! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for phenomenological crystal plasticity formulation using a powerlaw !! fitting !-------------------------------------------------------------------------------------------------- module constitutive_phenopowerlaw use prec, only: & pReal,& pInt implicit none private character (len=*), parameter, public :: & CONSTITUTIVE_PHENOPOWERLAW_label = 'phenopowerlaw' integer(pInt), dimension(:), allocatable, public :: & constitutive_phenopowerlaw_sizeDotState, & constitutive_phenopowerlaw_sizeState, & constitutive_phenopowerlaw_sizePostResults, & !< cumulative size of post results constitutive_phenopowerlaw_structure integer(pInt), dimension(:,:), allocatable, target, public :: & constitutive_phenopowerlaw_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & constitutive_phenopowerlaw_output !< name of each post result output character(len=32), dimension(:), allocatable, public :: & constitutive_phenopowerlaw_structureName integer(pInt), dimension(:), allocatable, private :: & constitutive_phenopowerlaw_Noutput, & !< number of outputs per instance of this constitution constitutive_phenopowerlaw_totalNslip, & !< no. of slip system used in simulation constitutive_phenopowerlaw_totalNtwin !< no. of twin system used in simulation integer(pInt), dimension(:,:), allocatable, private :: & constitutive_phenopowerlaw_Nslip, & !< active number of slip systems per family (input parameter, per family) constitutive_phenopowerlaw_Ntwin !< active number of twin systems per family (input parameter, per family) real(pReal), dimension(:), allocatable, private :: & constitutive_phenopowerlaw_CoverA, & !< c/a of the crystal (input parameter) constitutive_phenopowerlaw_gdot0_slip, & !< reference shear strain rate for slip (input parameter) constitutive_phenopowerlaw_gdot0_twin, & !< reference shear strain rate for twin (input parameter) constitutive_phenopowerlaw_n_slip, & !< stress exponent for slip (input parameter) constitutive_phenopowerlaw_n_twin, & !< stress exponent for twin (input parameter) constitutive_phenopowerlaw_spr, & !< push-up factor for slip saturation due to twinning constitutive_phenopowerlaw_twinB, & constitutive_phenopowerlaw_twinC, & constitutive_phenopowerlaw_twinD, & constitutive_phenopowerlaw_twinE, & constitutive_phenopowerlaw_h0_SlipSlip, & !< reference hardening slip - slip (input parameter) constitutive_phenopowerlaw_h0_SlipTwin, & !< reference hardening slip - twin (input parameter, no effect at the moment) constitutive_phenopowerlaw_h0_TwinSlip, & !< reference hardening twin - slip (input parameter) constitutive_phenopowerlaw_h0_TwinTwin, & !< reference hardening twin - twin (input parameter) constitutive_phenopowerlaw_a_slip, & constitutive_phenopowerlaw_aTolResistance, & constitutive_phenopowerlaw_aTolShear, & constitutive_phenopowerlaw_aTolTwinfrac real(pReal), dimension(:,:), allocatable, private :: & constitutive_phenopowerlaw_tau0_slip, & !< initial critical shear stress for slip (input parameter, per family) constitutive_phenopowerlaw_tau0_twin, & !< initial critical shear stress for twin (input parameter, per family) constitutive_phenopowerlaw_tausat_slip, & !< maximum critical shear stress for slip (input parameter, per family) constitutive_phenopowerlaw_nonSchmidCoeff, & constitutive_phenopowerlaw_interaction_SlipSlip, & !< interaction factors slip - slip (input parameter) constitutive_phenopowerlaw_interaction_SlipTwin, & !< interaction factors slip - twin (input parameter) constitutive_phenopowerlaw_interaction_TwinSlip, & !< interaction factors twin - slip (input parameter) constitutive_phenopowerlaw_interaction_TwinTwin !< interaction factors twin - twin (input parameter) real(pReal), dimension(:,:,:), allocatable, private :: & constitutive_phenopowerlaw_hardeningMatrix_SlipSlip, & constitutive_phenopowerlaw_hardeningMatrix_SlipTwin, & constitutive_phenopowerlaw_hardeningMatrix_TwinSlip, & constitutive_phenopowerlaw_hardeningMatrix_TwinTwin, & constitutive_phenopowerlaw_Cslip_66 public :: & constitutive_phenopowerlaw_init, & constitutive_phenopowerlaw_stateInit, & constitutive_phenopowerlaw_aTolState, & constitutive_phenopowerlaw_homogenizedC, & constitutive_phenopowerlaw_microstructure, & constitutive_phenopowerlaw_LpAndItsTangent, & constitutive_phenopowerlaw_dotState, & constitutive_phenopowerlaw_deltaState, & constitutive_phenopowerlaw_dotTemperature, & constitutive_phenopowerlaw_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine constitutive_phenopowerlaw_init(myFile) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use math, only: & math_Mandel3333to66, & math_Voigt66to3333 use IO use material use debug, only: & debug_level, & debug_constitutive,& debug_levelBasic use lattice implicit none integer(pInt), intent(in) :: myFile integer(pInt), parameter :: MAXNCHUNKS = lattice_maxNinteraction + 1_pInt integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions integer(pInt), dimension(6) :: configNchunks integer(pInt) :: & maxNinstance, & i,j,k, f,o, & Nchunks_SlipSlip, Nchunks_SlipTwin, Nchunks_TwinSlip, Nchunks_TwinTwin, & Nchunks_SlipFamilies, Nchunks_TwinFamilies, & myStructure, index_myFamily, index_otherFamily, & mySize=0_pInt, section = 0_pInt character(len=65536) :: & tag = '', & line = '' ! to start initialized write(6,'(/,a)') ' <<<+- constitutive_'//trim(CONSTITUTIVE_PHENOPOWERLAW_label)//' init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(phase_plasticity == CONSTITUTIVE_PHENOPOWERLAW_label),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance Nchunks_SlipFamilies = lattice_maxNslipFamily Nchunks_TwinFamilies = lattice_maxNtwinFamily Nchunks_SlipSlip = lattice_maxNinteraction Nchunks_SlipTwin = lattice_maxNinteraction Nchunks_TwinSlip = lattice_maxNinteraction Nchunks_TwinTwin = lattice_maxNinteraction allocate(constitutive_phenopowerlaw_sizeDotState(maxNinstance)) constitutive_phenopowerlaw_sizeDotState = 0_pInt allocate(constitutive_phenopowerlaw_sizeState(maxNinstance)) constitutive_phenopowerlaw_sizeState = 0_pInt allocate(constitutive_phenopowerlaw_sizePostResults(maxNinstance)) constitutive_phenopowerlaw_sizePostResults = 0_pInt allocate(constitutive_phenopowerlaw_sizePostResult(maxval(phase_Noutput),maxNinstance)) constitutive_phenopowerlaw_sizePostResult = 0_pInt allocate(constitutive_phenopowerlaw_output(maxval(phase_Noutput),maxNinstance)) constitutive_phenopowerlaw_output = '' allocate(constitutive_phenopowerlaw_Noutput(maxNinstance)) constitutive_phenopowerlaw_Noutput = 0_pInt allocate(constitutive_phenopowerlaw_structureName(maxNinstance)) constitutive_phenopowerlaw_structureName = '' allocate(constitutive_phenopowerlaw_structure(maxNinstance)) constitutive_phenopowerlaw_structure = 0_pInt allocate(constitutive_phenopowerlaw_Nslip(lattice_maxNslipFamily,maxNinstance)) constitutive_phenopowerlaw_Nslip = 0_pInt allocate(constitutive_phenopowerlaw_Ntwin(lattice_maxNtwinFamily,maxNinstance)) constitutive_phenopowerlaw_Ntwin = 0_pInt allocate(constitutive_phenopowerlaw_totalNslip(maxNinstance)) constitutive_phenopowerlaw_totalNslip = 0_pInt allocate(constitutive_phenopowerlaw_totalNtwin(maxNinstance)) constitutive_phenopowerlaw_totalNtwin = 0_pInt allocate(constitutive_phenopowerlaw_CoverA(maxNinstance)) constitutive_phenopowerlaw_CoverA = 0.0_pReal allocate(constitutive_phenopowerlaw_Cslip_66(6,6,maxNinstance)) constitutive_phenopowerlaw_Cslip_66 = 0.0_pReal allocate(constitutive_phenopowerlaw_gdot0_slip(maxNinstance)) constitutive_phenopowerlaw_gdot0_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_n_slip(maxNinstance)) constitutive_phenopowerlaw_n_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_tau0_slip(lattice_maxNslipFamily,maxNinstance)) constitutive_phenopowerlaw_tau0_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_tausat_slip(lattice_maxNslipFamily,maxNinstance)) constitutive_phenopowerlaw_tausat_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_gdot0_twin(maxNinstance)) constitutive_phenopowerlaw_gdot0_twin = 0.0_pReal allocate(constitutive_phenopowerlaw_n_twin(maxNinstance)) constitutive_phenopowerlaw_n_twin = 0.0_pReal allocate(constitutive_phenopowerlaw_tau0_twin(lattice_maxNtwinFamily,maxNinstance)) constitutive_phenopowerlaw_tau0_twin = 0.0_pReal allocate(constitutive_phenopowerlaw_spr(maxNinstance)) constitutive_phenopowerlaw_spr = 0.0_pReal allocate(constitutive_phenopowerlaw_twinB(maxNinstance)) constitutive_phenopowerlaw_twinB = 0.0_pReal allocate(constitutive_phenopowerlaw_twinC(maxNinstance)) constitutive_phenopowerlaw_twinC = 0.0_pReal allocate(constitutive_phenopowerlaw_twinD(maxNinstance)) constitutive_phenopowerlaw_twinD = 0.0_pReal allocate(constitutive_phenopowerlaw_twinE(maxNinstance)) constitutive_phenopowerlaw_twinE = 0.0_pReal allocate(constitutive_phenopowerlaw_h0_SlipSlip(maxNinstance)) constitutive_phenopowerlaw_h0_SlipSlip = 0.0_pReal allocate(constitutive_phenopowerlaw_h0_SlipTwin(maxNinstance)) constitutive_phenopowerlaw_h0_SlipTwin = 0.0_pReal allocate(constitutive_phenopowerlaw_h0_TwinSlip(maxNinstance)) constitutive_phenopowerlaw_h0_TwinSlip = 0.0_pReal allocate(constitutive_phenopowerlaw_h0_TwinTwin(maxNinstance)) constitutive_phenopowerlaw_h0_TwinTwin = 0.0_pReal allocate(constitutive_phenopowerlaw_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance)) constitutive_phenopowerlaw_interaction_SlipSlip = 0.0_pReal allocate(constitutive_phenopowerlaw_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance)) constitutive_phenopowerlaw_interaction_SlipTwin = 0.0_pReal allocate(constitutive_phenopowerlaw_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance)) constitutive_phenopowerlaw_interaction_TwinSlip = 0.0_pReal allocate(constitutive_phenopowerlaw_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance)) constitutive_phenopowerlaw_interaction_TwinTwin = 0.0_pReal allocate(constitutive_phenopowerlaw_a_slip(maxNinstance)) constitutive_phenopowerlaw_a_slip = 0.0_pReal allocate(constitutive_phenopowerlaw_aTolResistance(maxNinstance)) constitutive_phenopowerlaw_aTolResistance = 0.0_pReal allocate(constitutive_phenopowerlaw_aTolShear(maxNinstance)) constitutive_phenopowerlaw_aTolShear = 0.0_pReal allocate(constitutive_phenopowerlaw_aTolTwinfrac(maxNinstance)) constitutive_phenopowerlaw_aTolTwinfrac = 0.0_pReal allocate(constitutive_phenopowerlaw_nonSchmidCoeff(lattice_maxNonSchmid,maxNinstance)) constitutive_phenopowerlaw_nonSchmidCoeff = 0.0_pReal rewind(myFile) do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to line = IO_read(myFile) enddo do