!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, KU Leuven !> @brief Polynomial representation for variable data !-------------------------------------------------------------------------------------------------- module polynomials use prec use IO use YAML_parse use YAML_types implicit none private type, public :: tPolynomial real(pReal), dimension(:), allocatable :: coef real(pReal) :: x_ref = huge(0.0_pReal) contains procedure, public :: at => eval end type tPolynomial interface polynomial module procedure polynomial_from_dict module procedure polynomial_from_coef end interface polynomial public :: & polynomial, & polynomials_init contains !-------------------------------------------------------------------------------------------------- !> @brief Run self-test. !-------------------------------------------------------------------------------------------------- subroutine polynomials_init() print'(/,1x,a)', '<<<+- polynomials init -+>>>'; flush(IO_STDOUT) call selfTest() end subroutine polynomials_init !-------------------------------------------------------------------------------------------------- !> @brief Initialize a Polynomial from Coefficients. !-------------------------------------------------------------------------------------------------- pure function polynomial_from_coef(coef,x_ref) result(p) real(pReal), dimension(0:), intent(in) :: coef real(pReal), intent(in) :: x_ref type(tPolynomial) :: p p%coef = coef p%x_ref = x_ref end function polynomial_from_coef !-------------------------------------------------------------------------------------------------- !> @brief Initialize a Polynomial from a Dictionary with Coefficients. !-------------------------------------------------------------------------------------------------- function polynomial_from_dict(dict,y,x) result(p) type(tDict), intent(in) :: dict character(len=*), intent(in) :: y, x type(tPolynomial) :: p real(pReal), dimension(:), allocatable :: coef real(pReal) :: x_ref integer :: i, o character(len=1) :: o_s allocate(coef(1),source=dict%get_asFloat(y)) if (dict%contains(y//','//x)) then x_ref = dict%get_asFloat(x//'_ref') coef = [coef,dict%get_asFloat(y//','//x)] end if do o = 2,4 write(o_s,'(I0.0)') o if (dict%contains(y//','//x//'^'//o_s)) then x_ref = dict%get_asFloat(x//'_ref') coef = [coef,[(0.0_pReal,i=size(coef),o-1)],dict%get_asFloat(y//','//x//'^'//o_s)] end if end do p = Polynomial(coef,x_ref) end function polynomial_from_dict !-------------------------------------------------------------------------------------------------- !> @brief Evaluate a Polynomial. !-------------------------------------------------------------------------------------------------- pure function eval(self,x) result(y) class(tPolynomial), intent(in) :: self real(pReal), intent(in) :: x real(pReal) :: y integer :: i y = self%coef(ubound(self%coef,1)) do i = ubound(self%coef,1)-1, 0, -1 #ifndef __INTEL_COMPILER y = y*(x-self%x_ref) +self%coef(i) #else y = IEEE_FMA(y,x-self%x_ref,self%coef(i)) #endif enddo end function eval !-------------------------------------------------------------------------------------------------- !> @brief Check correctness of polynomical functionality. !-------------------------------------------------------------------------------------------------- subroutine selfTest() type(tPolynomial) :: p1, p2 real(pReal), dimension(5) :: coef integer :: i real(pReal) :: x_ref, x, y class(tNode), pointer :: dict character(len=pStringLen), dimension(size(coef)) :: coef_s character(len=pStringLen) :: x_ref_s, x_s, YAML_s call random_number(coef) call random_number(x_ref) call random_number(x) coef = coef*10_pReal -0.5_pReal x_ref = x_ref*10_pReal -0.5_pReal x = x*10_pReal -0.5_pReal p1 = polynomial([coef(1)],x_ref) if (dNeq(p1%at(x),coef(1))) error stop 'polynomial: eval(constant)' p1 = polynomial(coef,x_ref) if (dNeq(p1%at(x_ref),coef(1))) error stop 'polynomial: @ref' do i = 1, size(coef_s) write(coef_s(i),*) coef(i) end do write(x_ref_s,*) x_ref write(x_s,*) x YAML_s = 'C: '//trim(adjustl(coef_s(1)))//IO_EOL//& 'C,T: '//trim(adjustl(coef_s(2)))//IO_EOL//& 'C,T^2: '//trim(adjustl(coef_s(3)))//IO_EOL//& 'C,T^3: '//trim(adjustl(coef_s(4)))//IO_EOL//& 'C,T^4: '//trim(adjustl(coef_s(5)))//IO_EOL//& 'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL Dict => YAML_parse_str(trim(YAML_s)) p2 = polynomial(dict%asDict(),'C','T') if (dNeq(p1%at(x),p2%at(x),1.0e-6_pReal)) error stop 'polynomials: init' y = coef(1)+coef(2)*(x-x_ref)+coef(3)*(x-x_ref)**2+coef(4)*(x-x_ref)**3+coef(5)*(x-x_ref)**4 if (dNeq(p1%at(x),y,1.0e-6_pReal)) error stop 'polynomials: eval(full)' YAML_s = 'C: 0.0'//IO_EOL//& 'C,T: '//trim(adjustl(coef_s(2)))//IO_EOL//& 'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL Dict => YAML_parse_str(trim(YAML_s)) p1 = polynomial(dict%asDict(),'C','T') if (dNeq(p1%at(x_ref+x),-p1%at(x_ref-x),1.0e-10_pReal)) error stop 'polynomials: eval(linear)' YAML_s = 'C: 0.0'//IO_EOL//& 'C,T^2: '//trim(adjustl(coef_s(3)))//IO_EOL//& 'T_ref: '//trim(adjustl(x_ref_s))//IO_EOL Dict => YAML_parse_str(trim(YAML_s)) p1 = polynomial(dict%asDict(),'C','T') if (dNeq(p1%at(x_ref+x),p1%at(x_ref-x),1e-10_pReal)) error stop 'polynomials: eval(quadratic)' YAML_s = 'Y: '//trim(adjustl(coef_s(1)))//IO_EOL//& 'Y,X^3: '//trim(adjustl(coef_s(2)))//IO_EOL//& 'X_ref: '//trim(adjustl(x_ref_s))//IO_EOL Dict => YAML_parse_str(trim(YAML_s)) p1 = polynomial(dict%asDict(),'Y','X') if (dNeq(p1%at(x_ref+x)-coef(1),-(p1%at(x_ref-x)-coef(1)),1.0e-8_pReal)) error stop 'polynomials: eval(cubic)' YAML_s = 'Y: '//trim(adjustl(coef_s(1)))//IO_EOL//& 'Y,X^4: '//trim(adjustl(coef_s(2)))//IO_EOL//& 'X_ref: '//trim(adjustl(x_ref_s))//IO_EOL Dict => YAML_parse_str(trim(YAML_s)) p1 = polynomial(dict%asDict(),'Y','X') if (dNeq(p1%at(x_ref+x),p1%at(x_ref-x),1.0e-6_pReal)) error stop 'polynomials: eval(quartic)' end subroutine selfTest end module polynomials