#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string import numpy as np from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = scriptID.split()[1][:-3] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Produces a binned grid of two columns from an ASCIItable, i.e. a two-dimensional probability density map. """, version = scriptID) parser.add_option('-d','--data', dest='data', action='store', nargs=2, type='int', metavar='int int', help='columns containing x and y %default') parser.add_option('-w','--weight', dest='weight', action='store', metavar='int', help='column containing weight of (x,y) point [%default]') parser.add_option('-b','--bins', dest='bins', action='store', nargs=2, type='int', metavar='int int', help='number of bins in x and y direction %default') parser.add_option('-t','--type', dest='type', action='store', nargs=3, type='string', metavar='string string string', help='type (linear/log) of x, y, and z axis [linear]') parser.add_option('-x','--xrange', dest='xrange', action='store', nargs=2, type='float', metavar='float float', help='value range in x direction [auto]') parser.add_option('-y','--yrange', dest='yrange', action='store', nargs=2, type='float', metavar='float float', help='value range in y direction [auto]') parser.add_option('-z','--zrange', dest='zrange', action='store', nargs=2, type='float', metavar='float float', help='value range in z direction [auto]') parser.add_option('-i','--invert', dest='invert', action='store_true', help='invert probability density [%default]') parser.set_defaults(data = (1,2)) parser.set_defaults(weight = None) parser.set_defaults(bins = (10,10)) parser.set_defaults(type = ('linear','linear','linear')) parser.set_defaults(xrange = (0.0,0.0)) parser.set_defaults(yrange = (0.0,0.0)) parser.set_defaults(zrange = (0.0,0.0)) parser.set_defaults(invert = False) (options,filenames) = parser.parse_args() range = np.array([np.array(options.xrange), np.array(options.yrange), np.array(options.zrange)]) grid = np.zeros(options.bins,'i') result = np.zeros((options.bins[0]*options.bins[1],3),'f') prefix='binned%i-%i_'%(options.data[0],options.data[1])+ \ ('weighted%i_'%(options.weight) if options.weight != None else '') # ------------------------------------------ setup file handles ------------------------------------ files = [] if filenames == []: files.append({'name':'STDIN', 'input':sys.stdin, 'output':sys.stdout, 'croak':sys.stderr}) else: for name in filenames: if os.path.exists(name): files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr}) # ------------------------------------------ loop over input files --------------------------------- for file in files: if file['name'] != 'STDIN': file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n') else: file['croak'].write('\033[1m'+scriptName+'\033[0m\n') skip = int(file['input'].readline().split()[0]) for i in xrange(skip): headers = file['input'].readline().split() data = np.loadtxt(file['input'],usecols=np.array(options.data+((options.weight,) if options.weight != None else ()))-1) table.input_close() # close input ASCII table for i in (0,1): # check data range for x and y if (range[i] == 0.0).all(): range[i] = [data[:,i].min(),data[:,i].max()] if options.type[i].lower() == 'log': # if log scale data[:,i] = np.log(data[:,i]) # change x,y coordinates to log range[i] = np.log(range[i]) # change range to log, too delta = range[:,1]-range[:,0] for i in xrange(len(data)): x = int(options.bins[0]*(data[i,0]-range[0,0])/delta[0]) y = int(options.bins[1]*(data[i,1]-range[1,0])/delta[1]) if x >=0 and x < options.bins[0] and y >= 0 and y < options.bins[1]: grid[x,y] += 1 if options.weight == None else data[i,2] if (range[2] == 0.0).all(): range[2] = [grid.min(),grid.max()] if (range[2] == 0.0).all(): # no data in grid? file['croak'].write('no data found on grid...\n') range[2,:] = np.array([0.0,1.0]) # making up arbitrary z range if options.type[2].lower() == 'log': grid = np.log(grid) range[2] = np.log(range[2]) delta[2] = range[2,1]-range[2,0] i = 0 for x in xrange(options.bins[0]): for y in xrange(options.bins[1]): result[i,:] = [range[0,0]+delta[0]/options.bins[0]*(x+0.5), range[1,0]+delta[1]/options.bins[1]*(y+0.5), min(1.0,max(0.0,(grid[x,y]-range[2,0])/delta[2]))] if options.type[0].lower() == 'log': result[i,0] = np.exp(result[i,0]) if options.type[1].lower() == 'log': result[i,1] = np.exp(result[i,1]) if options.invert: result[i,2] = 1.0-result[i,2] i += 1 # ------------------------------------------ output result ----------------------------------------- file['output'].write('1\thead\n') file['output'].write('bin_%s\tbin_%s\tz\n'%(headers[options.data[0]-1],headers[options.data[1]-1])) np.savetxt(file['output'],result) table.output_close() # close output ASCII table if file['name'] != 'STDIN': os.rename(file['name']+'_tmp',\ os.path.join(os.path.dirname(file['name']),prefix+os.path.basename(file['name'])))