#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string,math,random import numpy as np from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog [options]', description = """ Distribute given number of points randomly within the three-dimensional cube [0.0,0.0,0.0]--[1.0,1.0,1.0]. Reports positions with random crystal orientations in seeds file format to STDOUT. """, version = scriptID) parser.add_option('-N', dest='N', type='int', metavar='int', \ help='number of seed points to distribute [%default]') parser.add_option('-g','--grid', dest='grid', type='int', nargs=3, metavar='int int int', \ help='min a,b,c grid of hexahedral box %default') parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int', \ help='seed of random number generator [%default]') parser.set_defaults(randomSeed = None) parser.set_defaults(grid = (16,16,16)) parser.set_defaults(N = 20) (options,filename) = parser.parse_args() options.grid = np.array(options.grid) # ------------------------------------------ setup file handle ------------------------------------- if filename == []: file = {'output':sys.stdout, 'croak':sys.stderr} else: file = {'output':open(filename[0],'w'), 'croak':sys.stderr} gridSize = options.grid.prod() if gridSize == 0: file['croak'].write('zero grid dimension for %s.\n'%(', '.join([['a','b','c'][x] for x in np.where(options.grid == 0)[0]]))) sys.exit() if options.N > gridSize: file['croak'].write('accommodating only %i seeds on grid.\n'%gridSize) options.N = gridSize if options.randomSeed == None: options.randomSeed = int(os.urandom(4).encode('hex'), 16) np.random.seed(options.randomSeed) # init random generators random.seed(options.randomSeed) grainEuler = np.random.rand(3,options.N) # create random Euler triplets grainEuler[0,:] *= 360.0 # phi_1 is uniformly distributed grainEuler[1,:] = np.arccos(2*grainEuler[1,:]-1)*180.0/math.pi # cos(Phi) is uniformly distributed grainEuler[2,:] *= 360.0 # phi_2 is uniformly distributed seedpoints = -np.ones(options.N,dtype='int') # init grid positions of seed points if options.N * 1024 < gridSize: # heuristic limit for random search i = 0 while i < options.N: # until all (unique) points determined p = np.random.randint(gridSize) # pick a location if p not in seedpoints: # not yet taken? seedpoints[i] = p # take it i += 1 # advance stepper else: seedpoints = np.array(random.sample(range(gridSize),options.N)) # create random permutation of all grid positions and choose first N seeds = np.zeros((3,options.N),float) # init seed positions seeds[0,:] = (np.mod(seedpoints ,options.grid[0])\ +np.random.random())/options.grid[0] seeds[1,:] = (np.mod(seedpoints// options.grid[0] ,options.grid[1])\ +np.random.random())/options.grid[1] seeds[2,:] = (np.mod(seedpoints//(options.grid[1]*options.grid[0]),options.grid[2])\ +np.random.random())/options.grid[2] header = ["5\theader", scriptID + " " + " ".join(sys.argv[1:]), "grid\ta {}\tb {}\tc {}".format(options.grid[0],options.grid[1],options.grid[2]), "microstructures\t{}".format(options.N), "randomSeed\t{}".format(options.randomSeed), "x\ty\tz\tphi1\tPhi\tphi2", ] for line in header: file['output'].write(line+"\n") np.savetxt(file['output'],np.transpose(np.concatenate((seeds,grainEuler),axis = 0)),fmt='%10.6f',delimiter='\t')