!-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Luv Sharma, Max-Planck-Institut für Eisenforschung GmbH !> @brief setting precision for real and int type !> @details setting precision for real and int type and for DAMASK_NaN. Definition is made !! depending on makro "INT" defined during compilation !! for details on NaN see https://software.intel.com/en-us/forums/topic/294680 !-------------------------------------------------------------------------------------------------- module prec #if !(defined(__GFORTRAN__) && __GNUC__ < 5) use, intrinsic :: & ! unfortunately not avialable in gfortran <= 5 IEEE_arithmetic #endif implicit none private #if (FLOAT==8) integer, parameter, public :: pReal = 8 !< floating point double precision (was selected_real_kind(15,300), number with 15 significant digits, up to 1e+-300) #ifdef __INTEL_COMPILER real(pReal), parameter, public :: DAMASK_NaN = Z'7FF8000000000000' !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html) #endif #ifdef __GFORTRAN__ real(pReal), parameter, public :: DAMASK_NaN = real(Z'7FF8000000000000',pReal) !< quiet NaN for double precision (from http://www.hpc.unimelb.edu.au/doc/f90lrm/dfum_035.html) #endif #else NO SUITABLE PRECISION FOR REAL SELECTED, STOPPING COMPILATION #endif #if (INT==4) integer, parameter, public :: pInt = 4 !< integer representation 32 bit (was selected_int_kind(9), number with at least up to +- 1e9) #elif (INT==8) integer, parameter, public :: pInt = 8 !< integer representation 64 bit (was selected_int_kind(12), number with at least up to +- 1e12) #else NO SUITABLE PRECISION FOR INTEGER SELECTED, STOPPING COMPILATION #endif integer, parameter, public :: pLongInt = 8 !< integer representation 64 bit (was selected_int_kind(12), number with at least up to +- 1e12) real(pReal), parameter, public :: tol_math_check = 1.0e-8_pReal !< tolerance for internal math self-checks (rotation) integer(pInt), allocatable, dimension(:) :: realloc_lhs_test type, public :: p_vec !< variable length datatype used for storage of state real(pReal), dimension(:), pointer :: p end type p_vec type, public :: p_intvec integer(pInt), dimension(:), pointer :: p end type p_intvec !http://stackoverflow.com/questions/3948210/can-i-have-a-pointer-to-an-item-in-an-allocatable-array type, public :: tState integer(pInt) :: & sizeState = 0_pInt , & !< size of state sizeDotState = 0_pInt, & !< size of dot state, i.e. parts of the state that are integrated sizeDeltaState = 0_pInt, & !< size of delta state, i.e. parts of the state that have discontinuous rates sizePostResults = 0_pInt !< size of output data real(pReal), pointer, dimension(:), contiguous :: & atolState real(pReal), pointer, dimension(:,:), contiguous :: & ! a pointer is needed here because we might point to state/doState. However, they will never point to something, but are rather allocated and, hence, contiguous state, & !< state dotState, & !< state rate state0 real(pReal), allocatable, dimension(:,:) :: & partionedState0, & subState0, & state_backup, & deltaState, & previousDotState, & !< state rate of previous xxxx previousDotState2, & !< state rate two xxxx ago dotState_backup, & !< backup of state rate RK4dotState real(pReal), allocatable, dimension(:,:,:) :: & RKCK45dotState end type type, extends(tState), public :: tPlasticState integer(pInt) :: & nSlip = 0_pInt , & nTwin = 0_pInt, & nTrans = 0_pInt logical :: & nonlocal = .false. real(pReal), pointer, dimension(:,:), contiguous :: & slipRate, & !< slip rate accumulatedSlip !< accumulated plastic slip end type type, public :: tSourceState type(tState), dimension(:), allocatable :: p !< tState for each active source mechanism in a phase end type type, public :: tHomogMapping integer(pInt), pointer, dimension(:,:) :: p end type type, public :: tPhaseMapping integer(pInt), pointer, dimension(:,:,:) :: p end type #ifdef FEM type, public :: tOutputData integer(pInt) :: & sizeIpCells = 0_pInt , & sizeResults = 0_pInt real(pReal), allocatable, dimension(:,:) :: & output !< output data end type #endif public :: & prec_init, & prec_isNaN, & dEq, & dEq0, & cEq, & dNeq, & dNeq0, & cNeq contains !-------------------------------------------------------------------------------------------------- !> @brief reporting precision and checking if DAMASK_NaN is set correctly !-------------------------------------------------------------------------------------------------- subroutine prec_init use, intrinsic :: & iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) implicit none external :: & quit write(6,'(/,a)') ' <<<+- prec init -+>>>' #include "compilation_info.f90" write(6,'(a,i3)') ' Bytes for pReal: ',pReal write(6,'(a,i3)') ' Bytes for pInt: ',pInt write(6,'(a,i3)') ' Bytes for pLongInt: ',pLongInt write(6,'(a,e10.3)') ' NaN: ', DAMASK_NaN write(6,'(a,l3)') ' NaN != NaN: ',DAMASK_NaN /= DAMASK_NaN write(6,'(a,l3,/)') ' NaN check passed ',prec_isNAN(DAMASK_NaN) if ((.not. prec_isNaN(DAMASK_NaN)) .or. (DAMASK_NaN == DAMASK_NaN)) call quit(9000) realloc_lhs_test = [1_pInt,2_pInt] if (realloc_lhs_test(2)/=2_pInt) call quit(9000) end subroutine prec_init !