while (trim(line) /= '#EOF#') ! read through sections of phase part line = IO_read(myFile) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt ! advance section counter cycle ! skip to next line endif if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran if (phase_plasticity(section) == CONSTITUTIVE_PHENOPOWERLAW_label) then ! one of my sections i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase positions = IO_stringPos(line,MAXNCHUNKS) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('plasticity','elasticity') cycle case ('(output)') constitutive_phenopowerlaw_Noutput(i) = constitutive_phenopowerlaw_Noutput(i) + 1_pInt constitutive_phenopowerlaw_output(constitutive_phenopowerlaw_Noutput(i),i) = & IO_lc(IO_stringValue(line,positions,2_pInt)) case ('lattice_structure') constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt)) configNchunks = lattice_configNchunks(constitutive_phenopowerlaw_structureName(i)) Nchunks_SlipFamilies = configNchunks(1) Nchunks_TwinFamilies = configNchunks(2) Nchunks_SlipSlip = configNchunks(3) Nchunks_SlipTwin = configNchunks(4) Nchunks_TwinSlip = configNchunks(5) Nchunks_TwinTwin = configNchunks(6) case ('covera_ratio') constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2_pInt) case ('c11') constitutive_phenopowerlaw_Cslip_66(1,1,i) = IO_floatValue(line,positions,2_pInt) case ('c12') constitutive_phenopowerlaw_Cslip_66(1,2,i) = IO_floatValue(line,positions,2_pInt) case ('c13') constitutive_phenopowerlaw_Cslip_66(1,3,i) = IO_floatValue(line,positions,2_pInt) case ('c22') constitutive_phenopowerlaw_Cslip_66(2,2,i) = IO_floatValue(line,positions,2_pInt) case ('c23') constitutive_phenopowerlaw_Cslip_66(2,3,i) = IO_floatValue(line,positions,2_pInt) case ('c33') constitutive_phenopowerlaw_Cslip_66(3,3,i) = IO_floatValue(line,positions,2_pInt) case ('c44') constitutive_phenopowerlaw_Cslip_66(4,4,i) = IO_floatValue(line,positions,2_pInt) case ('c55') constitutive_phenopowerlaw_Cslip_66(5,5,i) = IO_floatValue(line,positions,2_pInt) case ('c66') constitutive_phenopowerlaw_Cslip_66(6,6,i) = IO_floatValue(line,positions,2_pInt) case ('nslip') do j = 1_pInt, Nchunks_SlipFamilies constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j) enddo case ('gdot0_slip') constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2_pInt) case ('n_slip') constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2_pInt) case ('tau0_slip') do j = 1_pInt, Nchunks_SlipFamilies constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('tausat_slip') do j = 1_pInt, Nchunks_SlipFamilies constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('a_slip', 'w0_slip') constitutive_phenopowerlaw_a_slip(i) = IO_floatValue(line,positions,2_pInt) case ('ntwin') do j = 1_pInt, Nchunks_TwinFamilies constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j) enddo case ('gdot0_twin') constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2_pInt) case ('n_twin') constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2_pInt) case ('tau0_twin') do j = 1_pInt, Nchunks_TwinFamilies constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('s_pr') constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2_pInt) case ('twin_b') constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2_pInt) case ('twin_c') constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2_pInt) case ('twin_d') constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2_pInt) case ('twin_e') constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2_pInt) case ('h0_slipslip') constitutive_phenopowerlaw_h0_SlipSlip(i) = IO_floatValue(line,positions,2_pInt) case ('h0_sliptwin') constitutive_phenopowerlaw_h0_SlipTwin(i) = IO_floatValue(line,positions,2_pInt) call IO_warning(42_pInt,ext_msg=trim(tag)//' ('//CONSTITUTIVE_PHENOPOWERLAW_label//')') case ('h0_twinslip') constitutive_phenopowerlaw_h0_TwinSlip(i) = IO_floatValue(line,positions,2_pInt) case ('h0_twintwin') constitutive_phenopowerlaw_h0_TwinTwin(i) = IO_floatValue(line,positions,2_pInt) case ('atol_resistance') constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2_pInt) case ('atol_shear') constitutive_phenopowerlaw_aTolShear(i) = IO_floatValue(line,positions,2_pInt) case ('atol_twinfrac') constitutive_phenopowerlaw_aTolTwinfrac(i) = IO_floatValue(line,positions,2_pInt) case ('interaction_slipslip') do j = 1_pInt, Nchunks_SlipSlip constitutive_phenopowerlaw_interaction_SlipSlip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_sliptwin') do j = 1_pInt, Nchunks_SlipTwin constitutive_phenopowerlaw_interaction_SlipTwin(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_twinslip') do j = 1_pInt, Nchunks_TwinSlip constitutive_phenopowerlaw_interaction_TwinSlip(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('interaction_twintwin') do j = 1_pInt, Nchunks_TwinTwin constitutive_phenopowerlaw_interaction_TwinTwin(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case ('nonschmid_coefficients') do j = 1_pInt, lattice_maxNonSchmid constitutive_phenopowerlaw_nonSchmidCoeff(j,i) = IO_floatValue(line,positions,1_pInt+j) enddo case default call IO_error(210_pInt,ext_msg=trim(tag)//' ('//CONSTITUTIVE_PHENOPOWERLAW_label//')') end select endif endif enddo sanityChecks: do i = 1_pInt,maxNinstance