!* $Id$ !******************************************************************** ! Material subroutine for MSC.Marc ! ! written by P. Eisenlohr, ! F. Roters, ! L. Hantcherli, ! W.A. Counts ! D.D. Tjahjanto ! C. Kords ! ! MPI fuer Eisenforschung, Duesseldorf ! !******************************************************************** ! Usage: ! - choose material as hypela2 ! - set statevariable 2 to index of homogenization ! - set statevariable 3 to index of microstructure ! - make sure the file "material.config" exists in the working ! directory ! - make sure the file "numerics.config" exists in the working ! directory ! - use nonsymmetric option for solver (e.g. direct ! profile or multifrontal sparse, the latter seems ! to be faster!) ! - in case of ddm (domain decomposition)a SYMMETRIC ! solver has to be used, i.e uncheck "non-symmetric" !******************************************************************** ! Marc subroutines used: ! - hypela2 ! - plotv ! - quit !******************************************************************** ! Marc common blocks included: ! - concom: lovl, ncycle, inc, incsub ! - creeps: timinc !******************************************************************** ! include "prec.f90" ! uses nothing else MODULE mpie_interface character(len=64), parameter :: FEsolver = 'Marc' character(len=4), parameter :: InputFileExtension = '.dat' character(len=4), parameter :: LogFileExtension = '.log' CONTAINS subroutine mpie_interface_init() !$OMP CRITICAL (write2out) write(6,*) write(6,*) '<<<+- mpie_cpfem_marc init -+>>>' write(6,*) '$Id$' write(6,*) !$OMP END CRITICAL (write2out) return end subroutine function getSolverWorkingDirectoryName() implicit none character(1024) getSolverWorkingDirectoryName, outName character(len=*), parameter :: pathSep = achar(47)//achar(92) ! forward and backward slash getSolverWorkingDirectoryName='' outName='' inquire(6, name=outName) ! determine outputfile getSolverWorkingDirectoryName=outName(1:scan(outName,pathSep,back=.true.)) ! write(6,*) 'getSolverWorkingDirectoryName', getSolverWorkingDirectoryName end function function getModelName() use prec implicit none character(1024) getModelName getModelName = getSolverJobName() end function function getSolverJobName() use prec implicit none character(1024) getSolverJobName, outName character(len=*), parameter :: pathSep = achar(47)//achar(92) ! forward and backward slash integer(pInt) extPos getSolverJobName='' outName='' inquire(6, name=outName) ! determine outputfile extPos = len_trim(outName)-4 getSolverJobName=outName(scan(outName,pathSep,back=.true.)+1:extPos) ! write(6,*) 'getSolverJobName', getSolverJobName end function END MODULE include "IO.f90" ! uses prec include "numerics.f90" ! uses prec, IO include "debug.f90" ! uses prec, numerics include "math.f90" ! uses prec, numerics, debug include "FEsolving.f90" ! uses prec, IO, debug include "mesh.f90" ! uses prec, math, IO, FEsolving, debug include "material.f90" ! uses prec, math, IO, mesh, debug include "lattice.f90" ! uses prec, math, IO, material, debug include "constitutive_j2.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive_phenopowerlaw.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive_titanmod.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive_dislotwin.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive_nonlocal.f90" ! uses prec, math, IO, lattice, material, debug include "constitutive.f90" ! uses prec, IO, math, lattice, mesh, debug include "crystallite.f90" ! uses prec, math, IO, numerics, Fesolving, material, mesh, constitutive, debug include "homogenization_isostrain.f90" ! uses prec, math, IO, debug include "homogenization_RGC.f90" ! uses prec, math, IO, numerics, mesh, debug include "homogenization.f90" ! uses prec, math, IO, numerics, debug include "CPFEM.f90" ! uses prec, math, IO, numerics, debug, FEsolving, mesh, lattice, constitutive, crystallite, debug !******************************************************************** ! This is the Marc material routine !