! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see .
!
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Basic scheme PETSc solver
!--------------------------------------------------------------------------------------------------
module DAMASK_spectral_SolverBasicPETSc
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use DAMASK_spectral_Utilities, only: &
tSolutionState, &
phaseFieldDataBin, &
maxPhaseFields
implicit none
private
#include
#include
#include
character (len=*), parameter, public :: &
DAMASK_spectral_SolverBasicPETSC_label = 'basicpetsc'
!--------------------------------------------------------------------------------------------------
! derived types
type tSolutionParams
real(pReal), dimension(3,3) :: P_BC, rotation_BC
real(pReal) :: timeinc
real(pReal) :: timeincOld
real(pReal) :: temperature
real(pReal) :: density
integer(pInt) :: nActivePhaseFields
type(phaseFieldDataBin) :: phaseFieldData(maxPhaseFields)
end type tSolutionParams
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
DM, private :: da
SNES, private :: snes
Vec, private :: solution_vec
!--------------------------------------------------------------------------------------------------
! common pointwise data
real(pReal), private, dimension(:,:,:,:,:), allocatable :: F_lastInc, Fdot, F_lastInc2
real(pReal), private, dimension(:,:,:,:), allocatable :: &
phaseFieldRHS_lastInc, &
phaseField_lastInc, &
phaseFieldRHS, &
phaseFieldDot
complex(pReal), private, dimension(:,:,:,:,:), allocatable :: inertiaField_fourier
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), private, dimension(3,3) :: &
F_aim = math_I3, &
F_aim_lastIter = math_I3, &
F_aim_lastInc = math_I3, &
P_av = 0.0_pReal, &
F_aimDot=0.0_pReal
character(len=1024), private :: incInfo
real(pReal), private, dimension(3,3,3,3) :: &
C_volAvg = 0.0_pReal, & !< current volume average stiffness
C_volAvgLastInc = 0.0_pReal, & !< previous volume average stiffness
C_minMaxAvg = 0.0_pReal, & !< current (min+max)/2 stiffness
S = 0.0_pReal !< current compliance (filled up with zeros)
real(pReal), private :: err_stress, err_div, err_divPrev, err_divDummy
real(pReal), private, dimension(:), allocatable :: err_phaseField, phaseField_Avg
logical, private :: ForwardData
integer(pInt), private :: &
totalIter = 0_pInt !< total iteration in current increment
real(pReal), private, dimension(3,3) :: mask_stress = 0.0_pReal
public :: &
basicPETSc_init, &
basicPETSc_solution ,&
basicPETSc_destroy
external :: &
VecDestroy, &
DMDestroy, &
DMDACreate3D, &
DMCreateGlobalVector, &
DMDASetLocalFunction, &
PETScFinalize, &
SNESDestroy, &
SNESGetNumberFunctionEvals, &
SNESGetIterationNumber, &
SNESSolve, &
SNESSetDM, &
SNESGetConvergedReason, &
SNESSetConvergenceTest, &
SNESSetFromOptions, &
SNESCreate, &
MPI_Abort
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!--------------------------------------------------------------------------------------------------
subroutine basicPETSc_init(temperature,nActivePhaseFields,phaseFieldData)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use debug, only: &
debug_level, &
debug_spectral, &
debug_spectralRestart
use FEsolving, only: &
restartInc
use DAMASK_interface, only: &
getSolverJobName
use DAMASK_spectral_Utilities, only: &
Utilities_init, &
Utilities_constitutiveResponse, &
Utilities_updateGamma, &
grid, &
grid1Red, &