constitutive_phenopowerlaw_structure(i) = lattice_initializeStructure(constitutive_phenopowerlaw_structureName(i), & ! get structure constitutive_phenopowerlaw_CoverA(i)) constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i) = & min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i)) constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,i) = & min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested constitutive_phenopowerlaw_Ntwin(:,i)) constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether if (constitutive_phenopowerlaw_structure(i) < 1 ) call IO_error(205_pInt,e=i) if (any(constitutive_phenopowerlaw_tau0_slip(:,i) < 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='tau0_slip (' & //CONSTITUTIVE_PHENOPOWERLAW_label//')') if (constitutive_phenopowerlaw_gdot0_slip(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='gdot0_slip (' & //CONSTITUTIVE_PHENOPOWERLAW_label//')') if (constitutive_phenopowerlaw_n_slip(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='n_slip (' & //CONSTITUTIVE_PHENOPOWERLAW_label//')') if (any(constitutive_phenopowerlaw_tausat_slip(:,i) <= 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='tausat_slip (' & //CONSTITUTIVE_PHENOPOWERLAW_label//')') if (any(constitutive_phenopowerlaw_a_slip(i) == 0.0_pReal .and. & constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='a_slip (' & //CONSTITUTIVE_PHENOPOWERLAW_label//')') if (any(constitutive_phenopowerlaw_tau0_twin(:,i) < 0.0_pReal .and. & constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='tau0_twin (' & //CONSTITUTIVE_PHENOPOWERLAW_label//')') if ( constitutive_phenopowerlaw_gdot0_twin(i) <= 0.0_pReal .and. & any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='gdot0_twin (' & //CONSTITUTIVE_PHENOPOWERLAW_label//')') if ( constitutive_phenopowerlaw_n_twin(i) <= 0.0_pReal .and. & any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='n_twin (' & //CONSTITUTIVE_PHENOPOWERLAW_label//')') if (constitutive_phenopowerlaw_aTolResistance(i) <= 0.0_pReal) & constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa if (constitutive_phenopowerlaw_aTolShear(i) <= 0.0_pReal) & constitutive_phenopowerlaw_aTolShear(i) = 1.0e-6_pReal ! default absolute tolerance 1e-6 if (constitutive_phenopowerlaw_aTolTwinfrac(i) <= 0.0_pReal) & constitutive_phenopowerlaw_aTolTwinfrac(i) = 1.0e-6_pReal ! default absolute tolerance 1e-6 enddo sanityChecks allocate(constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from slip activity maxval(constitutive_phenopowerlaw_totalNslip),& maxNinstance)) allocate(constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from twin activity maxval(constitutive_phenopowerlaw_totalNtwin),& maxNinstance)) allocate(constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from slip activity maxval(constitutive_phenopowerlaw_totalNslip),& maxNinstance)) allocate(constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from twin activity maxval(constitutive_phenopowerlaw_totalNtwin),& maxNinstance)) constitutive_phenopowerlaw_hardeningMatrix_SlipSlip = 0.0_pReal constitutive_phenopowerlaw_hardeningMatrix_SlipTwin = 0.0_pReal constitutive_phenopowerlaw_hardeningMatrix_TwinSlip = 0.0_pReal constitutive_phenopowerlaw_hardeningMatrix_TwinTwin = 0.0_pReal instancesLoop: do i = 1_pInt,maxNinstance outputsLoop: do o = 1_pInt,constitutive_phenopowerlaw_Noutput(i) select case(constitutive_phenopowerlaw_output(o,i)) case('resistance_slip', & 'shearrate_slip', & 'accumulatedshear_slip', & 'resolvedstress_slip' & ) mySize = constitutive_phenopowerlaw_totalNslip(i) case('resistance_twin', & 'shearrate_twin', & 'accumulatedshear_twin', & 'resolvedstress_twin' & ) mySize = constitutive_phenopowerlaw_totalNtwin(i) case('totalshear', & 'totalvolfrac' & ) mySize = 1_pInt case default call IO_error(212_pInt,ext_msg=constitutive_phenopowerlaw_output(o,i)//' ('//CONSTITUTIVE_PHENOPOWERLAW_label//')') end select if (mySize > 0_pInt) then ! any meaningful output found constitutive_phenopowerlaw_sizePostResult(o,i) = mySize constitutive_phenopowerlaw_sizePostResults(i) = & constitutive_phenopowerlaw_sizePostResults(i) + mySize endif enddo outputsLoop constitutive_phenopowerlaw_sizeDotState(i) = constitutive_phenopowerlaw_totalNslip(i)+ & constitutive_phenopowerlaw_totalNtwin(i)+ & 2_pInt + & constitutive_phenopowerlaw_totalNslip(i)+ & constitutive_phenopowerlaw_totalNtwin(i) ! s_slip, s_twin, sum(gamma), sum(f), accshear_slip, accshear_twin constitutive_phenopowerlaw_sizeState(i) = constitutive_phenopowerlaw_sizeDotState(i) myStructure = constitutive_phenopowerlaw_structure(i) constitutive_phenopowerlaw_Cslip_66(:,:,i) = lattice_symmetrizeC66(constitutive_phenopowerlaw_structureName(i),& constitutive_phenopowerlaw_Cslip_66(:,:,i)) ! assign elasticity tensor constitutive_phenopowerlaw_Cslip_66(:,:,i) = & math_Mandel3333to66(math_Voigt66to3333(constitutive_phenopowerlaw_Cslip_66(:,:,i))) do f = 1_pInt,lattice_maxNslipFamily ! >>> interaction slip -- X index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1_pInt,i)) do j = 1_pInt,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip) do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i)) do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,i) = & constitutive_phenopowerlaw_interaction_SlipSlip(lattice_interactionSlipSlip( & sum(lattice_NslipSystem(1:f-1,myStructure))+j, & sum(lattice_NslipSystem(1:o-1,myStructure))+k, & myStructure), i ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i)) do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,i) = & constitutive_phenopowerlaw_interaction_SlipTwin(lattice_interactionSlipTwin( & sum(lattice_NslipSystem(1:f-1_pInt,myStructure))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, & myStructure), i ) enddo; enddo enddo; enddo do f = 1_pInt,lattice_maxNtwinFamily ! >>> interaction twin -- X index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1_pInt,i)) do j = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin) do o = 1_pInt,lattice_maxNslipFamily index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i)) do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip) constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,i) = & constitutive_phenopowerlaw_interaction_TwinSlip(lattice_interactionTwinSlip( & sum(lattice_NtwinSystem(1:f-1_pInt,myStructure))+j, & sum(lattice_NslipSystem(1:o-1_pInt,myStructure))+k, & myStructure), i ) enddo; enddo do o = 1_pInt,lattice_maxNtwinFamily index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i)) do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin) constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,i) = & constitutive_phenopowerlaw_interaction_TwinTwin(lattice_interactionTwinTwin( & sum(lattice_NtwinSystem(1:f-1_pInt,myStructure))+j, & sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, & myStructure), i ) enddo; enddo enddo; enddo enddo instancesLoop end subroutine constitutive_phenopowerlaw_init !-------------------------------------------------------------------------------------------------- !> @brief sets the initial microstructural state for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- pure function constitutive_phenopowerlaw_stateInit(myInstance) use lattice, only: & lattice_maxNslipFamily, & lattice_maxNtwinFamily implicit none integer(pInt), intent(in) :: & myInstance !< number specifying the instance of the plasticity real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(myInstance)) :: & constitutive_phenopowerlaw_stateInit integer(pInt) :: & i constitutive_phenopowerlaw_stateInit = 0.0_pReal do i = 1_pInt,lattice_maxNslipFamily constitutive_phenopowerlaw_stateInit(1+& sum(constitutive_phenopowerlaw_Nslip(1:i-1,myInstance)) : & sum(constitutive_phenopowerlaw_Nslip(1:i ,myInstance))) = & constitutive_phenopowerlaw_tau0_slip(i,myInstance) enddo do i = 1_pInt,lattice_maxNtwinFamily constitutive_phenopowerlaw_stateInit(1+sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+& sum(constitutive_phenopowerlaw_Ntwin(1:i-1,myInstance)) : & sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+& sum(constitutive_phenopowerlaw_Ntwin(1:i ,myInstance))) = & constitutive_phenopowerlaw_tau0_twin(i,myInstance) enddo end function constitutive_phenopowerlaw_stateInit !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- pure function constitutive_phenopowerlaw_aTolState(myInstance) implicit none integer(pInt), intent(in) :: myInstance !< number specifying the instance of the plasticity real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: & constitutive_phenopowerlaw_aTolState constitutive_phenopowerlaw_aTolState(1:constitutive_phenopowerlaw_totalNslip(myInstance)+ & constitutive_phenopowerlaw_totalNtwin(myInstance)) = & constitutive_phenopowerlaw_aTolResistance(myInstance) constitutive_phenopowerlaw_aTolState(1+constitutive_phenopowerlaw_totalNslip(myInstance)+ & constitutive_phenopowerlaw_totalNtwin(myInstance)) = & constitutive_phenopowerlaw_aTolShear(myInstance) constitutive_phenopowerlaw_aTolState(2+constitutive_phenopowerlaw_totalNslip(myInstance)+ & constitutive_phenopowerlaw_totalNtwin(myInstance)) = & constitutive_phenopowerlaw_aTolTwinFrac(myInstance) constitutive_phenopowerlaw_aTolState(3+constitutive_phenopowerlaw_totalNslip(myInstance)+ & constitutive_phenopowerlaw_totalNtwin(myInstance): & 2+2*(constitutive_phenopowerlaw_totalNslip(myInstance)+ & constitutive_phenopowerlaw_totalNtwin(myInstance))) = & constitutive_phenopowerlaw_aTolShear(myInstance) end function constitutive_phenopowerlaw_aTolState !-------------------------------------------------------------------------------------------------- !> @brief returns the homogenized elasticity matrix !-------------------------------------------------------------------------------------------------- pure function constitutive_phenopowerlaw_homogenizedC(state,ipc,ip,el) use prec, only: & p_vec use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(6,6) :: & constitutive_phenopowerlaw_homogenizedC integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state constitutive_phenopowerlaw_homogenizedC = constitutive_phenopowerlaw_Cslip_66(1:6,1:6,& phase_plasticityInstance(material_phase(ipc,ip,el))) end function constitutive_phenopowerlaw_homogenizedC !-------------------------------------------------------------------------------------------------- !> @brief calculates derived quantities from state !> @details dummy subroutine, does nothing !