!-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Krishna Komerla, Max-Planck-Institut für Eisenforschung GmbH !> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver !-------------------------------------------------------------------------------------------------- module mesh use, intrinsic :: iso_c_binding use prec, only: pReal, pInt implicit none private integer(pInt), public, protected :: & mesh_NcpElems, & !< total number of CP elements in local mesh mesh_NelemSets, & mesh_maxNelemInSet, & mesh_Nmaterials, & mesh_Nnodes, & !< total number of nodes in mesh mesh_Ncellnodes, & !< total number of cell nodes in mesh (including duplicates) mesh_Ncells, & !< total number of cells in mesh mesh_maxNnodes, & !< max number of nodes in any CP element mesh_maxNips, & !< max number of IPs in any CP element mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element mesh_maxNsharedElems, & !< max number of CP elements sharing a node mesh_maxNcellnodes, & !< max number of cell nodes in any CP element mesh_Nelems !< total number of elements in mesh #ifdef Spectral integer(pInt), public, protected :: & mesh_NcpElemsGlobal, & !< total number of CP elements in global mesh gridGlobal(3), & gridLocal (3), & gridOffset real(pReal), public, protected :: & geomSizeGlobal(3), & geomSizeLocal (3), & geomSizeOffset #endif integer(pInt), dimension(:,:), allocatable, public, protected :: & mesh_element, & !< FEid, type(internal representation), material, texture, node indices as CP IDs mesh_sharedElem, & !< entryCount and list of elements containing node mesh_nodeTwins !< node twins are surface nodes that lie exactly on opposite sides of the mesh (surfaces nodes with equal coordinate values in two dimensions) integer(pInt), dimension(:,:,:,:), allocatable, public, protected :: & mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me] real(pReal), public, protected :: & mesh_unitlength !< physical length of one unit in mesh real(pReal), dimension(:,:), allocatable, public :: & mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!) mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!) real(pReal), dimension(:,:), allocatable, public, protected :: & mesh_ipVolume, & !< volume associated with IP (initially!) mesh_node0 !< node x,y,z coordinates (initially!) real(pReal), dimension(:,:,:), allocatable, public, protected :: & mesh_ipArea !< area of interface to neighboring IP (initially!) real(pReal), dimension(:,:,:), allocatable, public :: & mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!) real(pReal),dimension(:,:,:,:), allocatable, public, protected :: & mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!) logical, dimension(3), public, protected :: mesh_periodicSurface !< flag indicating periodic outer surfaces (used for fluxes) #ifdef Marc4DAMASK integer(pInt), private :: & hypoelasticTableStyle, & !< Table style (Marc only) initialcondTableStyle !< Table style (Marc only) #endif integer(pInt), dimension(2), private :: & mesh_maxValStateVar = 0_pInt #ifndef Spectral character(len=64), dimension(:), allocatable, private :: & mesh_nameElemSet, & !< names of elementSet mesh_nameMaterial, & !< names of material in solid section mesh_mapMaterial !< name of elementSet for material integer(pInt), dimension(:,:), allocatable, private :: & mesh_mapElemSet !< list of elements in elementSet #endif integer(pInt), dimension(:,:), allocatable, private :: & mesh_cellnodeParent !< cellnode's parent element ID, cellnode's intra-element ID integer(pInt), dimension(:,:), allocatable, target, private :: & mesh_mapFEtoCPelem, & !< [sorted FEid, corresponding CPid] mesh_mapFEtoCPnode !< [sorted FEid, corresponding CPid] integer(pInt),dimension(:,:,:), allocatable, private :: & mesh_cell !< cell connectivity for each element,ip/cell integer(pInt), dimension(:,:,:), allocatable, private :: & FE_nodesAtIP, & !< map IP index to node indices in a specific type of element FE_ipNeighbor, & !< +x,-x,+y,-y,+z,-z list of intra-element IPs and(negative) neighbor faces per own IP in a specific type of element FE_cell, & !< list of intra-element cell node IDs that constitute the cells in a specific type of element geometry FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell real(pReal), dimension(:,:,:), allocatable, private :: & FE_cellnodeParentnodeWeights !< list of node weights for the generation of cell nodes integer(pInt), dimension(:,:,:,:), allocatable, private :: & FE_subNodeOnIPFace #ifdef Abaqus logical, private :: noPart !< for cases where the ABAQUS input file does not use part/assembly information #endif #ifdef PETSc #include include 'fftw3-mpi.f03' #else include 'fftw3.f03' #endif ! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS) ! Hence, I suggest to prefix with "FE_" integer(pInt), parameter, public :: & FE_Nelemtypes = 13_pInt, & FE_Ngeomtypes = 10_pInt, & FE_Ncelltypes = 4_pInt, & FE_maxNnodes = 20_pInt, & FE_maxNips = 27_pInt, & FE_maxNipNeighbors = 6_pInt, & FE_maxmaxNnodesAtIP = 8_pInt, & !< max number of (equivalent) nodes attached to an IP FE_maxNmatchingNodesPerFace = 4_pInt, & FE_maxNfaces = 6_pInt, & FE_maxNcellnodes = 64_pInt, & FE_maxNcellnodesPerCell = 8_pInt, & FE_maxNcellfaces = 6_pInt, & FE_maxNcellnodesPerCellface = 4_pInt integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_geomtype = & !< geometry type of particular element type int([ & 1, & ! element 6 (2D 3node 1ip) 2, & ! element 125 (2D 6node 3ip) 3, & ! element 11 (2D 4node 4ip) 4, & ! element 27 (2D 8node 9ip) 3, & ! element 54 (2D 8node 4ip) 5, & ! element 134 (3D 4node 1ip) 6, & ! element 157 (3D 5node 4ip) 6, & ! element 127 (3D 10node 4ip) 7, & ! element 136 (3D 6node 6ip) 8, & ! element 117 (3D 8node 1ip) 9, & ! element 7 (3D 8node 8ip) 9, & ! element 57 (3D 20node 8ip) 10 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_celltype = & !< cell type that is used by each geometry type int([ & 1, & ! element 6 (2D 3node 1ip) 2, & ! element 125 (2D 6node 3ip) 2, & ! element 11 (2D 4node 4ip) 2, & ! element 27 (2D 8node 9ip) 3, & ! element 134 (3D 4node 1ip) 4, & ! element 127 (3D 10node 4ip) 4, & ! element 136 (3D 6node 6ip) 4, & ! element 117 (3D 8node 1ip) 4, & ! element 7 (3D 8node 8ip) 4 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_dimension = & !< dimension of geometry type int([ & 2, & ! element 6 (2D 3node 1ip) 2, & ! element 125 (2D 6node 3ip) 2, & ! element 11 (2D 4node 4ip) 2, & ! element 27 (2D 8node 9ip) 3, & ! element 134 (3D 4node 1ip) 3, & ! element 127 (3D 10node 4ip) 3, & ! element 136 (3D 6node 6ip) 3, & ! element 117 (3D 8node 1ip) 3, & ! element 7 (3D 8node 8ip) 3 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Nelemtypes), parameter, public :: FE_Nnodes = & !< number of nodes that constitute a specific type of element int([ & 3, & ! element 6 (2D 3node 1ip) 6, & ! element 125 (2D 6node 3ip) 4, & ! element 11 (2D 4node 4ip) 8, & ! element 27 (2D 8node 9ip) 8, & ! element 54 (2D 8node 4ip) 4, & ! element 134 (3D 4node 1ip) 5, & ! element 157 (3D 5node 4ip) 10, & ! element 127 (3D 10node 4ip) 6, & ! element 136 (3D 6node 6ip) 8, & ! element 117 (3D 8node 1ip) 8, & ! element 7 (3D 8node 8ip) 20, & ! element 57 (3D 20node 8ip) 20 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nfaces = & !