wgt, &
geomSize
use mesh, only: &
mesh_ipCoordinates, &
mesh_deformedCoordsFFT
use math, only: &
math_invSym3333
implicit none
integer(pInt), intent(in) :: nActivePhaseFields
type(phaseFieldDataBin), intent(in) :: phaseFieldData(nActivePhaseFields)
real(pReal), intent(inOut) :: temperature
#include
#include
#include
real(pReal), dimension(:,:,:,:,:), allocatable :: P
PetscScalar, dimension(:,:,:,:), pointer :: xx_psc, F
PetscErrorCode :: ierr
PetscObject :: dummy
real(pReal), dimension(3,3) :: &
temp33_Real = 0.0_pReal
real(pReal), dimension(3,3,3,3) :: &
temp3333_Real = 0.0_pReal
KSP :: ksp
integer(pInt) :: i
call Utilities_init()
write(6,'(/,a)') ' <<<+- DAMASK_spectral_solverBasicPETSc init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
!--------------------------------------------------------------------------------------------------
! allocate global fields
allocate (P (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal)
allocate (F_lastInc (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal)
allocate (F_lastInc2(3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal)
allocate (Fdot (3,3,grid(1),grid(2),grid(3)),source = 0.0_pReal)
allocate (inertiaField_fourier (grid1Red,grid(2),grid(3),3,3),source = cmplx(0.0_pReal,0.0_pReal,pReal))
allocate (phaseFieldRHS_lastInc (nActivePhaseFields,grid(1),grid(2),grid(3)),source = 0.0_pReal)
allocate (phaseField_lastInc (nActivePhaseFields,grid(1),grid(2),grid(3)),source = 0.0_pReal)
allocate (phaseFieldDot (nActivePhaseFields,grid(1),grid(2),grid(3)),source = 0.0_pReal)
allocate (phaseFieldRHS (nActivePhaseFields,grid(1),grid(2),grid(3)),source = 0.0_pReal)
allocate (err_phaseField(nActivePhaseFields), source = 0.0_pReal)
allocate (phaseField_Avg(nActivePhaseFields), source = 0.0_pReal)
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,snes,ierr); CHKERRQ(ierr)
call DMDACreate3d(PETSC_COMM_WORLD, &
DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, &
DMDA_STENCIL_BOX,grid(1),grid(2),grid(3),PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE, &
9+nActivePhaseFields,1,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr)
CHKERRQ(ierr)
call DMCreateGlobalVector(da,solution_vec,ierr); CHKERRQ(ierr)
!call DMDASNESSetFunctionLocal(da,INSERT_VALUES,BasicPETSC_formResidual,dummy,ierr); CHKERRQ(ierr) ! needed for newer versions of petsc
call DMDASetLocalFunction(da,BasicPETSC_formResidual,ierr); CHKERRQ(ierr)
call SNESSetDM(snes,da,ierr); CHKERRQ(ierr)
call SNESSetConvergenceTest(snes,BasicPETSC_converged,dummy,PETSC_NULL_FUNCTION,ierr)
CHKERRQ(ierr)
call SNESGetKSP(snes,ksp,ierr); CHKERRQ(ierr)
call KSPSetConvergenceTest(ksp,BasicPETSC_convergedKSP,dummy,PETSC_NULL_FUNCTION,ierr)
CHKERRQ(ierr)
call SNESSetFromOptions(snes,ierr); CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! get the data out of PETSc to work with
F => xx_psc(0:8,:,:,:)
if (restartInc == 1_pInt) then ! no deformation (no restart)
F_lastInc = spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid(3)) ! initialize to identity
xx_psc(0:8,:,:,:) = reshape(F_lastInc,[9,grid(1),grid(2),grid(3)])
F_lastInc2 = F_lastInc
do i = 1, nActivePhaseFields
xx_psc(8+i,:,:,:) = phaseFieldData(i)%phaseField0
phaseField_lastInc(i,:,:,:) = phaseFieldData(i)%phaseField0
enddo
elseif (restartInc > 1_pInt) then ! using old values from file
