in) :: & ip, & !< integration point number el !< element number real(pReal), intent(in) :: & T, & Tdot integer :: & homog, & offset homog = material_homogenizationAt(el) offset = thermalMapping(homog)%p(ip,el) temperature (homog)%p(offset) = T temperatureRate(homog)%p(offset) = Tdot end subroutine thermal_conduction_putTemperatureAndItsRate !-------------------------------------------------------------------------------------------------- !> @brief writes results to HDF5 output file !-------------------------------------------------------------------------------------------------- subroutine thermal_conduction_results(homog,group) integer, intent(in) :: homog character(len=*), intent(in) :: group integer :: o associate(prm => param(damage_typeInstance(homog))) outputsLoop: do o = 1,size(prm%output) select case(trim(prm%output(o))) case('T') call results_writeDataset(group,temperature(homog)%p,'T',& 'temperature','K') end select enddo outputsLoop end associate end subroutine thermal_conduction_results end module thermal_conduction