< number of faces of a specific type of element geometry int([ & 3, & ! element 6 (2D 3node 1ip) 3, & ! element 125 (2D 6node 3ip) 4, & ! element 11 (2D 4node 4ip) 4, & ! element 27 (2D 8node 9ip) 4, & ! element 134 (3D 4node 1ip) 4, & ! element 127 (3D 10node 4ip) 5, & ! element 136 (3D 6node 6ip) 6, & ! element 117 (3D 8node 1ip) 6, & ! element 7 (3D 8node 8ip) 6 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry int([ & 3, & ! element 6 (2D 3node 1ip) 3, & ! element 125 (2D 6node 3ip) 4, & ! element 11 (2D 4node 4ip) 4, & ! element 27 (2D 8node 9ip) 4, & ! element 134 (3D 4node 1ip) 4, & ! element 127 (3D 10node 4ip) 6, & ! element 136 (3D 6node 6ip) 8, & ! element 117 (3D 8node 1ip) 8, & ! element 7 (3D 8node 8ip) 8 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_maxNfaces,FE_Ngeomtypes), parameter, private :: & FE_NmatchingNodesPerFace = & !< number of matching nodes per face in a specific type of element geometry reshape(int([ & 2,2,2,0,0,0, & ! element 6 (2D 3node 1ip) 2,2,2,0,0,0, & ! element 125 (2D 6node 3ip) 2,2,2,2,0,0, & ! element 11 (2D 4node 4ip) 2,2,2,2,0,0, & ! element 27 (2D 8node 9ip) 3,3,3,3,0,0, & ! element 134 (3D 4node 1ip) 3,3,3,3,0,0, & ! element 127 (3D 10node 4ip) 3,4,4,4,3,0, & ! element 136 (3D 6node 6ip) 4,4,4,4,4,4, & ! element 117 (3D 8node 1ip) 4,4,4,4,4,4, & ! element 7 (3D 8node 8ip) 4,4,4,4,4,4 & ! element 21 (3D 20node 27ip) ],pInt),[FE_maxNipNeighbors,FE_Ngeomtypes]) integer(pInt), dimension(FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes), & parameter, private :: FE_face = & !< List of node indices on each face of a specific type of element geometry reshape(int([& 1,2,0,0 , & ! element 6 (2D 3node 1ip) 2,3,0,0 , & 3,1,0,0 , & 0,0,0,0 , & 0,0,0,0 , & 0,0,0,0 , & 1,2,0,0 , & ! element 125 (2D 6node 3ip) 2,3,0,0 , & 3,1,0,0 , & 0,0,0,0 , & 0,0,0,0 , & 0,0,0,0 , & 1,2,0,0 , & ! element 11 (2D 4node 4ip) 2,3,0,0 , & 3,4,0,0 , & 4,1,0,0 , & 0,0,0,0 , & 0,0,0,0 , & 1,2,0,0 , & ! element 27 (2D 8node 9ip) 2,3,0,0 , & 3,4,0,0 , & 4,1,0,0 , & 0,0,0,0 , & 0,0,0,0 , & 1,2,3,0 , & ! element 134 (3D 4node 1ip) 1,4,2,0 , & 2,3,4,0 , & 1,3,4,0 , & 0,0,0,0 , & 0,0,0,0 , & 1,2,3,0 , & ! element 127 (3D 10node 4ip) 1,4,2,0 , & 2,4,3,0 , & 1,3,4,0 , & 0,0,0,0 , & 0,0,0,0 , & 1,2,3,0 , & ! element 136 (3D 6node 6ip) 1,4,5,2 , & 2,5,6,3 , & 1,3,6,4 , & 4,6,5,0 , & 0,0,0,0 , & 1,2,3,4 , & ! element 117 (3D 8node 1ip) 2,1,5,6 , & 3,2,6,7 , & 4,3,7,8 , & 4,1,5,8 , & 8,7,6,5 , & 1,2,3,4 , & ! element 7 (3D 8node 8ip) 2,1,5,6 , & 3,2,6,7 , & 4,3,7,8 , & 4,1,5,8 , & 8,7,6,5 , & 1,2,3,4 , & ! element 21 (3D 20node 27ip) 2,1,5,6 , & 3,2,6,7 , & 4,3,7,8 , & 4,1,5,8 , & 8,7,6,5 & ],pInt),[FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes]) integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_Ncellnodes = & !< number of cell nodes in a specific geometry type int([ & 3, & ! element 6 (2D 3node 1ip) 7, & ! element 125 (2D 6node 3ip) 9, & ! element 11 (2D 4node 4ip) 16, & ! element 27 (2D 8node 9ip) 4, & ! element 134 (3D 4node 1ip) 15, & ! element 127 (3D 10node 4ip) 21, & ! element 136 (3D 6node 6ip) 8, & ! element 117 (3D 8node 1ip) 27, & ! element 7 (3D 8node 8ip) 64 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type int([ & 3, & ! (2D 3node) 4, & ! (2D 4node) 4, & ! (3D 4node) 8 & ! (3D 8node) ],pInt) integer(pInt), dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type int([& 2, & ! (2D 3node) 2, & ! (2D 4node) 3, & ! (3D 4node) 4 & ! (3D 8node) ],pInt) integer(pInt), dimension(FE_Ngeomtypes), parameter, public :: FE_Nips = & !< number of IPs in a specific type of element int([ & 1, & ! element 6 (2D 3node 1ip) 3, & ! element 125 (2D 6node 3ip) 4, & ! element 11 (2D 4node 4ip) 9, & ! element 27 (2D 8node 9ip) 1, & ! element 134 (3D 4node 1ip) 4, & ! element 127 (3D 10node 4ip) 6, & ! element 136 (3D 6node 6ip) 1, & ! element 117 (3D 8node 1ip) 8, & ! element 7 (3D 8node 8ip) 27 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Ncelltypes), parameter, public :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type int([& 3, & ! (2D 3node) 4, & ! (2D 4node) 4, & ! (3D 4node) 6 & ! (3D 8node) ],pInt) integer(pInt), dimension(FE_Ngeomtypes), parameter, private :: FE_maxNnodesAtIP = & !< maximum number of parent nodes that belong to an IP for a specific type of element int([ & 3, & ! element 6 (2D 3node 1ip) 1, & ! element 125 (2D 6node 3ip) 1, & ! element 11 (2D 4node 4ip) 2, & ! element 27 (2D 8node 9ip) 4, & ! element 134 (3D 4node 1ip) 1, & ! element 127 (3D 10node 4ip) 1, & ! element 136 (3D 6node 6ip) 8, & ! element 117 (3D 8node 1ip) 1, & ! element 7 (3D 8node 8ip) 4 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Nelemtypes), parameter, private :: MESH_VTKELEMTYPE = & int([ & 5, & ! element 6 (2D 3node 1ip) 22, & ! element 125 (2D 6node 3ip) 9, & ! element 11 (2D 4node 4ip) 23, & ! element 27 (2D 8node 9ip) 23, & ! element 54 (2D 8node 4ip) 10, & ! element 134 (3D 4node 1ip) 10, & ! element 157 (3D 5node 4ip) 24, & ! element 127 (3D 10node 4ip) 13, & ! element 136 (3D 6node 6ip) 12, & ! element 117 (3D 8node 1ip) 12, & ! element 7 (3D 8node 8ip) 25, & ! element 57 (3D 20node 8ip) 25 & ! element 21 (3D 20node 27ip) ],pInt) integer(pInt), dimension(FE_Ncelltypes), parameter, private :: MESH_VTKCELLTYPE = & int([ & 5, & ! (2D 3node) 9, & ! (2D 4node) 10, & ! (3D 4node) 12 & ! (3D 8node) ],pInt) public :: & mesh_init, & mesh_FEasCP, & mesh_build_cellnodes, & mesh_build_ipVolumes, & mesh_build_ipCoordinates, & mesh_cellCenterCoordinates, & mesh_init_postprocessing, & mesh_get_Ncellnodes, & mesh_get_unitlength, & mesh_get_nodeAtIP #ifdef Spectral public :: & mesh_spectral_getGrid, & mesh_spectral_getSize, & mesh_regrid, & mesh_nodesAroundCentres, & mesh_deformedCoordsFFT, & mesh_volumeMismatch, & mesh_shapeMismatch #endif private :: & #ifdef Spectral mesh_spectral_getHomogenization, & mesh_spectral_count, & mesh_spectral_mapNodesAndElems, & mesh_spectral_count_cpSizes, & mesh_spectral_build_nodes, & mesh_spectral_build_elements, & mesh_spectral_build_ipNeighborhood, & #endif #ifdef Marc4DAMASK mesh_marc_get_tableStyles, & mesh_marc_count_nodesAndElements, & mesh_marc_count_elementSets, & mesh_marc_map_elementSets, & mesh_marc_count_cpElements, & mesh_marc_map_Elements, & mesh_marc_map_nodes, & mesh_marc_build_nodes, & mesh_marc_count_cpSizes, & mesh_marc_build_elements, & #endif #ifdef Abaqus mesh_abaqus_count_nodesAndElements, & mesh_abaqus_count_elementSets, & mesh_abaqus_count_materials, & mesh_abaqus_map_elementSets, & mesh_abaqus_map_materials, & mesh_abaqus_count_cpElements, & mesh_abaqus_map_elements, & mesh_abaqus_map_nodes, & mesh_abaqus_build_nodes, & mesh_abaqus_count_cpSizes, & mesh_abaqus_build_elements, & #endif mesh_get_damaskOptions, & mesh_build_cellconnectivity, & mesh_build_ipAreas, & mesh_build_nodeTwins, & mesh_build_sharedElems, & mesh_build_ipNeighborhood, & mesh_tell_statistics, & FE_mapElemtype, & mesh_faceMatch, & mesh_build_FEdata, & mesh_write_cellGeom, & mesh_write_elemGeom, & mesh_write_meshfile, & mesh_read_meshfile contains !-------------------------------------------------------------------------------------------------- !> @brief initializes the mesh by calling all necessary private routines the mesh module !! Order and routines strongly depend on type of solver !