-------------------------------------------------------------------------------------------------- !> @brief figures out if a floating point number is NaN ! basically just a small wrapper, because gfortran < 5.0 does not have the IEEE module !-------------------------------------------------------------------------------------------------- logical elemental pure function prec_isNaN(a) implicit none real(pReal), intent(in) :: a #if (defined(__GFORTRAN__) && __GNUC__ < 5) intrinsic :: isNaN prec_isNaN = isNaN(a) #else prec_isNaN = IEEE_is_NaN(a) #endif end function prec_isNaN !-------------------------------------------------------------------------------------------------- !> @brief equality comparison for float with double precision ! replaces "==" but for certain (relative) tolerance. Counterpart to dNeq ! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm !-------------------------------------------------------------------------------------------------- logical elemental pure function dEq(a,b,tol) implicit none real(pReal), intent(in) :: a,b real(pReal), intent(in), optional :: tol real(pReal), parameter :: eps = 2.220446049250313E-16 ! DBL_EPSILON in C dEq = merge(.True., .False.,abs(a-b) <= merge(tol,eps,present(tol))*maxval(abs([a,b]))) end function dEq !-------------------------------------------------------------------------------------------------- !> @brief inequality comparison for float with double precision ! replaces "!=" but for certain (relative) tolerance. Counterpart to dEq ! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm !-------------------------------------------------------------------------------------------------- logical elemental pure function dNeq(a,b,tol) implicit none real(pReal), intent(in) :: a,b real(pReal), intent(in), optional :: tol real(pReal), parameter :: eps = 2.220446049250313E-16 ! DBL_EPSILON in C dNeq = merge(.False., .True.,abs(a-b) <= merge(tol,eps,present(tol))*maxval(abs([a,b]))) end function dNeq !-------------------------------------------------------------------------------------------------- !> @brief equality to 0comparison for float with double precision ! replaces "==0" but for certain (relative) tolerance. Counterpart to dNeq0 ! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm !-------------------------------------------------------------------------------------------------- logical elemental pure function dEq0(a,tol) implicit none real(pReal), intent(in) :: a real(pReal), intent(in), optional :: tol real(pReal), parameter :: eps = 2.220446049250313E-16 ! DBL_EPSILON in C dEq0 = merge(.True., .False.,abs(a) <= merge(tol,eps,present(tol))*abs(a)) end function dEq0 !-------------------------------------------------------------------------------------------------- !> @brief inequality comparison to 0 for float with double precision ! replaces "!=0" but for certain (relative) tolerance. Counterpart to dEq0 ! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm !-------------------------------------------------------------------------------------------------- logical elemental pure function dNeq0(a,tol) implicit none real(pReal), intent(in) :: a real(pReal), intent(in), optional :: tol real(pReal), parameter :: eps = 2.220446049250313E-16 ! DBL_EPSILON in C dNeq0 = merge(.False., .True.,abs(a) <= merge(tol,eps,present(tol))*abs(a)) end function dNeq0 !-------------------------------------------------------------------------------------------------- !> @brief equality comparison for complex with double precision ! replaces "==" but for certain (relative) tolerance. Counterpart to cNeq ! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm ! probably a component wise comparison would be more accurate than the comparsion of the absolute ! value !-------------------------------------------------------------------------------------------------- logical elemental pure function cEq(a,b,tol) implicit none complex(pReal), intent(in) :: a,b real(pReal), intent(in), optional :: tol real(pReal), parameter :: eps = 2.220446049250313E-16 ! DBL_EPSILON in C cEq = merge(.True., .False.,abs(a-b) <= merge(tol,eps,present(tol))*maxval(abs([a,b]))) end function cEq !-------------------------------------------------------------------------------------------------- !> @brief inequality comparison for complex with double precision ! replaces "!=" but for certain (relative) tolerance. Counterpart to cEq ! http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm ! probably a component wise comparison would be more accurate than the comparsion of the absolute ! value !-------------------------------------------------------------------------------------------------- logical elemental pure function cNeq(a,b,tol) implicit none complex(pReal), intent(in) :: a,b real(pReal), intent(in), optional :: tol real(pReal), parameter :: eps = 2.220446049250313E-16 ! DBL_EPSILON in C cNeq = merge(.False., .True.,abs(a-b) <= merge(tol,eps,present(tol))*maxval(abs([a,b]))) end function cNeq end module prec