******************************************************************** ! ! ************* user subroutine for defining material behavior ************** ! ! ! CAUTION : Due to calculation of the Deformation gradients, Stretch Tensors and ! Rotation tensors at previous and current states, the analysis can be ! computationally expensive. Please use the user subroutine -> hypela ! if these kinematic quantities are not needed in the constitutive model ! ! ! IMPORTANT NOTES : ! ! (1) F,R,U are only available for continuum and membrane elements (not for ! shells and beams). ! ! (2) For total Lagrangian formulation use the -> 'Elasticity,1' card(= ! total Lagrange with large disp) in the parameter section of input deck. ! For updated Lagrangian formulation use the -> 'Plasticity,3' card(= ! update+finite+large disp+constant d) in the parameter section of ! input deck. ! ! The following operation obtains U (stretch tensor) at t=n+1 : ! ! call scla(un1,0.d0,itel,itel,1) ! do 3 k=1,3 ! do 2 i=1,3 ! do 1 j=1,3 ! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k) !1 continue !2 continue !3 continue ! !******************************************************************** subroutine hypela2(& d,& ! stress strain law to be formed g,& ! change in stress due to temperature effects e,& ! total elastic strain de,& ! increment of strain s,& ! stress - should be updated by user t,& ! state variables (comes in at t=n, must be updated to have state variables at t=n+1) dt,& ! increment of state variables ngens,& ! size of stress - strain law n,& ! element number nn,& ! integration point number kcus,& ! (1) layer number, (2) internal layer number matus,& ! (1) user material identification number, (2) internal material identification number ndi,& ! number of direct components nshear,& ! number of shear components disp,& ! incremental displacements dispt,& ! displacements at t=n (at assembly, lovl=4) and displacements at t=n+1 (at stress recovery, lovl=6) coord,& ! coordinates ffn,& ! deformation gradient frotn,& ! rotation tensor strechn,& ! square of principal stretch ratios, lambda(i) eigvn,& ! i principal direction components for j eigenvalues ffn1,& ! deformation gradient frotn1,& ! rotation tensor strechn1,& ! square of principal stretch ratios, lambda(i) eigvn1,& ! i principal direction components for j eigenvalues ncrd,& ! number of coordinates itel,& ! dimension of F and R, either 2 or 3 ndeg,& ! number of degrees of freedom ==> is this at correct list position ?!? ndm,& ! nnode,& ! number of nodes per element jtype,& ! element type lclass,& ! element class ifr,& ! set to 1 if R has been calculated ifu & ! set to 1 if stretch has been calculated ) use prec, only: pReal, & pInt use FEsolving, only: cycleCounter, & theInc, & cutBack, & calcMode, & lastMode, & theTime, & theDelta, & lastIncConverged, & outdatedByNewInc, & outdatedFFN1, & terminallyIll, & symmetricSolver use math, only: invnrmMandel use debug, only: debug_info, & debug_reset use mesh, only: mesh_FEasCP use CPFEM, only: CPFEM_initAll,CPFEM_general,CPFEM_init_done !$ use OMP_LIB ! the openMP function library !$ use numerics, only: mpieNumThreadsInt ! number of threads set by MPIE_NUMTHREADS implicit none ! ** Start of generated type statements ** real(pReal) coord, d, de, disp, dispt, dt, e, eigvn, eigvn1, ffn, ffn1 real(pReal) frotn, frotn1, g integer(pInt) ifr, ifu, itel, jtype, kcus, lclass, matus, n, ncrd, ndeg integer(pInt) ndi, ndm, ngens, nn, nnode, nshear real(pReal) s, strechn, strechn1, t ! ** End of generated type statements ** dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,*),s(*), n(2),coord(ncrd,*),disp(ndeg,*),matus(2),dispt(ndeg,*),ffn(itel,*),& frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*),kcus(2), lclass(2) ! Marc common blocks are in fixed format so they have to be reformated to free format (f90) ! Beware of changes in newer Marc versions include "concom%%MARCVERSION%%" ! concom is needed for inc, subinc, ncycle, lovl include "creeps%%MARCVERSION%%" ! creeps is needed for timinc (time increment) real(pReal), dimension(6) :: stress real(pReal), dimension(6,6) :: ddsdde real(pReal), dimension (3,3) :: pstress ! dummy argument for call of cpfem_general (used by mpie_spectral) real(pReal), dimension (3,3,3,3) :: dPdF ! dummy argument for call of cpfem_general (used by mpie_spectral) integer(pInt) computationMode, i, cp_en ! OpenMP variable !$ integer(pInt) defaultNumThreadsInt ! default value set by Marc !$ defaultNumThreadsInt = omp_get_num_threads() ! remember number of threads set by Marc if (.not. CPFEM_init_done) call CPFEM_initAll(t(1),n(1),nn) !