% ######################## \chapter{Crystallographic orientations} % ######################## \section{Bunge Euler angles} \label{bunges} Euler angles $(\varphi_1, \phi, \varphi_2)$---following the Bunge convention---rotate the sample coordinate system ($X$, $Y$, $Z$ or RD, TD, ND) into the crystal coordinate system ($x_\text c$, $y_\text c$, $z_\text c$). Three successive rotations are carried out in the following way \citep[p.~4]{Bunge1982}: \begin{enumerate} \item Rotate by $\varphi_1$ around Z, to bring X into the $x_\text c$--$y_\text c$-plane. The new intermediate axes are $X^\prime$, $Y^\prime$ and $Z$ (unchanged). \item Now rotate by $\phi$ around $X^\prime$, to make $Z$ parallel with $z_\text c$. The intermediate axes are $X^\prime$, $Y^{\prime\prime}$, $Z^\prime$. \item A final rotation by $\varphi_2$ around $Z^\prime \equiv z_\text c$ makes the rotated axes then identical to the crystal axes. \end{enumerate} The rotation matrix can be calculated as \[% Gottstein pg 55 \tnsr{g}=\left(\begin{array}{ccc} \cos{\varphi_1}\cos{\varphi_2}-\sin{\varphi_1}\sin{\varphi_2}\cos{\phi} & \sin{\varphi_1}\cos{\varphi_2}+\cos{\varphi_1}\sin{\varphi_2}\cos{\phi}& \sin{\varphi_2}\sin{\phi}\\ -\cos{\varphi_1}\sin{\varphi_2}-\sin{\varphi_1}\cos{\varphi_2}\cos{\phi} & -\sin{\varphi_1}\cos{\varphi_2}+\cos{\varphi_1}\cos{\varphi_2}\cos{\phi}& \cos{\varphi_2}\sin{\phi}\\ \sin{\varphi_1}\sin{\phi} & -\cos{\varphi_1}\sin{\phi}& \cos{\phi} \end{array}\right) \]