if (iand(debug_level(debug_spectral),debug_spectralRestart)/= 0) &
write(6,'(/,a,'//IO_intOut(restartInc-1_pInt)//',a)') &
'reading values of increment', restartInc - 1_pInt, 'from file'
flush(6)
call IO_read_realFile(777,'F',trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
call IO_read_realFile(777,'F_lastInc',trim(getSolverJobName()),size(F_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_realFile(777,'F_lastInc2',trim(getSolverJobName()),size(F_lastInc2))
read (777,rec=1) F_lastInc2
close (777)
F_aim = reshape(sum(sum(sum(F,dim=4),dim=3),dim=2) * wgt, [3,3]) ! average of F
F_aim_lastInc = sum(sum(sum(F_lastInc,dim=5),dim=4),dim=3) * wgt ! average of F_lastInc
call IO_read_realFile(777,'F_aimDot',trim(getSolverJobName()),size(f_aimDot))
read (777,rec=1) f_aimDot
close (777)
call IO_read_realFile(777,'C_volAvg',trim(getSolverJobName()),size(C_volAvg))
read (777,rec=1) C_volAvg
close (777)
call IO_read_realFile(777,'C_volAvgLastInc',trim(getSolverJobName()),size(C_volAvgLastInc))
read (777,rec=1) C_volAvgLastInc
close (777)
call IO_read_realFile(777,'C_ref',trim(getSolverJobName()),size(temp3333_Real))
read (777,rec=1) temp3333_Real
close (777)
endif
mesh_ipCoordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(&
F,[3,3,grid(1),grid(2),grid(3)])),[3,1,product(grid)])
call Utilities_constitutiveResponse(&
reshape(F,[3,3,grid(1),grid(2),grid(3)]),&
reshape(F,[3,3,grid(1),grid(2),grid(3)]),&
temperature,0.0_pReal,P,C_volAvg,C_minmaxAvg,temp33_Real,.false.,math_I3)
call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! write data back into PETSc
if (restartInc == 1_pInt) then ! use initial stiffness as reference stiffness
temp3333_Real = C_minMaxAvg
endif
call Utilities_updateGamma(temp3333_Real,.True.)
end subroutine basicPETSc_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the Basic PETSC scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function basicPETSc_solution( &
incInfoIn,guess,timeinc,timeinc_old,loadCaseTime,P_BC,F_BC,temperature_bc,rotation_BC,density, &
nActivePhaseFields,phaseFieldData)
use numerics, only: &
update_gamma, &
itmax
use math, only: &
math_mul33x33 ,&
math_rotate_backward33
use mesh, only: &
mesh_ipCoordinates,&
mesh_deformedCoordsFFT
use IO, only: &
IO_write_JobRealFile
use DAMASK_spectral_Utilities, only: &
grid, &
geomSize, &
tBoundaryCondition, &
Utilities_forwardField, &
Utilities_calculateRate, &
Utilities_maskedCompliance, &
Utilities_updateGamma, &
cutBack
use FEsolving, only: &
restartWrite, &
terminallyIll
use homogenization, only: &
materialpoint_heat
implicit none
#include
#include
!--------------------------------------------------------------------------------------------------
! input data for solution
integer(pInt), intent(in) :: nActivePhaseFields
type(phaseFieldDataBin), intent(in) :: phaseFieldData(nActivePhaseFields)
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime, & !< remaining time of current load case
temperature_bc, &
density
logical, intent(in) :: &
guess
type(tBoundaryCondition), intent(in) :: &
P_BC, &
F_BC
character(len=*), intent(in) :: &
incInfoIn
real(pReal), dimension(3,3), intent(in) :: rotation_BC
integer(pInt) :: i
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscScalar, pointer :: xx_psc(:,:,:,:), F(:,:,:,:)
PetscErrorCode :: ierr
SNESConvergedReason :: reason
incInfo = incInfoIn
call DMDAVecGetArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr) ! get the data out of PETSc to work with
F => xx_psc(0:8,:,:,:)
!--------------------------------------------------------------------------------------------------
! restart information for spectral solver
if (restartWrite) then
write(6,'(/,a)') ' writing converged results for restart'
flush(6)
call IO_write_jobRealFile(777,'F',size(F)) ! writing deformation gradient field to file
write (777,rec=1) F
close (777)
call IO_write_jobRealFile(777,'F_lastInc',size(F_lastInc)) ! writing F_lastInc field to file
write (777,rec=1) F_lastInc
close (777)
call IO_write_jobRealFile(777,'F_lastInc2',size(F_lastInc2)) ! writing F_lastInc field to file
write (777,rec=1) F_lastInc2
close (777)
call IO_write_jobRealFile(777,'F_aimDot',size(F_aimDot))
write (777,rec=1) F_aimDot
close(777)
call IO_write_jobRealFile(777,'C_volAvg',size(C_volAvg))
write (777,rec=1) C_volAvg
close(777)
call IO_write_jobRealFile(777,'C_volAvgLastInc',size(C_volAvgLastInc))
write (777,rec=1) C_volAvgLastInc
close(777)
endif
mesh_ipCoordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(&
F,[3,3,grid(1),grid(2),grid(3)])),[3,1,product(grid)])
if (cutBack) then
F_aim = F_aim_lastInc
xx_psc(0:8,:,:,:) = reshape(F_lastInc,[9,grid(1),grid(2),grid(3)])
C_volAvg = C_volAvgLastInc
do i = 1, nActivePhaseFields
xx_psc(8+i,:,:,:) = phaseField_lastInc(i,:,:,:)
enddo
else
C_volAvgLastInc = C_volAvg
!--------------------------------------------------------------------------------------------------
! calculate rate for aim
if (F_BC%myType=='l') then ! calculate f_aimDot from given L and current F
f_aimDot = F_BC%maskFloat * math_mul33x33(F_BC%values, F_aim)
elseif(F_BC%myType=='fdot') then ! f_aimDot is prescribed
f_aimDot = F_BC%maskFloat * F_BC%values
elseif(F_BC%myType=='f') then ! aim at end of load case is prescribed
f_aimDot = F_BC%maskFloat * (F_BC%values -F_aim)/loadCaseTime
endif
if (guess) f_aimDot = f_aimDot + P_BC%maskFloat * (F_aim - F_aim_lastInc)/timeinc_old
F_aim_lastInc = F_aim
!--------------------------------------------------------------------------------------------------
! update coordinates and rate and forward last inc
mesh_ipCoordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(&
F,[3,3,grid(1),grid(2),grid(3)])),[3,1,product(grid)])
Fdot = Utilities_calculateRate(math_rotate_backward33(f_aimDot,params%rotation_BC), &
timeinc_old,guess,F_lastInc,reshape(F,[3,3,grid(1),grid(2),grid(3)]))
do i = 1, nActivePhaseFields
phaseFieldDot(i,:,:,:) = (xx_psc(8+i,:,:,:) - phaseField_lastInc(i,:,:,:))/timeinc_old
phaseField_lastInc(i,:,:,:) = xx_psc(8+i,:,:,:)
phaseFieldRHS_lastInc(i,:,:,:) = phaseFieldRHS(i,:,:,:)
enddo
F_lastInc2 = F_lastInc
F_lastInc = reshape(F,[3,3,grid(1),grid(2),grid(3)])
endif
F_aim = F_aim + f_aimDot * timeinc
F = reshape(Utilities_forwardField(timeinc,F_lastInc,Fdot,math_rotate_backward33(F_aim, &
rotation_BC)),[9,grid(1),grid(2),grid(3)])
do i = 1, nActivePhaseFields
xx_psc(8+i,:,:,:) = phaseField_lastInc(i,:,:,:) + phaseFieldDot(i,:,:,:)*timeinc
enddo
call DMDAVecRestoreArrayF90(da,solution_vec,xx_psc,ierr); CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! update stiffness (and gamma operator)
S = Utilities_maskedCompliance(rotation_BC,P_BC%maskLogical,C_volAvg)
if (update_gamma) call Utilities_updateGamma(C_minmaxAvg,restartWrite)
ForwardData = .True.