-------------------------------------------------------------------------------------------------- subroutine mesh_init(ip,el) #ifdef Spectral use, intrinsic :: iso_c_binding #endif use DAMASK_interface use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use IO, only: & #ifdef Abaqus IO_abaqus_hasNoPart, & #endif #ifdef Spectral IO_open_file, & #else IO_open_InputFile, & #endif IO_timeStamp, & IO_error, & IO_write_jobFile use debug, only: & debug_e, & debug_i, & debug_level, & debug_mesh, & debug_levelBasic use numerics, only: & usePingPong, & numerics_unitlength, & worldrank use FEsolving, only: & FEsolving_execElem, & FEsolving_execIP, & calcMode, & modelName implicit none #ifdef Spectral integer(C_INTPTR_T) :: gridMPI(3), alloc_local, local_K, local_K_offset #endif integer(pInt), parameter :: FILEUNIT = 222_pInt integer(pInt), intent(in) :: el, ip integer(pInt) :: j logical :: myDebug mainProcess: if (worldrank == 0) then write(6,'(/,a)') ' <<<+- mesh init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" endif mainProcess if (allocated(mesh_mapFEtoCPelem)) deallocate(mesh_mapFEtoCPelem) if (allocated(mesh_mapFEtoCPnode)) deallocate(mesh_mapFEtoCPnode) if (allocated(mesh_node0)) deallocate(mesh_node0) if (allocated(mesh_node)) deallocate(mesh_node) if (allocated(mesh_element)) deallocate(mesh_element) if (allocated(mesh_cell)) deallocate(mesh_cell) if (allocated(mesh_cellnode)) deallocate(mesh_cellnode) if (allocated(mesh_cellnodeParent)) deallocate(mesh_cellnodeParent) if (allocated(mesh_ipCoordinates)) deallocate(mesh_ipCoordinates) if (allocated(mesh_ipArea)) deallocate(mesh_ipArea) if (allocated(mesh_ipAreaNormal)) deallocate(mesh_ipAreaNormal) if (allocated(mesh_sharedElem)) deallocate(mesh_sharedElem) if (allocated(mesh_ipNeighborhood)) deallocate(mesh_ipNeighborhood) if (allocated(mesh_ipVolume)) deallocate(mesh_ipVolume) if (allocated(mesh_nodeTwins)) deallocate(mesh_nodeTwins) if (allocated(FE_nodesAtIP)) deallocate(FE_nodesAtIP) if (allocated(FE_ipNeighbor)) deallocate(FE_ipNeighbor) if (allocated(FE_cellnodeParentnodeWeights)) deallocate(FE_cellnodeParentnodeWeights) if (allocated(FE_subNodeOnIPFace)) deallocate(FE_subNodeOnIPFace) call mesh_build_FEdata ! get properties of the different types of elements mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh myDebug = (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) #ifdef Spectral #ifdef PETSc call fftw_mpi_init() call IO_open_file(FILEUNIT,geometryFile) ! parse info from geometry file... if (myDebug) write(6,'(a)') ' Opened geometry file'; flush(6) gridGlobal = mesh_spectral_getGrid(fileUnit) gridMPI = gridGlobal alloc_local = fftw_mpi_local_size_3d(gridMPI(3), gridMPI(2), gridMPI(1)/2 +1, & MPI_COMM_WORLD, local_K, local_K_offset) gridLocal = [gridGlobal(1:2),int(local_K,pInt)] gridOffset = int(local_K_offset,pInt) geomSizeGlobal = mesh_spectral_getSize(fileUnit) geomSizeLocal = [geomSizeGlobal(1:2), & geomSizeGlobal(3)*real(gridLocal(3),pReal)/real(gridGlobal(3),pReal)] geomSizeOffset = geomSizeGlobal(3)*real(gridOffset,pReal) /real(gridGlobal(3),pReal) #else call IO_open_file(FILEUNIT,geometryFile) ! parse info from geometry file... if (myDebug) write(6,'(a)') ' Opened geometry file'; flush(6) gridGlobal = mesh_spectral_getGrid(fileUnit) gridLocal = gridGlobal gridOffset = 0_pInt geomSizeGlobal = mesh_spectral_getSize(fileUnit) geomSizeLocal = geomSizeGlobal geomSizeOffset = 0.0_pReal #endif if (myDebug) write(6,'(a)') ' Grid partitioned'; flush(6) call mesh_spectral_count(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted nodes/elements'; flush(6) call mesh_spectral_mapNodesAndElems if (myDebug) write(6,'(a)') ' Mapped nodes and elements'; flush(6) call mesh_spectral_count_cpSizes if (myDebug) write(6,'(a)') ' Built CP statistics'; flush(6) call mesh_spectral_build_nodes(FILEUNIT) if (myDebug) write(6,'(a)') ' Built nodes'; flush(6) call mesh_spectral_build_elements(FILEUNIT) if (myDebug) write(6,'(a)') ' Built elements'; flush(6) call mesh_get_damaskOptions(FILEUNIT) if (myDebug) write(6,'(a)') ' Got DAMASK options'; flush(6) call mesh_build_cellconnectivity if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6) mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes) if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6) call mesh_build_ipCoordinates if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6) call mesh_build_ipVolumes if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6) call mesh_build_ipAreas if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6) call mesh_spectral_build_ipNeighborhood(FILEUNIT) if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6) #endif #ifdef Marc4DAMASK call IO_open_inputFile(FILEUNIT,modelName) ! parse info from input file... if (myDebug) write(6,'(a)') ' Opened input file'; flush(6) call mesh_marc_get_tableStyles(FILEUNIT) if (myDebug) write(6,'(a)') ' Got table styles'; flush(6) call mesh_marc_count_nodesAndElements(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted nodes/elements'; flush(6) call mesh_marc_count_elementSets(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted element sets'; flush(6) call mesh_marc_map_elementSets(FILEUNIT) if (myDebug) write(6,'(a)') ' Mapped element sets'; flush(6) call mesh_marc_count_cpElements(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted CP elements'; flush(6) call mesh_marc_map_elements(FILEUNIT) if (myDebug) write(6,'(a)') ' Mapped elements'; flush(6) call mesh_marc_map_nodes(FILEUNIT) if (myDebug) write(6,'(a)') ' Mapped nodes'; flush(6) call mesh_marc_build_nodes(FILEUNIT) if (myDebug) write(6,'(a)') ' Built nodes'; flush(6) call mesh_marc_count_cpSizes(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted CP sizes'; flush(6) call mesh_marc_build_elements(FILEUNIT) if (myDebug) write(6,'(a)') ' Built elements'; flush(6) call mesh_get_damaskOptions(FILEUNIT) if (myDebug) write(6,'(a)') ' Got DAMASK options'; flush(6) call mesh_build_cellconnectivity if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6) mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes) if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6) call mesh_build_ipCoordinates if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6) call mesh_build_ipVolumes if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6) call mesh_build_ipAreas if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6) call mesh_build_nodeTwins if (myDebug) write(6,'(a)') ' Built node twins'; flush(6) call mesh_build_sharedElems if (myDebug) write(6,'(a)') ' Built shared elements'; flush(6) call mesh_build_ipNeighborhood if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6) #endif #ifdef Abaqus call IO_open_inputFile(FILEUNIT,modelName) ! parse info from input file... if (myDebug) write(6,'(a)') ' Opened input file'; flush(6) noPart = IO_abaqus_hasNoPart(FILEUNIT) call mesh_abaqus_count_nodesAndElements(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted nodes/elements'; flush(6) call mesh_abaqus_count_elementSets(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted element sets'; flush(6) call mesh_abaqus_count_materials(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted materials'; flush(6) call mesh_abaqus_map_elementSets(FILEUNIT) if (myDebug) write(6,'(a)') ' Mapped element sets'; flush(6) call mesh_abaqus_map_materials(FILEUNIT) if (myDebug) write(6,'(a)') ' Mapped materials'; flush(6) call mesh_abaqus_count_cpElements(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted CP elements'; flush(6) call mesh_abaqus_map_elements(FILEUNIT) if (myDebug) write(6,'(a)') ' Mapped elements'; flush(6) call mesh_abaqus_map_nodes(FILEUNIT) if (myDebug) write(6,'(a)') ' Mapped nodes'; flush(6) call