-------------------------------------------------------------------------------------------------- pure subroutine constitutive_phenopowerlaw_microstructure(temperature,state,ipc,ip,el) use prec, only: & p_vec use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains implicit none integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element real(pReal), intent(in) :: & temperature !< temperature at IP type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state end subroutine constitutive_phenopowerlaw_microstructure !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- pure subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar_99,Tstar_v,& temperature,state,ipc,ip,el) use prec, only: & p_vec use math, only: & math_Plain3333to99, & math_Mandel6to33 use lattice, only: & lattice_Sslip, & lattice_Sslip_v, & lattice_Stwin, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & NnonSchmid use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pReal), dimension(9,9), intent(out) :: & dLp_dTstar_99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at IP integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state integer(pInt) :: & matID, & nSlip, & nTwin,structID,index_Gamma,index_F,index_myFamily, & f,i,j,k,l,m,n real(pReal), dimension(3,3,3,3) :: & dLp_dTstar3333 !< derivative of Lp with respect to Tstar as 4th order tensor real(pReal), dimension(3,3,2) :: & nonSchmid_tensor real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip_pos,gdot_slip_neg,dgdot_dtauslip_pos,dgdot_dtauslip_neg,tau_slip_pos,tau_slip_neg real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,dgdot_dtautwin,tau_twin matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1_pInt index_F = nSlip + nTwin + 2_pInt Lp = 0.0_pReal dLp_dTstar3333 = 0.0_pReal dLp_dTstar_99 = 0.0_pReal j = 0_pInt slipFamiliesLoop: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt !-------------------------------------------------------------------------------------------------- ! Calculation of Lp tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) tau_slip_neg(j) = tau_slip_pos(j) nonSchmid_tensor(1:3,1:3,1) = math_Mandel6to33(lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1) do k = 1, NnonSchmid(structID) tau_slip_pos(j) = tau_slip_pos(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID)) tau_slip_neg(j) = tau_slip_neg(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID)) nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)*& math_Mandel6to33(lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID)) nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)*& math_Mandel6to33(lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID)) enddo gdot_slip_pos(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(matID)* & ((abs(tau_slip_pos(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))*& sign(1.0_pReal,tau_slip_pos(j)) gdot_slip_neg(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(matID)* & ((abs(tau_slip_neg(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))*& sign(1.0_pReal,tau_slip_neg(j)) Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F (gdot_slip_pos(j)+gdot_slip_neg(j))*lattice_Sslip(1:3,1:3,index_myFamily+i,structID) !-------------------------------------------------------------------------------------------------- ! Calculation of the tangent of Lp if (gdot_slip_pos(j) /= 0.0_pReal) then dgdot_dtauslip_pos(j) = gdot_slip_pos(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip_pos(j) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip_pos(j)*lattice_Sslip(k,l,index_myFamily+i,structID)* & nonSchmid_tensor(m,n,1) endif if (gdot_slip_neg(j) /= 0.0_pReal) then dgdot_dtauslip_neg(j) = gdot_slip_neg(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip_neg(j) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtauslip_neg(j)*lattice_Sslip(k,l,index_myFamily+i,structID)* & nonSchmid_tensor(m,n,2) endif enddo enddo slipFamiliesLoop j = 0_pInt twinFamiliesLoop: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt !-------------------------------------------------------------------------------------------------- ! Calculation of Lp tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j))) Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,structID) !-------------------------------------------------------------------------------------------------- ! Calculation of the tangent of Lp if (gdot_twin(j) /= 0.0_pReal) then dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(matID)/tau_twin(j) forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + & dgdot_dtautwin(j)*lattice_Stwin(k,l,index_myFamily+i,structID)* & lattice_Stwin(m,n,index_myFamily+i,structID) endif enddo enddo twinFamiliesLoop dLp_dTstar_99 = math_Plain3333to99(dLp_dTstar3333) end subroutine constitutive_phenopowerlaw_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- function constitutive_phenopowerlaw_dotState(Tstar_v,temperature,state,ipc,ip,el) use prec, only: & p_vec use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem, & lattice_shearTwin, & NnonSchmid use mesh, only: & mesh_NcpElems,& mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(6), intent(in):: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & constitutive_phenopowerlaw_dotState integer(pInt) :: matID,nSlip,nTwin,f,i,j,k,structID, & index_Gamma,index_F,offset_accshear_slip,offset_accshear_twin,index_myFamily