$ call omp_set_num_threads(mpieNumThreadsInt) ! set number of threads for parallel execution set by MPIE_NUM_THREADS if (lovl == 4) then ! Marc requires stiffness in separate call if ( timinc < theDelta .and. theInc == inc ) then ! first after cutback computationMode = 7 ! --> restore tangent and return it else computationMode = 6 ! --> just return known tangent endif else ! stress requested (lovl == 6) cp_en = mesh_FEasCP('elem',n(1)) if (cptim > theTime .or. inc /= theInc) then ! reached "convergence" terminallyIll = .false. cycleCounter = -1 ! first calc step increments this to cycle = 0 if (inc == 0) then ! >> start of analysis << lastIncConverged = .false. ! no Jacobian backup outdatedByNewInc = .false. ! no aging of state lastMode = .false. ! pretend last step was collection calcMode = .false. ! pretend last step was collection !$OMP CRITICAL (write2out) write (6,'(a,i6,x,i2)') '<< HYPELA2 >> start of analysis..! ',n(1),nn call flush(6) !$OMP END CRITICAL (write2out) else if (inc - theInc > 1) then ! >> restart of broken analysis << lastIncConverged = .false. ! no Jacobian backup outdatedByNewInc = .false. ! no aging of state lastMode = .true. ! pretend last step was calculation calcMode = .true. ! pretend last step was calculation !$OMP CRITICAL (write2out) write (6,'(a,i6,x,i2)') '<< HYPELA2 >> restart of analysis..! ',n(1),nn call flush(6) !$OMP END CRITICAL (write2out) else ! >> just the next inc << lastIncConverged = .true. ! request Jacobian backup outdatedByNewInc = .true. ! request aging of state lastMode = .true. ! assure last step was calculation calcMode = .true. ! assure last step was calculation !$OMP CRITICAL (write2out) write (6,'(a,i6,x,i2)') '<< HYPELA2 >> new increment..! ',n(1),nn call flush(6) !$OMP END CRITICAL (write2out) endif else if ( timinc < theDelta ) then ! >> cutBack << terminallyIll = .false. cycleCounter = -1 ! first calc step increments this to cycle = 0 calcMode = .true. ! pretend last step was calculation !$OMP CRITICAL (write2out) write(6,'(a,i6,x,i2)') '<< HYPELA2 >> cutback detected..! ',n(1),nn call flush(6) !$OMP END CRITICAL (write2out) endif ! convergence treatment end calcMode(nn,cp_en) = .not. calcMode(nn,cp_en) ! ping pong (calc <--> collect) if ( calcMode(nn,cp_en) ) then ! now --- CALC --- if ( lastMode /= calcMode(nn,cp_en) ) then ! first after ping pong call debug_reset() ! resets debugging outdatedFFN1 = .false. cycleCounter = cycleCounter + 1_pInt endif if ( outdatedByNewInc ) then outdatedByNewInc = .false. ! reset flag computationMode = 1 ! calc and age results else computationMode = 2 ! plain calc endif else ! now --- COLLECT --- if ( lastMode /= calcMode(nn,cp_en) .and. & .not. terminallyIll ) then call debug_info() ! first after ping pong reports (meaningful) debugging endif if ( lastIncConverged ) then lastIncConverged = .false. ! reset flag computationMode = 4 ! collect and backup Jacobian after convergence else computationMode = 3 ! plain collect endif endif theTime = cptim ! record current starting time theDelta = timinc ! record current time increment theInc = inc ! record current increment number lastMode = calcMode(nn,cp_en) ! record calculationMode endif call CPFEM_general(computationMode,ffn,ffn1,t(1),timinc,n(1),nn,stress,ddsdde, pstress, dPdF) ! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13 ! Marc: 11, 22, 33, 12, 23, 13 ! Marc: 11, 22, 33, 12 forall(i=1:ngens) d(1:ngens,i) = invnrmMandel(i)*ddsdde(1:ngens,i)*invnrmMandel(1:ngens) s(1:ngens) = stress(1:ngens)*invnrmMandel(1:ngens) if(symmetricSolver) d(1:ngens,1:ngens) = 0.5_pReal*(d(1:ngens,1:ngens)+transpose(d(1:ngens,1:ngens))) !$ call omp_set_num_threads(defaultNumThreadsInt) ! reset number of threads to stored default value end subroutine !******************************************************************** ! This routine sets user defined output variables for Marc !******************************************************************** ! ! select a variable contour plotting (user subroutine). ! !******************************************************************** subroutine plotv(& v,& ! variable s,& ! stress array sp,& ! stresses in preferred direction etot,& ! total strain (generalized) eplas,& ! total plastic strain ecreep,& ! total creep strain t,& ! current temperature m,& ! element number nn,& ! integration point number layer,& ! layer number ndi,& ! number of direct stress components nshear,& ! number of shear stress components jpltcd & ! user variable index ) use prec, only: pReal,pInt use mesh, only: mesh_FEasCP use homogenization, only: materialpoint_results implicit none real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*) real(pReal) v, t(*) integer(pInt) m, nn, layer, ndi, nshear, jpltcd v = materialpoint_results(jpltcd,nn,mesh_FEasCP('elem', m)) return end subroutine