mesh_abaqus_build_nodes(FILEUNIT) if (myDebug) write(6,'(a)') ' Built nodes'; flush(6) call mesh_abaqus_count_cpSizes(FILEUNIT) if (myDebug) write(6,'(a)') ' Counted CP sizes'; flush(6) call mesh_abaqus_build_elements(FILEUNIT) if (myDebug) write(6,'(a)') ' Built elements'; flush(6) call mesh_get_damaskOptions(FILEUNIT) if (myDebug) write(6,'(a)') ' Got DAMASK options'; flush(6) call mesh_build_cellconnectivity if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6) mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes) if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6) call mesh_build_ipCoordinates if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6) call mesh_build_ipVolumes if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6) call mesh_build_ipAreas if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6) call mesh_build_nodeTwins if (myDebug) write(6,'(a)') ' Built node twins'; flush(6) call mesh_build_sharedElems if (myDebug) write(6,'(a)') ' Built shared elements'; flush(6) call mesh_build_ipNeighborhood if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6) #endif close (FILEUNIT) if (worldrank == 0_pInt) then call mesh_tell_statistics call mesh_write_meshfile call mesh_write_cellGeom call mesh_write_elemGeom endif if (usePingPong .and. (mesh_Nelems /= mesh_NcpElems)) & call IO_error(600_pInt) ! ping-pong must be disabled when having non-DAMASK elements if (debug_e < 1 .or. debug_e > mesh_NcpElems) & call IO_error(602_pInt,ext_msg='element') ! selected element does not exist if (debug_i < 1 .or. debug_i > FE_Nips(FE_geomtype(mesh_element(2_pInt,debug_e)))) & call IO_error(602_pInt,ext_msg='IP') ! selected element does not have requested IP FEsolving_execElem = [ 1_pInt,mesh_NcpElems ] ! parallel loop bounds set to comprise all DAMASK elements if (allocated(FEsolving_execIP)) deallocate(FEsolving_execIP) allocate(FEsolving_execIP(2_pInt,mesh_NcpElems)); FEsolving_execIP = 1_pInt ! parallel loop bounds set to comprise from first IP... forall (j = 1_pInt:mesh_NcpElems) FEsolving_execIP(2,j) = FE_Nips(FE_geomtype(mesh_element(2,j))) ! ...up to own IP count for each element if (allocated(calcMode)) deallocate(calcMode) allocate(calcMode(mesh_maxNips,mesh_NcpElems)) calcMode = .false. ! pretend to have collected what first call is asking (F = I) calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc" end subroutine mesh_init !-------------------------------------------------------------------------------------------------- !> @brief Gives the FE to CP ID mapping by binary search through lookup array !! valid questions (what) are 'elem', 'node' !-------------------------------------------------------------------------------------------------- integer(pInt) function mesh_FEasCP(what,myID) use IO, only: & IO_lc implicit none character(len=*), intent(in) :: what integer(pInt), intent(in) :: myID integer(pInt), dimension(:,:), pointer :: lookupMap integer(pInt) :: lower,upper,center mesh_FEasCP = 0_pInt select case(IO_lc(what(1:4))) case('elem') lookupMap => mesh_mapFEtoCPelem case('node') lookupMap => mesh_mapFEtoCPnode case default return endselect lower = 1_pInt upper = int(size(lookupMap,2_pInt),pInt) if (lookupMap(1_pInt,lower) == myID) then ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds? mesh_FEasCP = lookupMap(2_pInt,lower) return elseif (lookupMap(1_pInt,upper) == myID) then mesh_FEasCP = lookupMap(2_pInt,upper) return endif binarySearch: do while (upper-lower > 1_pInt) center = (lower+upper)/2_pInt if (lookupMap(1_pInt,center) < myID) then lower = center elseif (lookupMap(1_pInt,center) > myID) then upper = center else mesh_FEasCP = lookupMap(2_pInt,center) exit endif enddo binarySearch end function mesh_FEasCP !-------------------------------------------------------------------------------------------------- !> @brief Split CP elements into cells. !> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell'). !> Cell nodes that are also matching nodes are unique in the list of cell nodes, !> all others (currently) might be stored more than once. !> Also allocates the 'mesh_node' array. !-------------------------------------------------------------------------------------------------- subroutine mesh_build_cellconnectivity implicit none integer(pInt), dimension(:), allocatable :: & matchingNode2cellnode integer(pInt), dimension(:,:), allocatable :: & cellnodeParent integer(pInt), dimension(mesh_maxNcellnodes) :: & localCellnode2globalCellnode integer(pInt) :: & e,t,g,c,n,i, & matchingNodeID, & localCellnodeID allocate(mesh_cell(FE_maxNcellnodesPerCell,mesh_maxNips,mesh_NcpElems), source=0_pInt) allocate(matchingNode2cellnode(mesh_Nnodes), source=0_pInt) allocate(cellnodeParent(2_pInt,mesh_maxNcellnodes*mesh_NcpElems), source=0_pInt) !-------------------------------------------------------------------------------------------------- ! Count cell nodes (including duplicates) and generate cell connectivity list mesh_Ncellnodes = 0_pInt mesh_Ncells = 0_pInt do e = 1_pInt,mesh_NcpElems ! loop over cpElems t = mesh_element(2_pInt,e) ! get element type g = FE_geomtype(t) ! get geometry type c = FE_celltype(g) ! get cell type localCellnode2globalCellnode = 0_pInt mesh_Ncells = mesh_Ncells + FE_Nips(g) do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell localCellnodeID = FE_cell(n,i,g) if (localCellnodeID <= FE_NmatchingNodes(g)) then ! this cell node is a matching node matchingNodeID = mesh_element(4_pInt+localCellnodeID,e) if (matchingNode2cellnode(matchingNodeID) == 0_pInt) then ! if this matching node does not yet exist in the glbal cell node list ... mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ... matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and where it belongs to cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID endif mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID) else ! this cell node is no matching node if (localCellnode2globalCellnode(localCellnodeID) == 0_pInt) then ! if this local cell node does not yet exist in the global cell node list ... mesh_Ncellnodes = mesh_Ncellnodes + 1_pInt ! ... count it as cell node ... localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ... cellnodeParent(1_pInt,mesh_Ncellnodes) = e ! ... and it belongs to cellnodeParent(2_pInt,mesh_Ncellnodes) = localCellnodeID endif mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID) endif enddo enddo enddo allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes)) allocate(mesh_cellnode(3_pInt,mesh_Ncellnodes)) forall(n = 1_pInt:mesh_Ncellnodes) mesh_cellnodeParent(1,n) = cellnodeParent(1,n) mesh_cellnodeParent(2,n) = cellnodeParent(2,n) endforall deallocate(matchingNode2cellnode) deallocate(cellnodeParent) end subroutine mesh_build_cellconnectivity !-------------------------------------------------------------------------------------------------- !> @brief Calculate position of cellnodes from the given position of nodes !> Build list of cellnodes' coordinates. !> Cellnode coordinates are calculated from a weighted sum of node coordinates. !-------------------------------------------------------------------------------------------------- function mesh_build_cellnodes(nodes,Ncellnodes) implicit none integer(pInt), intent(in) :: Ncellnodes !< requested number of cellnodes real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes integer(pInt) :: & e,t,n,m, & localCellnodeID real(pReal), dimension(3) :: & myCoords mesh_build_cellnodes = 0.0_pReal !