!-------------------------------------------------------------------------------------------------- !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine incorporating kinematics resulting from thermal expansion !> @details to be done !-------------------------------------------------------------------------------------------------- module kinematics_thermal_expansion use prec use IO use config use debug use math use lattice use material implicit none private integer, dimension(:), allocatable :: kinematics_thermal_expansion_instance type :: tParameters real(pReal) :: & T_ref real(pReal), dimension(3,3,3) :: & expansion = 0.0_pReal end type tParameters type(tParameters), dimension(:), allocatable :: param public :: & kinematics_thermal_expansion_init, & kinematics_thermal_expansion_initialStrain, & kinematics_thermal_expansion_LiAndItsTangent contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine kinematics_thermal_expansion_init integer :: Ninstance,p,i real(pReal), dimension(:), allocatable :: temp write(6,'(/,a)') ' <<<+- kinematics_'//KINEMATICS_thermal_expansion_LABEL//' init -+>>>'; flush(6) Ninstance = count(phase_kinematics == KINEMATICS_thermal_expansion_ID) if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0) & write(6,'(a16,1x,i5,/)') '# instances:',Ninstance allocate(kinematics_thermal_expansion_instance(size(config_phase)), source=0) allocate(param(Ninstance)) do p = 1, size(config_phase) kinematics_thermal_expansion_instance(p) = count(phase_kinematics(:,1:p) == KINEMATICS_thermal_expansion_ID) if (all(phase_kinematics(:,p) /= KINEMATICS_thermal_expansion_ID)) cycle associate(prm => param(kinematics_thermal_expansion_instance(p)), & config => config_phase(p)) prm%T_ref = config%getFloat('reference_temperature', defaultVal=0.0_pReal) ! read up to three parameters (constant, linear, quadratic with T) temp = config%getFloats('thermal_expansion11') prm%expansion(1,1,1:size(temp)) = temp temp = config%getFloats('thermal_expansion22',defaultVal=[(0.0_pReal, i=1,size(temp))],requiredSize=size(temp)) prm%expansion(2,2,1:size(temp)) = temp temp = config%getFloats('thermal_expansion33',defaultVal=[(0.0_pReal, i=1,size(temp))],requiredSize=size(temp)) prm%expansion(3,3,1:size(temp)) = temp do i=1, size(prm%expansion,3) prm%expansion(1:3,1:3,i) = lattice_applyLatticeSymmetry33(prm%expansion(1:3,1:3,i),config%getString('lattice_structure')) enddo end associate enddo end subroutine kinematics_thermal_expansion_init !-------------------------------------------------------------------------------------------------- !> @brief report initial thermal strain based on current temperature deviation from reference !-------------------------------------------------------------------------------------------------- pure function kinematics_thermal_expansion_initialStrain(homog,phase,offset) integer, intent(in) :: & phase, & homog, & offset real(pReal), dimension(3,3) :: & kinematics_thermal_expansion_initialStrain !< initial thermal strain (should be small strain, though) associate(prm => param(kinematics_thermal_expansion_instance(phase))) kinematics_thermal_expansion_initialStrain = & (temperature(homog)%p(offset) - prm%T_ref)**1 / 1. * prm%expansion(1:3,1:3,1) + & ! constant coefficient (temperature(homog)%p(offset) - prm%T_ref)**2 / 2. * prm%expansion(1:3,1:3,2) + & ! linear coefficient (temperature(homog)%p(offset) - prm%T_ref)**3 / 3. * prm%expansion(1:3,1:3,3) ! quadratic coefficient end associate end function kinematics_thermal_expansion_initialStrain !-------------------------------------------------------------------------------------------------- !> @brief contains the constitutive equation for calculating the velocity gradient !-------------------------------------------------------------------------------------------------- subroutine kinematics_thermal_expansion_LiAndItsTangent(Li, dLi_dTstar, ipc, ip, el) integer, intent(in) :: & ipc, & !< grain number ip, & !< integration point number el !< element number real(pReal), intent(out), dimension(3,3) :: & Li !< thermal velocity gradient real(pReal), intent(out), dimension(3,3,3,3) :: & dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero) integer :: & phase, & homog real(pReal) :: & T, TDot phase = material_phaseAt(ipc,el) homog = material_homogenizationAt(el) T = temperature(homog)%p(thermalMapping(homog)%p(ip,el)) TDot = temperatureRate(homog)%p(thermalMapping(homog)%p(ip,el)) associate(prm => param(kinematics_thermal_expansion_instance(phase))) Li = TDot * ( & prm%expansion(1:3,1:3,1)*(T - prm%T_ref)**0 & ! constant coefficient + prm%expansion(1:3,1:3,2)*(T - prm%T_ref)**1 & ! linear coefficient + prm%expansion(1:3,1:3,3)*(T - prm%T_ref)**2 & ! quadratic coefficient ) / & (1.0_pReal & + prm%expansion(1:3,1:3,1)*(T - prm%T_ref)**1 / 1. & + prm%expansion(1:3,1:3,2)*(T - prm%T_ref)**2 / 2. & + prm%expansion(1:3,1:3,3)*(T - prm%T_ref)**3 / 3. & ) end associate dLi_dTstar = 0.0_pReal end subroutine kinematics_thermal_expansion_LiAndItsTangent end module kinematics_thermal_expansion