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
mask_stress = P_BC%maskFloat
params%P_BC = P_BC%values
params%rotation_BC = rotation_BC
params%timeinc = timeinc
params%timeincOld = timeinc_old
params%temperature = temperature_BC
params%density = density
params%nActivePhaseFields = nActivePhaseFields
params%phaseFieldData(1:nActivePhaseFields) = phaseFieldData(1:nActivePhaseFields)
call SNESSolve(snes,PETSC_NULL_OBJECT,solution_vec,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(snes,reason,ierr); CHKERRQ(ierr)
basicPETSc_solution%termIll = terminallyIll
terminallyIll = .false.
if (reason < 1) then
basicPETSC_solution%converged = .false.
basicPETSC_solution%iterationsNeeded = itmax
else
basicPETSC_solution%converged = .true.
basicPETSC_solution%iterationsNeeded = totalIter
endif
end function BasicPETSc_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the AL residual vector
!--------------------------------------------------------------------------------------------------
subroutine BasicPETSC_formResidual(in,x_scal,f_scal,dummy,ierr)
use numerics, only: &
itmax, &
itmin
use math, only: &
math_rotate_backward33, &
math_transpose33, &
math_mul3333xx33
use debug, only: &
debug_level, &
debug_spectral, &
debug_spectralRotation
use DAMASK_spectral_Utilities, only: &
grid, &
geomSize, &
wgt, &
field_real, &
field_fourier, &
phaseField_real, &
phaseField_fourier, &
Utilities_FFTforward, &
Utilities_FFTbackward, &
utilities_scalarFFTforward, &
utilities_scalarFFTbackward, &
Utilities_fourierConvolution, &
Utilities_inverseLaplace, &
Utilities_diffusion, &
Utilities_constitutiveResponse, &
Utilities_divergenceRMS
use IO, only: &
IO_intOut
use crystallite, only: &
crystallite_temperature
use homogenization, only: &
materialpoint_heat, &
materialpoint_P
implicit none
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, target, dimension(9+params%nActivePhaseFields, &
XG_RANGE,YG_RANGE,ZG_RANGE) :: &
x_scal
PetscScalar, target, dimension(9+params%nActivePhaseFields, &
X_RANGE,Y_RANGE,Z_RANGE) :: &
f_scal
PetscScalar, pointer, dimension(:,:,:,:) :: &
F, &
residual_F
PetscInt :: &
PETScIter, &
nfuncs
PetscObject :: dummy
PetscErrorCode :: ierr
integer(pInt) :: i
F => x_scal(1:9,1:grid(1),1:grid(2),1:grid(3))
residual_F => f_scal(1:9,1:grid(1),1:grid(2),1:grid(3))
call SNESGetNumberFunctionEvals(snes,nfuncs,ierr); CHKERRQ(ierr)
call SNESGetIterationNumber(snes,PETScIter,ierr); CHKERRQ(ierr)
if(nfuncs== 0 .and. PETScIter == 0) totalIter = -1_pInt ! new increment
if (totalIter <= PETScIter) then ! new iteration
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
totalIter = totalIter + 1_pInt
write(6,'(1x,a,3(a,'//IO_intOut(itmax)//'))') trim(incInfo), &
' @ Iteration ', itmin, '≤',totalIter, '≤', itmax
if (iand(debug_level(debug_spectral),debug_spectralRotation) /= 0) &
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim (lab) =', &
math_transpose33(math_rotate_backward33(F_aim,params%rotation_BC))
write(6,'(/,a,/,3(3(f12.7,1x)/))',advance='no') ' deformation gradient aim =', &
math_transpose33(F_aim)
flush(6)
endif
!--------------------------------------------------------------------------------------------------
! evaluate inertia
dynamic: if (params%density > 0.0_pReal) then
residual_F = ((F - reshape(F_lastInc,[9,grid(1),grid(2),grid(3)]))/params%timeinc - &
reshape(F_lastInc - F_lastInc2, [9,grid(1),grid(2),grid(3)])/params%timeincOld)/&
((params%timeinc + params%timeincOld)/2.0_pReal)