$OMP PARALLEL DO PRIVATE(e,localCellnodeID,t,myCoords) do n = 1_pInt,Ncellnodes ! loop over cell nodes e = mesh_cellnodeParent(1,n) localCellnodeID = mesh_cellnodeParent(2,n) t = mesh_element(2,e) ! get element type myCoords = 0.0_pReal do m = 1_pInt,FE_Nnodes(t) myCoords = myCoords + nodes(1:3,mesh_element(4_pInt+m,e)) & * FE_cellnodeParentnodeWeights(m,localCellnodeID,t) enddo mesh_build_cellnodes(1:3,n) = myCoords / sum(FE_cellnodeParentnodeWeights(:,localCellnodeID,t)) enddo !$OMP END PARALLEL DO end function mesh_build_cellnodes !-------------------------------------------------------------------------------------------------- !> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume' !> @details The IP volume is calculated differently depending on the cell type. !> 2D cells assume an element depth of one in order to calculate the volume. !> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal !> shape with a cell face as basis and the central ip at the tip. This subvolume is !> calculated as an average of four tetrahedals with three corners on the cell face !> and one corner at the central ip. !-------------------------------------------------------------------------------------------------- subroutine mesh_build_ipVolumes use math, only: & math_volTetrahedron, & math_areaTriangle implicit none integer(pInt) :: e,t,g,c,i,m,f,n real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume if (.not. allocated(mesh_ipVolume)) then allocate(mesh_ipVolume(mesh_maxNips,mesh_NcpElems)) mesh_ipVolume = 0.0_pReal endif !$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume) do e = 1_pInt,mesh_NcpElems ! loop over cpElems t = mesh_element(2_pInt,e) ! get element type g = FE_geomtype(t) ! get geometry type c = FE_celltype(g) ! get cell type select case (c) case (1_pInt) ! 2D 3node forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & mesh_cellnode(1:3,mesh_cell(2,i,e)), & mesh_cellnode(1:3,mesh_cell(3,i,e))) case (2_pInt) ! 2D 4node forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices mesh_cellnode(1:3,mesh_cell(2,i,e)), & mesh_cellnode(1:3,mesh_cell(3,i,e))) & + math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), & mesh_cellnode(1:3,mesh_cell(4,i,e)), & mesh_cellnode(1:3,mesh_cell(1,i,e))) case (3_pInt) ! 3D 4node forall (i = 1_pInt:FE_Nips(g)) & ! loop over ips=cells in this element mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), & mesh_cellnode(1:3,mesh_cell(2,i,e)), & mesh_cellnode(1:3,mesh_cell(3,i,e)), & mesh_cellnode(1:3,mesh_cell(4,i,e))) case (4_pInt) ! 3D 8node m = FE_NcellnodesPerCellface(c) do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element subvolume = 0.0_pReal forall(f = 1_pInt:FE_NipNeighbors(c), n = 1_pInt:FE_NcellnodesPerCellface(c)) & subvolume(n,f) = math_volTetrahedron(& mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), & mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), & mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), & mesh_ipCoordinates(1:3,i,e)) mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two enddo end select enddo !$OMP END PARALLEL DO end subroutine mesh_build_ipVolumes !-------------------------------------------------------------------------------------------------- !> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates' ! Called by all solvers in mesh_init in order to initialize the ip coordinates. ! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus, ! so no need to use this subroutine anymore; Marc however only provides nodal displacements, ! so in this case the ip coordinates are always calculated on the basis of this subroutine. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES, ! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME. ! HAS TO BE CHANGED IN A LATER VERSION. ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! !-------------------------------------------------------------------------------------------------- subroutine mesh_build_ipCoordinates implicit none integer(pInt) :: e,t,g,c,i,n real(pReal), dimension(3) :: myCoords if (.not. allocated(mesh_ipCoordinates)) then allocate(mesh_ipCoordinates(3,mesh_maxNips,mesh_NcpElems)) mesh_ipCoordinates = 0.0_pReal endif !$OMP PARALLEL DO PRIVATE(t,g,c,myCoords) do e = 1_pInt,mesh_NcpElems ! loop over cpElems t = mesh_element(2_pInt,e) ! get element type g = FE_geomtype(t) ! get geometry type c = FE_celltype(g) ! get cell type do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element myCoords = 0.0_pReal do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell myCoords = myCoords + mesh_cellnode(1:3,mesh_cell(n,i,e)) enddo mesh_ipCoordinates(1:3,i,e) = myCoords / FE_NcellnodesPerCell(c) enddo enddo !$OMP END PARALLEL DO end subroutine mesh_build_ipCoordinates !-------------------------------------------------------------------------------------------------- !> @brief Calculates cell center coordinates. !-------------------------------------------------------------------------------------------------- pure function mesh_cellCenterCoordinates(ip,el) implicit none integer(pInt), intent(in) :: el, & !< element number ip !< integration point number real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell integer(pInt) :: t,g,c,n t = mesh_element(2_pInt,el) ! get element type g = FE_geomtype(t) ! get geometry type c = FE_celltype(g) ! get cell type mesh_cellCenterCoordinates = 0.0_pReal do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell mesh_cellCenterCoordinates = mesh_cellCenterCoordinates + mesh_cellnode(1:3,mesh_cell(n,ip,el)) enddo mesh_cellCenterCoordinates = mesh_cellCenterCoordinates / FE_NcellnodesPerCell(c) end function mesh_cellCenterCoordinates #ifdef Spectral !-------------------------------------------------------------------------------------------------- !> @brief Reads grid information from geometry file. If fileUnit is given, !! assumes an opened file, otherwise tries to open the one specified in geometryFile !-------------------------------------------------------------------------------------------------- function mesh_spectral_getGrid(fileUnit) use IO, only: & IO_checkAndRewind, & IO_open_file, & IO_stringPos, & IO_lc, & IO_stringValue, & IO_intValue, & IO_floatValue, & IO_error use DAMASK_interface, only: & geometryFile implicit none integer(pInt), dimension(3) :: mesh_spectral_getGrid integer(pInt), intent(in), optional :: fileUnit integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a,b,c + 3 values + keyword integer(pInt) :: headerLength = 0_pInt character(len=1024) :: line, & keyword integer(pInt) :: i, j, myFileUnit logical :: gotGrid = .false. mesh_spectral_getGrid = -1_pInt if(.not. present(fileUnit)) then myFileUnit = 289_pInt call IO_open_file(myFileUnit,trim(geometryFile)) else myFileUnit = fileUnit endif call IO_checkAndRewind(myFileUnit) read(myFileUnit,'(a1024)') line positions = IO_stringPos(line,7_pInt) keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.)) if (keyword(1:4) == 'head') then headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt else call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getGrid') endif rewind(myFileUnit) do i = 1_pInt, headerLength read(myFileUnit,'(a1024)') line positions = IO_stringPos(line,7_pInt) select case ( IO_lc(IO_StringValue(line,positions,1_pInt,.true.)) ) case ('grid') gotGrid = .true. do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,positions,j))) case('a') mesh_spectral_getGrid(1) = IO_intValue(line,positions,j+1_pInt) case('b') mesh_spectral_getGrid(2) = IO_intValue(line,positions,j+1_pInt) case('c') mesh_spectral_getGrid(3) = IO_intValue(line,positions,j+1_pInt) end select enddo end select enddo if(.not. present(fileUnit)) close(myFileUnit) if (.not. gotGrid) & call IO_error(error_ID = 845_pInt, ext_msg='grid') if(any(mesh_spectral_getGrid < 1_pInt)) & call IO_error(error_ID = 843_pInt, ext_msg='mesh_spectral_getGrid') end function mesh_spectral_getGrid !