real(pReal) :: c_SlipSlip,c_SlipTwin,c_TwinSlip,c_TwinTwin, ssat_offset real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_slip,tau_slip_pos,tau_slip_neg,left_SlipSlip,left_SlipTwin,right_SlipSlip,right_TwinSlip real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & gdot_twin,tau_twin,left_TwinSlip,left_TwinTwin,right_SlipTwin,right_TwinTwin matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1_pInt index_F = nSlip + nTwin + 2_pInt offset_accshear_slip = nSlip + nTwin + 2_pInt offset_accshear_twin = nSlip + nTwin + 2_pInt + nSlip constitutive_phenopowerlaw_dotState = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices c_SlipSlip = constitutive_phenopowerlaw_h0_SlipSlip(matID)*& (1.0_pReal + constitutive_phenopowerlaw_twinC(matID)*state(ipc,ip,el)%p(index_F)**& constitutive_phenopowerlaw_twinB(matID)) c_SlipTwin = 0.0_pReal c_TwinSlip = constitutive_phenopowerlaw_h0_TwinSlip(matID)*& state(ipc,ip,el)%p(index_Gamma)**constitutive_phenopowerlaw_twinE(matID) c_TwinTwin = constitutive_phenopowerlaw_h0_TwinTwin(matID)*& state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinD(matID) !-------------------------------------------------------------------------------------------------- ! calculate left and right vectors and calculate dot gammas ssat_offset = constitutive_phenopowerlaw_spr(matID)*sqrt(state(ipc,ip,el)%p(index_F)) j = 0_pInt slipFamiliesLoop1: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt left_SlipSlip(j) = 1.0_pReal ! no system-dependent left part left_SlipTwin(j) = 1.0_pReal ! no system-dependent left part right_SlipSlip(j) = abs(1.0_pReal-state(ipc,ip,el)%p(j) / & (constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset)) & **constitutive_phenopowerlaw_a_slip(matID)& *sign(1.0_pReal,1.0_pReal-state(ipc,ip,el)%p(j) / & (constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset)) right_TwinSlip(j) = 1.0_pReal ! no system-dependent part !-------------------------------------------------------------------------------------------------- ! Calculation of dot gamma tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) tau_slip_neg(j) = tau_slip_pos(j) do k = 1, NnonSchmid(structID) tau_slip_pos(j) = tau_slip_pos(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID)) tau_slip_neg(j) = tau_slip_neg(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID)) enddo gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*0.5_pReal* & ((abs(tau_slip_pos(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID) & +(abs(tau_slip_neg(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))& *sign(1.0_pReal,tau_slip_pos(j)) enddo enddo slipFamiliesLoop1 j = 0_pInt twinFamiliesLoop1: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt left_TwinSlip(j) = 1.0_pReal ! no system-dependent right part left_TwinTwin(j) = 1.0_pReal ! no system-dependent right part right_SlipTwin(j) = 1.0_pReal ! no system-dependent right part right_TwinTwin(j) = 1.0_pReal ! no system-dependent right part !-------------------------------------------------------------------------------------------------- ! Calculation of dot vol frac tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j))) enddo enddo twinFamiliesLoop1 !-------------------------------------------------------------------------------------------------- ! calculate the overall hardening based on above j = 0_pInt slipFamiliesLoop2: do f = 1_pInt,lattice_maxNslipFamily do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j+1_pInt constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j c_SlipSlip * left_SlipSlip(j) * & dot_product(constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(j,1:nSlip,matID), & right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor c_SlipTwin * left_SlipTwin(j) * & dot_product(constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(j,1:nTwin,matID), & right_SlipTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor constitutive_phenopowerlaw_dotState(index_Gamma) = constitutive_phenopowerlaw_dotState(index_Gamma) + & abs(gdot_slip(j)) constitutive_phenopowerlaw_dotState(offset_accshear_slip+j) = abs(gdot_slip(j)) enddo enddo slipFamiliesLoop2 j = 0_pInt twinFamiliesLoop2: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j+1_pInt constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j c_TwinSlip * left_TwinSlip(j) * & dot_product(constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(j,1:nSlip,matID), & right_TwinSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor c_TwinTwin * left_TwinTwin(j) * & dot_product(constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(j,1:nTwin,matID), & right_TwinTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor constitutive_phenopowerlaw_dotState(index_F) = constitutive_phenopowerlaw_dotState(index_F) + & gdot_twin(j)/lattice_shearTwin(index_myFamily+i,structID) constitutive_phenopowerlaw_dotState(offset_accshear_twin+j) = abs(gdot_twin(j)) enddo enddo twinFamiliesLoop2 end function constitutive_phenopowerlaw_dotState !-------------------------------------------------------------------------------------------------- !> @brief (instantaneous) incremental change of microstructure !> @details dummy function, returns 0.0 !