residual_F = params%density*product(geomSize/grid)*residual_F
field_real = 0.0_pReal
field_real(1:grid(1),1:grid(2),1:grid(3),1:3,1:3) = reshape(residual_F,[grid(1),grid(2),grid(3),3,3],&
order=[4,5,1,2,3]) ! field real has a different order
call Utilities_FFTforward()
call Utilities_inverseLaplace()
inertiaField_fourier = field_fourier
else dynamic
inertiaField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
endif dynamic
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
do i = 1, params%nActivePhaseFields
if(params%phaseFieldData(i)%label == 'thermal') &
crystallite_temperature(1,1_pInt:product(grid)) = &
reshape(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)),[product(grid)])
enddo
call Utilities_constitutiveResponse(F_lastInc,F,params%temperature,params%timeinc, &
residual_F,C_volAvg,C_minmaxAvg,P_av,ForwardData,params%rotation_BC)
ForwardData = .false.
do i = 1, params%nActivePhaseFields
if(params%phaseFieldData(i)%label == 'fracture') &
residual_F = residual_F * spread(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)),dim=1,ncopies=9)
enddo
!--------------------------------------------------------------------------------------------------
! stress BC handling
F_aim_lastIter = F_aim
F_aim = F_aim - math_mul3333xx33(S, ((P_av - params%P_BC))) ! S = 0.0 for no bc
err_stress = maxval(abs(mask_stress * (P_av - params%P_BC))) ! mask = 0.0 for no bc
!--------------------------------------------------------------------------------------------------
! updated deformation gradient using fix point algorithm of basic scheme
field_real = 0.0_pReal
field_real(1:grid(1),1:grid(2),1:grid(3),1:3,1:3) = reshape(residual_F,[grid(1),grid(2),grid(3),3,3],&
order=[4,5,1,2,3]) ! field real has a different order
call Utilities_FFTforward()
field_fourier = field_fourier + inertiaField_fourier
err_divDummy = Utilities_divergenceRMS()
call Utilities_fourierConvolution(math_rotate_backward33(F_aim_lastIter-F_aim,params%rotation_BC))
call Utilities_FFTbackward()
!--------------------------------------------------------------------------------------------------
! constructing phase field residual
do i = 1, params%nActivePhaseFields
select case (params%phaseFieldData(i)%label)
case ('thermal')
phaseField_real = 0.0_pReal
phaseField_real(1:grid(1),1:grid(2),1:grid(3)) = &
phaseField_lastInc(i,1:grid(1),1:grid(2),1:grid(3))
call utilities_scalarFFTforward()
call utilities_diffusion(params%phaseFieldData(i)%diffusion,params%timeinc)
call utilities_scalarFFTbackward()
f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) = &
phaseField_real(1:grid(1),1:grid(2),1:grid(3))
phaseFieldRHS(i,1:grid(1),1:grid(2),1:grid(3)) = &
reshape(materialpoint_heat(1,1_pInt:product(grid)),[grid(1),grid(2),grid(3)])
phaseField_real = 0.0_pReal
phaseField_real(1:grid(1),1:grid(2),1:grid(3)) = &
params%timeinc*params%phaseFieldData(i)%mobility* &
(phaseFieldRHS_lastInc(i,1:grid(1),1:grid(2),1:grid(3)) + &
phaseFieldRHS (i,1:grid(1),1:grid(2),1:grid(3)))/2.0_pReal
call utilities_scalarFFTforward()
call utilities_diffusion(params%phaseFieldData(i)%diffusion,params%timeinc/2.0_pReal)
call utilities_scalarFFTbackward()
f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) = &
x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - &
f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - &
phaseField_real(1:grid(1),1:grid(2),1:grid(3))
err_phaseField(i) = maxval(abs(f_scal(9+i,1:grid(1),1:grid(2),1:grid(3))))