-------------------------------------------------------------------------------------------------- !> @brief Reads size information from geometry file. If fileUnit is given, !! assumes an opened file, otherwise tries to open the one specified in geometryFile !-------------------------------------------------------------------------------------------------- function mesh_spectral_getSize(fileUnit) use IO, only: & IO_checkAndRewind, & IO_open_file, & IO_stringPos, & IO_lc, & IO_stringValue, & IO_intValue, & IO_floatValue, & IO_error use DAMASK_interface, only: & geometryFile implicit none real(pReal), dimension(3) :: mesh_spectral_getSize integer(pInt), intent(in), optional :: fileUnit integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for x,y,z + 3 values + keyword integer(pInt) :: headerLength = 0_pInt character(len=1024) :: line, & keyword integer(pInt) :: i, j, myFileUnit logical :: gotSize = .false. mesh_spectral_getSize = -1.0_pReal if(.not. present(fileUnit)) then myFileUnit = 289_pInt call IO_open_file(myFileUnit,trim(geometryFile)) else myFileUnit = fileUnit endif call IO_checkAndRewind(myFileUnit) read(myFileUnit,'(a1024)') line positions = IO_stringPos(line,7_pInt) keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.)) if (keyword(1:4) == 'head') then headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt else call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getSize') endif rewind(myFileUnit) do i = 1_pInt, headerLength read(myFileUnit,'(a1024)') line positions = IO_stringPos(line,7_pInt) select case ( IO_lc(IO_StringValue(line,positions,1,.true.)) ) case ('size') gotSize = .true. do j = 2_pInt,6_pInt,2_pInt select case (IO_lc(IO_stringValue(line,positions,j))) case('x') mesh_spectral_getSize(1) = IO_floatValue(line,positions,j+1_pInt) case('y') mesh_spectral_getSize(2) = IO_floatValue(line,positions,j+1_pInt) case('z') mesh_spectral_getSize(3) = IO_floatValue(line,positions,j+1_pInt) end select enddo end select enddo if(.not. present(fileUnit)) close(myFileUnit) if (.not. gotSize) & call IO_error(error_ID = 845_pInt, ext_msg='size') if (any(mesh_spectral_getSize<=0.0_pReal)) & call IO_error(error_ID = 844_pInt, ext_msg='mesh_spectral_getSize') end function mesh_spectral_getSize !-------------------------------------------------------------------------------------------------- !> @brief Reads homogenization information from geometry file. If fileUnit is given, !! assumes an opened file, otherwise tries to open the one specified in geometryFile !-------------------------------------------------------------------------------------------------- integer(pInt) function mesh_spectral_getHomogenization(fileUnit) use IO, only: & IO_checkAndRewind, & IO_open_file, & IO_stringPos, & IO_lc, & IO_stringValue, & IO_intValue, & IO_error use DAMASK_interface, only: & geometryFile implicit none integer(pInt), intent(in), optional :: fileUnit integer(pInt), dimension(1_pInt + 7_pInt*2_pInt) :: positions ! for a, b, c + 3 values + keyword integer(pInt) :: headerLength = 0_pInt character(len=1024) :: line, & keyword integer(pInt) :: i, myFileUnit logical :: gotHomogenization = .false. mesh_spectral_getHomogenization = -1_pInt if(.not. present(fileUnit)) then myFileUnit = 289_pInt call IO_open_file(myFileUnit,trim(geometryFile)) else myFileUnit = fileUnit endif call IO_checkAndRewind(myFileUnit) read(myFileUnit,'(a1024)') line positions = IO_stringPos(line,7_pInt) keyword = IO_lc(IO_StringValue(line,positions,2_pInt,.true.)) if (keyword(1:4) == 'head') then headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt else call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_getHomogenization') endif rewind(myFileUnit) do i = 1_pInt, headerLength read(myFileUnit,'(a1024)') line positions = IO_stringPos(line,7_pInt) select case ( IO_lc(IO_StringValue(line,positions,1,.true.)) ) case ('homogenization') gotHomogenization = .true. mesh_spectral_getHomogenization = IO_intValue(line,positions,2_pInt) end select enddo if(.not. present(fileUnit)) close(myFileUnit) if (.not. gotHomogenization ) & call IO_error(error_ID = 845_pInt, ext_msg='homogenization') if (mesh_spectral_getHomogenization<1_pInt) & call IO_error(error_ID = 842_pInt, ext_msg='mesh_spectral_getHomogenization') end function mesh_spectral_getHomogenization !-------------------------------------------------------------------------------------------------- !> @brief Count overall number of nodes and elements in mesh and stores them in !! 'mesh_Nelems', 'mesh_Nnodes' and 'mesh_NcpElems' !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_count(fileUnit) implicit none integer(pInt), intent(in) :: fileUnit mesh_Nelems = product(gridLocal) mesh_NcpElems= mesh_Nelems mesh_Nnodes = product(gridLocal + 1_pInt) mesh_NcpElemsGlobal = product(gridGlobal) end subroutine mesh_spectral_count !-------------------------------------------------------------------------------------------------- !> @brief fake map node from FE ID to internal (consecutive) representation for node and element !! Allocates global array 'mesh_mapFEtoCPnode' and 'mesh_mapFEtoCPelem' !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_mapNodesAndElems use math, only: & math_range implicit none allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes), source = 0_pInt) allocate (mesh_mapFEtoCPelem(2_pInt,mesh_NcpElems), source = 0_pInt) mesh_mapFEtoCPnode = spread(math_range(mesh_Nnodes),1,2) mesh_mapFEtoCPelem = spread(math_range(mesh_NcpElems),1,2) end subroutine mesh_spectral_mapNodesAndElems !-------------------------------------------------------------------------------------------------- !> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements. !! Sets global values 'mesh_maxNnodes', 'mesh_maxNips', 'mesh_maxNipNeighbors', !! and 'mesh_maxNcellnodes' !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_count_cpSizes implicit none integer(pInt) :: t,g,c t = FE_mapElemtype('C3D8R') ! fake 3D hexahedral 8 node 1 IP element g = FE_geomtype(t) c = FE_celltype(g) mesh_maxNnodes = FE_Nnodes(t) mesh_maxNips = FE_Nips(g) mesh_maxNipNeighbors = FE_NipNeighbors(c) mesh_maxNcellnodes = FE_Ncellnodes(g) end subroutine mesh_spectral_count_cpSizes !-------------------------------------------------------------------------------------------------- !> @brief Store x,y,z coordinates of all nodes in mesh. !! Allocates global arrays 'mesh_node0' and 'mesh_node' !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_build_nodes(fileUnit) implicit none integer(pInt), intent(in) :: fileUnit integer(pInt) :: n allocate (mesh_node0 (3,mesh_Nnodes), source = 0.0_pReal) allocate (mesh_node (3,mesh_Nnodes), source = 0.0_pReal) forall (n = 0_pInt:mesh_Nnodes-1_pInt) mesh_node0(1,n+1_pInt) = mesh_unitlength * & geomSizeLocal(1)*real(mod(n,(gridLocal(1)+1_pInt) ),pReal) & / real(gridLocal(1),pReal) mesh_node0(2,n+1_pInt) = mesh_unitlength * & geomSizeLocal(2)*real(mod(n/(gridLocal(1)+1_pInt),(gridLocal(2)+1_pInt)),pReal) & / real(gridLocal(2),pReal) mesh_node0(3,n+1_pInt) = mesh_unitlength * & geomSizeLocal(3)*real(mod(n/(gridLocal(1)+1_pInt)/(gridLocal(2)+1_pInt),(gridLocal(3)+1_pInt)),pReal) & / real(gridLocal(3),pReal) + & geomSizeOffset end forall mesh_node = mesh_node0 end subroutine mesh_spectral_build_nodes !