!-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incorporating kinematics resulting from thermal expansion !> @details to be done !-------------------------------------------------------------------------------------------------- module kinematics_thermal_expansion use prec, only: & pReal, & pInt implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & kinematics_thermal_expansion_sizePostResults, & !< cumulative size of post results kinematics_thermal_expansion_offset, & !< which kinematics is my current damage mechanism? kinematics_thermal_expansion_instance !< instance of damage kinematics mechanism integer(pInt), dimension(:,:), allocatable, target, public :: & kinematics_thermal_expansion_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & kinematics_thermal_expansion_output !< name of each post result output integer(pInt), dimension(:), allocatable, target, public :: & kinematics_thermal_expansion_Noutput !< number of outputs per instance of this damage ! enum, bind(c) ! ToDo kinematics need state machinery to deal with sizePostResult ! enumerator :: undefined_ID, & ! possible remedy is to decouple having state vars from having output ! thermalexpansionrate_ID ! which means to separate user-defined types tState + tOutput... ! end enum public :: & kinematics_thermal_expansion_init, & kinematics_thermal_expansion_initialFi, & kinematics_thermal_expansion_LiAndItsTangent contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine kinematics_thermal_expansion_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: & debug_level,& debug_constitutive,& debug_levelBasic use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_intValue, & IO_warning, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & phase_kinematics, & phase_Nkinematics, & phase_Noutput, & KINEMATICS_thermal_expansion_label, & KINEMATICS_thermal_expansion_ID, & material_Nphase, & MATERIAL_partPhase use numerics,only: & worldrank implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: MAXNCHUNKS = 7_pInt integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions integer(pInt) :: maxNinstance,phase,instance,kinematics character(len=65536) :: & tag = '', & output = '', & line = '' mainProcess: if (worldrank == 0) then write(6,'(/,a)') ' <<<+- kinematics_'//KINEMATICS_thermal_expansion_LABEL//' init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" endif mainProcess maxNinstance = int(count(phase_kinematics == KINEMATICS_thermal_expansion_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(kinematics_thermal_expansion_offset(material_Nphase), source=0_pInt) allocate(kinematics_thermal_expansion_instance(material_Nphase), source=0_pInt) do phase = 1, material_Nphase kinematics_thermal_expansion_instance(phase) = count(phase_kinematics(:,1:phase) == kinematics_thermal_expansion_ID) do kinematics = 1, phase_Nkinematics(phase) if (phase_kinematics(kinematics,phase) == kinematics_thermal_expansion_ID) & kinematics_thermal_expansion_offset(phase) = kinematics enddo enddo allocate(kinematics_thermal_expansion_sizePostResults(maxNinstance), source=0_pInt) allocate(kinematics_thermal_expansion_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt) allocate(kinematics_thermal_expansion_output(maxval(phase_Noutput),maxNinstance)) kinematics_thermal_expansion_output = '' allocate(kinematics_thermal_expansion_Noutput(maxNinstance), source=0_pInt) rewind(fileUnit) phase = 0_pInt do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to line = IO_read(fileUnit) enddo parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next phase section phase = phase + 1_pInt ! advance phase section counter cycle ! skip to next line endif if (phase > 0_pInt ) then; if (any(phase_kinematics(:,phase) == KINEMATICS_thermal_expansion_ID)) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran instance = kinematics_thermal_expansion_instance(phase) ! which instance of my damage is present phase positions = IO_stringPos(line,MAXNCHUNKS) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key... select case(tag) ! case ('(output)') ! output = IO_lc(IO_stringValue(line,positions,2_pInt)) ! ...and corresponding output ! select case(output) ! case ('thermalexpansionrate') ! kinematics_thermal_expansion_Noutput(instance) = kinematics_thermal_expansion_Noutput(instance) + 1_pInt ! kinematics_thermal_expansion_outputID(kinematics_thermal_expansion_Noutput(instance),instance) = & ! thermalexpansionrate_ID ! kinematics_thermal_expansion_output(kinematics_thermal_expansion_Noutput(instance),instance) = output ! ToDo add sizePostResult loop afterwards... end select endif; endif enddo parsingFile end subroutine kinematics_thermal_expansion_init !-------------------------------------------------------------------------------------------------- !> @brief report initial thermal strain based on current temperature deviation from reference !-------------------------------------------------------------------------------------------------- pure function kinematics_thermal_expansion_initialFi(ipc, ip, el) use material, only: & material_phase, & material_homog, & temperature, & thermalMapping use math, only: & math_I3 use lattice, only: & lattice_thermalExpansion33, & lattice_referenceTemperature implicit none integer(pInt), intent(in) :: & ipc, & !< grain number ip, & !< integration point number el !< element number real(pReal), dimension(3,3) :: & kinematics_thermal_expansion_initialFi !< initial thermal strain (should be small strain, though) integer(pInt) :: & phase, & homog, offset phase = material_phase(ipc,ip,el) homog = material_homog(ip,el) offset = thermalMapping(homog)%p(ip,el) kinematics_thermal_expansion_initialFi = math_I3 + & (temperature(homog)%p(offset) - lattice_referenceTemperature(phase)) * & lattice_thermalExpansion33(1:3,1:3,phase) end function kinematics_thermal_expansion_initialFi !-------------------------------------------------------------------------------------------------- !> @brief contains the constitutive equation for calculating the velocity gradient !-------------------------------------------------------------------------------------------------- subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar3333, ipc, ip, el) use material, only: & material_phase, & material_homog, & temperatureRate, & thermalMapping use lattice, only: & lattice_thermalExpansion33 implicit none integer(pInt), intent(in) :: & ipc, & !< grain number ip, & !< integration point number el !< element number real(pReal), intent(out), dimension(3,3) :: & Li !< thermal velocity gradient real(pReal), intent(out), dimension(3,3,3,3) :: & dLi_dTstar3333 !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero) integer(pInt) :: & phase, & homog, offset phase = material_phase(ipc,ip,el) homog = material_homog(ip,el) offset = thermalMapping(homog)%p(ip,el) Li = temperatureRate(homog)%p(offset) * lattice_thermalExpansion33(1:3,1:3,phase) dLi_dTstar3333 = 0.0_pReal end subroutine kinematics_thermal_expansion_LiAndItsTangent end module kinematics_thermal_expansion