phaseField_Avg(i) = sum(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)))*wgt
case ('fracture')
phaseField_real = 0.0_pReal
phaseField_real(1:grid(1),1:grid(2),1:grid(3)) = &
phaseField_lastInc(i,1:grid(1),1:grid(2),1:grid(3))
call utilities_scalarFFTforward()
call utilities_diffusion(2.0_pReal*maxval(geomSize/real(grid,pReal))* &
params%phaseFieldData(i)%diffusion,params%timeinc)
call utilities_scalarFFTbackward()
f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) = &
phaseField_real(1:grid(1),1:grid(2),1:grid(3))
phaseFieldRHS(i,1:grid(1),1:grid(2),1:grid(3)) = &
- params%phaseFieldData(i)%mobility* &
sum(residual_F* &
(F-reshape(spread(spread(spread(math_I3,3,grid(1)),4,grid(2)),5,grid(3)),[9,grid(1),grid(2),grid(3)])),dim=1) &
- params%phaseFieldData(i)%diffusion*(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - 1.0_pReal)/ &
8.0_pReal/maxval(geomSize/real(grid,pReal))
phaseField_real = 0.0_pReal
phaseField_real(1:grid(1),1:grid(2),1:grid(3)) = &
params%timeinc*params%phaseFieldData(i)%mobility* &
(phaseFieldRHS_lastInc(i,1:grid(1),1:grid(2),1:grid(3)) + &
phaseFieldRHS (i,1:grid(1),1:grid(2),1:grid(3)))/2.0_pReal
call utilities_scalarFFTforward()
call utilities_diffusion(2.0_pReal*maxval(geomSize/real(grid,pReal))* &
params%phaseFieldData(i)%diffusion,params%timeinc/2.0_pReal)
call utilities_scalarFFTbackward()
f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) = &
x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - &
f_scal(9+i,1:grid(1),1:grid(2),1:grid(3)) - &
phaseField_real(1:grid(1),1:grid(2),1:grid(3))
err_phaseField(i) = maxval(abs(f_scal(9+i,1:grid(1),1:grid(2),1:grid(3))))
phaseField_Avg(i) = sum(x_scal(9+i,1:grid(1),1:grid(2),1:grid(3)))*wgt
end select
enddo
!--------------------------------------------------------------------------------------------------
! constructing residual
residual_F = reshape(field_real(1:grid(1),1:grid(2),1:grid(3),1:3,1:3),&
[9,grid(1),grid(2),grid(3)],order=[2,3,4,1])
end subroutine BasicPETSc_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief convergence check
!--------------------------------------------------------------------------------------------------
subroutine BasicPETSc_converged(snes_local,PETScIter,xnorm,snorm,fnorm,reason,dummy,ierr)
use numerics, only: &
itmax, &
itmin, &
err_div_tolRel, &
err_div_tolAbs, &
err_stress_tolRel, &
err_stress_tolAbs
use FEsolving, only: &
terminallyIll
implicit none
SNES :: snes_local
PetscInt :: PETScIter
PetscReal :: &
xnorm, &
snorm, &
fnorm
SNESConvergedReason :: reason
PetscObject :: dummy
PetscErrorCode :: ierr
real(pReal) :: &
divTol, &
stressTol, &
phaseField_err = 0.0_pReal
divTol = max(maxval(abs(P_av))*err_div_tolRel,err_div_tolAbs)
stressTol = max(maxval(abs(P_av))*err_stress_tolrel,err_stress_tolabs)
err_divPrev = err_div; err_div = err_divDummy
if (params%nActivePhaseFields .ne. 0_pInt) phaseField_err = maxval(err_phaseField/phaseField_Avg)
converged: if ((totalIter >= itmin .and. &
all([ err_div/divTol, err_stress/stressTol] < 1.0_pReal) .and. &
phaseField_err < 1.0e-3_pReal) &
.or. terminallyIll) then
reason = 1
elseif (totalIter >= itmax) then converged
reason = -1
else converged
reason = 0
endif converged
!--------------------------------------------------------------------------------------------------
! report
write(6,'(1/,a)') ' ... reporting .............................................................'