-------------------------------------------------------------------------------------------------- !> @brief Store FEid, type, material, texture, and node list per element. !! Allocates global array 'mesh_element' !> @todo does the IO_error makes sense? !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_build_elements(fileUnit) use IO, only: & IO_checkAndRewind, & IO_lc, & IO_stringValue, & IO_stringPos, & IO_error, & IO_continuousIntValues, & IO_intValue, & IO_countContinuousIntValues implicit none integer(pInt), intent(in) :: & fileUnit integer(pInt), dimension(1_pInt+7_pInt*2_pInt) :: & myPos integer(pInt) :: & e, i, & headerLength = 0_pInt, & maxIntCount, & homog, & elemType, & elemOffset integer(pInt), dimension(:), allocatable :: & microstructures, & mesh_microGlobal integer(pInt), dimension(1,1) :: & dummySet = 0_pInt character(len=65536) :: & line, & keyword character(len=64), dimension(1) :: & dummyName = '' homog = mesh_spectral_getHomogenization(fileUnit) !-------------------------------------------------------------------------------------------------- ! get header length call IO_checkAndRewind(fileUnit) read(fileUnit,'(a65536)') line myPos = IO_stringPos(line,7_pInt) keyword = IO_lc(IO_StringValue(line,myPos,2_pInt,.true.)) if (keyword(1:4) == 'head') then headerLength = IO_intValue(line,myPos,1_pInt) + 1_pInt else call IO_error(error_ID=841_pInt, ext_msg='mesh_spectral_build_elements') endif !-------------------------------------------------------------------------------------------------- ! get maximum microstructure index call IO_checkAndRewind(fileUnit) do i = 1_pInt, headerLength read(fileUnit,'(a65536)') line enddo maxIntCount = 0_pInt i = 1_pInt do while (i > 0_pInt) i = IO_countContinuousIntValues(fileUnit) maxIntCount = max(maxIntCount, i) enddo allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems), source = 0_pInt) allocate (microstructures (1_pInt+maxIntCount), source = 1_pInt) allocate (mesh_microGlobal(mesh_NcpElemsGlobal), source = 1_pInt) !-------------------------------------------------------------------------------------------------- ! read in microstructures call IO_checkAndRewind(fileUnit) do i=1_pInt,headerLength read(fileUnit,'(a65536)') line enddo e = 0_pInt do while (e < mesh_NcpElemsGlobal .and. microstructures(1) > 0_pInt) ! fill expected number of elements, stop at end of data (or blank line!) microstructures = IO_continuousIntValues(fileUnit,maxIntCount,dummyName,dummySet,0_pInt) ! get affected elements do i = 1_pInt,microstructures(1_pInt) e = e+1_pInt ! valid element entry mesh_microGlobal(e) = microstructures(1_pInt+i) enddo enddo elemType = FE_mapElemtype('C3D8R') elemOffset = gridLocal(1)*gridLocal(2)*gridOffset e = 0_pInt do while (e < mesh_NcpElems) ! fill expected number of elements, stop at end of data (or blank line!) e = e+1_pInt ! valid element entry mesh_element( 1,e) = e ! FE id mesh_element( 2,e) = elemType ! elem type mesh_element( 3,e) = homog ! homogenization mesh_element( 4,e) = mesh_microGlobal(e+elemOffset) ! microstructure mesh_element( 5,e) = e + (e-1_pInt)/gridLocal(1) + & ((e-1_pInt)/(gridLocal(1)*gridLocal(2)))*(gridLocal(1)+1_pInt) ! base node mesh_element( 6,e) = mesh_element(5,e) + 1_pInt mesh_element( 7,e) = mesh_element(5,e) + gridLocal(1) + 2_pInt mesh_element( 8,e) = mesh_element(5,e) + gridLocal(1) + 1_pInt mesh_element( 9,e) = mesh_element(5,e) +(gridLocal(1) + 1_pInt) * (gridLocal(2) + 1_pInt) ! second floor base node mesh_element(10,e) = mesh_element(9,e) + 1_pInt mesh_element(11,e) = mesh_element(9,e) + gridLocal(1) + 2_pInt mesh_element(12,e) = mesh_element(9,e) + gridLocal(1) + 1_pInt mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),mesh_element(3,e)) ! needed for statistics mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),mesh_element(4,e)) enddo deallocate(microstructures) deallocate(mesh_microGlobal) if (e /= mesh_NcpElems) call IO_error(880_pInt,e) end subroutine mesh_spectral_build_elements !-------------------------------------------------------------------------------------------------- !> @brief build neighborhood relations for spectral !> @details assign globals: mesh_ipNeighborhood !-------------------------------------------------------------------------------------------------- subroutine mesh_spectral_build_ipNeighborhood(fileUnit) implicit none integer(pInt), intent(in) :: & fileUnit integer(pInt) :: & x,y,z, & e allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems),source=0_pInt) e = 0_pInt do z = 0_pInt,gridLocal(3)-1_pInt do y = 0_pInt,gridLocal(2)-1_pInt do x = 0_pInt,gridLocal(1)-1_pInt e = e + 1_pInt mesh_ipNeighborhood(1,1,1,e) = z * gridLocal(1) * gridLocal(2) & + y * gridLocal(1) & + modulo(x+1_pInt,gridLocal(1)) & + 1_pInt mesh_ipNeighborhood(1,2,1,e) = z * gridLocal(1) * gridLocal(2) & + y * gridLocal(1) & + modulo(x-1_pInt,gridLocal(1)) & + 1_pInt mesh_ipNeighborhood(1,3,1,e) = z * gridLocal(1) * gridLocal(2) & + modulo(y+1_pInt,gridLocal(2)) * gridLocal(1) & + x & + 1_pInt mesh_ipNeighborhood(1,4,1,e) = z * gridLocal(1) * gridLocal(2) & + modulo(y-1_pInt,gridLocal(2)) * gridLocal(1) & + x & + 1_pInt mesh_ipNeighborhood(1,5,1,e) = modulo(z+1_pInt,gridLocal(3)) * gridLocal(1) * gridLocal(2) & + y * gridLocal(1) & + x & + 1_pInt mesh_ipNeighborhood(1,6,1,e) = modulo(z-1_pInt,gridLocal(3)) * gridLocal(1) * gridLocal(2) & + y * gridLocal(1) & + x & + 1_pInt mesh_ipNeighborhood(2,1:6,1,e) = 1_pInt mesh_ipNeighborhood(3,1,1,e) = 2_pInt mesh_ipNeighborhood(3,2,1,e) = 1_pInt mesh_ipNeighborhood(3,3,1,e) = 4_pInt mesh_ipNeighborhood(3,4,1,e) = 3_pInt mesh_ipNeighborhood(3,5,1,e) = 6_pInt mesh_ipNeighborhood(3,6,1,e) = 5_pInt enddo enddo enddo end subroutine mesh_spectral_build_ipNeighborhood !-------------------------------------------------------------------------------------------------- !> @brief Performes a regridding from saved restart information !-------------------------------------------------------------------------------------------------- function mesh_regrid(adaptive,resNewInput,minRes) use prec, only: & pInt, & pReal use DAMASK_interface, only: & getSolverWorkingDirectoryName, & getSolverJobName, & GeometryFile use IO, only: & IO_open_file, & IO_read_realFile ,& IO_read_intFile ,& IO_write_jobRealFile, & IO_write_jobIntFile, & IO_write_jobFile, & IO_error use numerics, only: & spectral_solver use math, only: & math_periodicNearestNeighbor, & math_mul33x3 implicit none logical, intent(in) :: adaptive ! if true, choose adaptive grid based on resNewInput, otherwise keep it constant integer(pInt), dimension(3), optional, intent(in) :: resNewInput ! f2py cannot handle optional arguments correctly (they are always present) integer(pInt), dimension(3), optional, intent(in) :: minRes integer(pInt), dimension(3) :: mesh_regrid, ratio, grid integer(pInt), parameter :: FILEUNIT = 777_pInt integer(pInt), dimension(3,2) :: possibleResNew integer(pInt):: maxsize, i, j, k, ielem, NpointsNew, spatialDim, Nelems integer(pInt), dimension(3) :: resNew integer(pInt), dimension(:), allocatable :: indices