-------------------------------------------------------------------------------------------------- function constitutive_phenopowerlaw_deltaState(Tstar_v,temperature,state,ipc,ip,el) use prec, only: & p_vec use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(6), intent(in):: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & Temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & constitutive_phenopowerlaw_deltaState constitutive_phenopowerlaw_deltaState = 0.0_pReal end function constitutive_phenopowerlaw_deltaState !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of temperature !> @details dummy function, returns 0.0 !-------------------------------------------------------------------------------------------------- real(pReal) pure function constitutive_phenopowerlaw_dotTemperature(Tstar_v,temperature,state,ipc,ip,el) use prec, only: & p_vec use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature !< temperature at integration point integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state constitutive_phenopowerlaw_dotTemperature = 0.0_pReal end function constitutive_phenopowerlaw_dotTemperature !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- pure function constitutive_phenopowerlaw_postResults(Tstar_v,temperature,dt,state,ipc,ip,el) use prec, only: & p_vec use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance, & phase_Noutput use lattice, only: & lattice_Sslip_v, & lattice_Stwin_v, & lattice_maxNslipFamily, & lattice_maxNtwinFamily, & lattice_NslipSystem, & lattice_NtwinSystem,NnonSchmid use mesh, only: & mesh_NcpElems, & mesh_maxNips implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal), intent(in) :: & temperature, & !< temperature at integration point dt integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(constitutive_phenopowerlaw_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & constitutive_phenopowerlaw_postResults integer(pInt) :: & matID,structID, & nSlip,nTwin, & o,f,i,c,j,k, & index_Gamma,index_F,index_accshear_slip,index_accshear_twin,index_myFamily real(pReal) :: & tau_slip_pos,tau_slip_neg,tau matID = phase_plasticityInstance(material_phase(ipc,ip,el)) structID = constitutive_phenopowerlaw_structure(matID) nSlip = constitutive_phenopowerlaw_totalNslip(matID) nTwin = constitutive_phenopowerlaw_totalNtwin(matID) index_Gamma = nSlip + nTwin + 1_pInt index_F = nSlip + nTwin + 2_pInt index_accshear_slip = nSlip + nTwin + 3_pInt index_accshear_twin = nSlip + nTwin + 3_pInt + nSlip constitutive_phenopowerlaw_postResults = 0.0_pReal c = 0_pInt outputsLoop: do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el)) select case(constitutive_phenopowerlaw_output(o,matID)) case ('resistance_slip') constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(ipc,ip,el)%p(1:nSlip) c = c + nSlip case ('accumulatedshear_slip') constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(ipc,ip,el)%p(index_accshear_slip:& index_accshear_slip+nSlip) c = c + nSlip case ('shearrate_slip') j = 0_pInt slipFamiliesLoop1: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) tau_slip_neg = tau_slip_pos do k = 1, NnonSchmid(structID) tau_slip_pos = tau_slip_pos + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID)) tau_slip_neg = tau_slip_neg + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* & dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID)) enddo constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(matID)*0.5_pReal* & ((abs(tau_slip_pos)/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID) & +(abs(tau_slip_neg)/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))& *sign(1.0_pReal,tau_slip_pos) enddo enddo slipFamiliesLoop1 c = c + nSlip case ('resolvedstress_slip') j = 0_pInt slipFamiliesLoop2: do f = 1_pInt,lattice_maxNslipFamily index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family j = j + 1_pInt constitutive_phenopowerlaw_postResults(c+j) = & dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID)) enddo enddo slipFamiliesLoop2 c = c + nSlip case ('totalshear') constitutive_phenopowerlaw_postResults(c+1_pInt) = & state(ipc,ip,el)%p(index_Gamma) c = c + 1_pInt case ('resistance_twin') constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = & state(ipc,ip,el)%p(1_pInt+nSlip:nTwin+nSlip) c = c + nTwin case ('accumulatedshear_twin') constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = & state(ipc,ip,el)%p(index_accshear_twin:index_accshear_twin+nTwin) c = c + nTwin case ('shearrate_twin') j = 0_pInt twinFamiliesLoop1: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j + 1_pInt tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F constitutive_phenopowerlaw_gdot0_twin(matID)*& (abs(tau)/state(ipc,ip,el)%p(j+nSlip))**& constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau)) enddo enddo twinFamiliesLoop1 c = c + nTwin case ('resolvedstress_twin') j = 0_pInt twinFamiliesLoop2: do f = 1_pInt,lattice_maxNtwinFamily index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family j = j + 1_pInt constitutive_phenopowerlaw_postResults(c+j) = & dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID)) enddo enddo twinFamiliesLoop2 c = c + nTwin case ('totalvolfrac') constitutive_phenopowerlaw_postResults(c+1_pInt) = state(ipc,ip,el)%p(index_F) c = c + 1_pInt end select enddo outputsLoop end function constitutive_phenopowerlaw_postResults end module constitutive_phenopowerlaw