write(6,'(1/,a,f12.2,a,es8.2,a,es9.2,a)') ' error divergence = ', &
err_div/divTol, ' (',err_div,' / m, tol =',divTol,')'
write(6,'(a,f12.2,a,es8.2,a,es9.2,a)') ' error stress BC = ', &
err_stress/stressTol, ' (',err_stress, ' Pa, tol =',stressTol,')'
if (params%nActivePhaseFields .ne. 0_pInt) then
write(6,'(a,f10.2,a,es8.2,a,es9.2,a)') ' error phase field = ', &
phaseField_err/1.0e-3, ' (',phaseField_err, ' Pa, tol =',1.0e-3,')'
endif
write(6,'(/,a)') ' ==========================================================================='
flush(6)
end subroutine BasicPETSc_converged
!--------------------------------------------------------------------------------------------------
!> @brief convergence check
!--------------------------------------------------------------------------------------------------
subroutine BasicPETSc_convergedKSP(ksp_local,PETScIter,fnorm,reason,dummy,ierr)
use numerics, only: &
itmax, &
itmin, &
err_div_tolRel, &
err_div_tolAbs
use FEsolving, only: &
terminallyIll
use DAMASK_spectral_Utilities, only: &
wgt
implicit none
KSP :: ksp_local
PetscInt :: PETScIter, SNESIter
PetscReal :: &
fnorm, &
SNESfnorm, &
estimatedErrDiv
KSPConvergedReason :: reason
PetscObject :: dummy
PetscErrorCode :: ierr
real(pReal) :: &
divTol, &
r_tol
call SNESGetIterationNumber(snes,SNESIter,ierr); CHKERRQ(ierr)
call SNESGetFunctionNorm(snes,SNESfnorm,ierr); CHKERRQ(ierr)
if (SNESIter == 0_pInt) then ! Eisenstat-Walker calculation of relative tolerance for inexact newton
r_tol = 0.3
else
r_tol = (err_div/err_divPrev)**1.618
endif
divTol = max(maxval(abs(P_av))*err_div_tolRel,err_div_tolAbs)
estimatedErrDiv = fnorm*err_div/SNESfnorm ! Estimated error divergence
converged: if ((PETScIter >= itmin .and. &
any([fnorm/snesFnorm/r_tol, &
estimatedErrDiv/divTol] < 1.0_pReal)) &
.or. terminallyIll) then
reason = 1
elseif (totalIter >= itmax) then converged
reason = -1
else converged
reason = 0
endif converged
end subroutine BasicPETSc_convergedKSP
!--------------------------------------------------------------------------------------------------
!> @brief destroy routine
!--------------------------------------------------------------------------------------------------
subroutine BasicPETSc_destroy()
use DAMASK_spectral_Utilities, only: &
Utilities_destroy
implicit none
PetscErrorCode :: ierr
call VecDestroy(solution_vec,ierr); CHKERRQ(ierr)
call SNESDestroy(snes,ierr); CHKERRQ(ierr)
call DMDestroy(da,ierr); CHKERRQ(ierr)
call PetscFinalize(ierr); CHKERRQ(ierr)
call Utilities_destroy()
end subroutine BasicPETSc_destroy
end module DAMASK_spectral_SolverBasicPETSc