real(pReal) :: wgt real(pReal), dimension(3) :: geomSizeNew, geomSize real(pReal), dimension(3,3) :: Favg, Favg_LastInc real(pReal), dimension(:,:), allocatable :: & coordinates, coordinatesNew real(pReal), dimension(:,:,:), allocatable :: & stateHomog real(pReal), dimension (:,:,:,:), allocatable :: & spectralF9, spectralF9New, & Tstar, TstarNew, & stateConst real(pReal), dimension(:,:,:,:,:), allocatable :: & F, FNew, & Fp, FpNew, & Lp, LpNew, & dcsdE, dcsdENew, & F_lastIncNew real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: & dPdF, dPdFNew character(len=1024):: formatString, N_Digits integer(pInt), dimension(:,:), allocatable :: & sizeStateHomog integer(pInt), dimension(:,:,:), allocatable :: & material_phase, material_phaseNew, & sizeStateConst call IO_open_file(FILEUNIT,trim(geometryFile)) grid = mesh_spectral_getGrid(FILEUNIT) geomSize = mesh_spectral_getsize(FILEUNIT) close(FILEUNIT) Nelems = product(grid) wgt = 1.0_pReal/real(Nelems,pReal) write(6,'(a)') 'Regridding geometry' if (adaptive) then write(6,'(a)') 'adaptive resolution determination' if (present(minRes)) then if (all(minRes /= -1_pInt)) & !the f2py way to tell it is present write(6,'(a,3(i12))') ' given minimum resolution ', minRes endif if (present(resNewInput)) then if (any (resNewInput<1)) call IO_error(890_pInt, ext_msg = 'resNewInput') !the f2py way to tell it is not present write(6,'(a,3(i12))') ' target resolution ', resNewInput else call IO_error(890_pInt, ext_msg = 'resNewInput') endif endif allocate(coordinates(3,Nelems)) !-------------------------------------------------------------------------------------------------- ! read in deformation gradient to calculate coordinates, shape depend of selected solver select case(spectral_solver) case('basicpetsc','al','polarization') allocate(spectralF9(9,grid(1),grid(2),grid(3))) call IO_read_realFile(FILEUNIT,'F',trim(getSolverJobName()),size(spectralF9)) read (FILEUNIT,rec=1) spectralF9 close (FILEUNIT) Favg = reshape(sum(sum(sum(spectralF9,dim=4),dim=3),dim=2) * wgt, [3,3]) coordinates = reshape(mesh_deformedCoordsFFT(geomSize,reshape(spectralF9, & [3,3,grid(1),grid(2),grid(3)])),[3,mesh_NcpElems]) end select !-------------------------------------------------------------------------------------------------- ! sanity check 2D/3D case if (grid(3)== 1_pInt) then spatialDim = 2_pInt if (present (minRes)) then if (minRes(1) > 0_pInt .or. minRes(2) > 0_pInt) then if (minRes(3) /= 1_pInt .or. & mod(minRes(1),2_pInt) /= 0_pInt .or. & mod(minRes(2),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '2D minRes') ! as f2py has problems with present, use pyf file for initialization to -1 endif; endif else spatialDim = 3_pInt if (present (minRes)) then if (any(minRes > 0_pInt)) then if (mod(minRes(1),2_pInt) /= 0_pInt .or. & mod(minRes(2),2_pInt) /= 0_pInt .or. & mod(minRes(3),2_pInt) /= 0_pInt) call IO_error(890_pInt, ext_msg = '3D minRes') ! as f2py has problems with present, use pyf file for initialization to -1 endif; endif endif !-------------------------------------------------------------------------------------------------- ! Automatic detection based on current geom geomSizeNew = math_mul33x3(Favg,geomSize) if (adaptive) then ratio = floor(real(resNewInput,pReal) * (geomSizeNew/geomSize), pInt) possibleResNew = 1_pInt do i = 1_pInt, spatialDim if (mod(ratio(i),2) == 0_pInt) then possibleResNew(i,1:2) = [ratio(i),ratio(i) + 2_pInt] else possibleResNew(i,1:2) = [ratio(i)-1_pInt, ratio(i) + 1_pInt] endif if (.not.present(minRes)) then ! calling from fortran, optional argument not given possibleResNew = possibleResNew else ! optional argument is there if (any(minRes<1_pInt)) then possibleResNew = possibleResNew ! f2py calling, but without specification (or choosing invalid values), standard from pyf = -1 else ! given useful values forall(k = 1_pInt:3_pInt, j = 1_pInt:3_pInt) & possibleResNew(j,k) = max(possibleResNew(j,k), minRes(j)) endif endif enddo k = huge(1_pInt) do i = 0_pInt, 2_pInt**spatialDim - 1 j = abs( possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt) & * possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt) & * possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) & - resNewInput(1)*resNewInput(2)*resNewInput(3)) if (j < k) then k = j resNew =[ possibleResNew(1,iand(i,1_pInt)/1_pInt + 1_pInt), & possibleResNew(2,iand(i,2_pInt)/2_pInt + 1_pInt), & possibleResNew(3,iand(i,4_pInt)/4_pInt + 1_pInt) ] endif enddo else resNew = grid endif mesh_regrid = resNew NpointsNew = product(resNew) !-------------------------------------------------------------------------------------------------- ! Calculate regular new coordinates allocate(coordinatesNew(3,NpointsNew)) ielem = 0_pInt do k=1_pInt,resNew(3); do j=1_pInt, resNew(2); do i=1_pInt, resNew(1) ielem = ielem + 1_pInt coordinatesNew(1:3,ielem) = math_mul33x3(Favg, geomSize/real(resNew,pReal)*real([i,j,k],pReal) & - geomSize/real(2_pInt*resNew,pReal)) enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! Nearest neighbour search allocate(indices(NpointsNew)) indices = math_periodicNearestNeighbor(geomSize, Favg, coordinatesNew, coordinates) deallocate(coordinates) !-------------------------------------------------------------------------------------------------- ! write out indices periodic write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal))) N_Digits = adjustl(N_Digits) formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)' call IO_write_jobFile(FILEUNIT,'IDX') ! make it a general open-write file write(FILEUNIT, '(A)') '1 header' write(FILEUNIT, '(A)') 'Numbered indices as per the large set' do i = 1_pInt, NpointsNew write(FILEUNIT,trim(formatString),advance='no') indices(i), ' ' if(mod(i,resNew(1)) == 0_pInt) write(FILEUNIT,'(A)') '' enddo close(FILEUNIT) !-------------------------------------------------------------------------------------------------- ! calculate and write out indices non periodic do i = 1_pInt, NpointsNew indices(i) = indices(i) / 3_pInt**spatialDim +1_pInt ! +1 b'coz index count starts from '0' enddo write(N_Digits, '(I16.16)') 1_pInt + int(log10(real(maxval(indices),pReal))) N_Digits = adjustl(N_Digits) formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)' call IO_write_jobFile(FILEUNIT,'idx') ! make it a general open-write file write(FILEUNIT, '(A)') '1 header' write(FILEUNIT, '(A)') 'Numbered indices as per the small set' do i = 1_pInt, NpointsNew write(FILEUNIT,trim(formatString),advance='no') indices(i), ' ' if(mod(i,resNew(1)) == 0_pInt) write(FILEUNIT,'(A)') '' enddo close(FILEUNIT) !-------------------------------------------------------------------------------------------------- ! write out new geom file write(N_Digits, '(I16.16)') 1_pInt+int(log10(real(maxval(mesh_element(4,1:mesh_NcpElems)),pReal)),pInt) N_Digits = adjustl(N_Digits) formatString = '(I'//trim(N_Digits)//'.'//trim(N_Digits)//',a)' open(FILEUNIT,file=trim(getSolverWorkingDirectoryName())//trim(GeometryFile),status='REPLACE') write(FILEUNIT, '(A)') '3 header' write(FILEUNIT, '(3(A, I8))') 'grid a ', resNew(1), ' b ', resNew(2), ' c ', resNew(3) write(FILEUNIT, '(3(A, g17.10))') 'size x ', geomSize(1), ' y ', geomSize(2), ' z ', geomSize(3) write(FILEUNIT, '(A)') 'homogenization 1' do i = 1_pInt, NpointsNew write(FILEUNIT,trim(formatString),advance='no') mesh_element(4,indices(i)), ' ' if(mod(i,resNew(1)) == 0_pInt) write(FILEUNIT,'(A)') '' enddo close(FILEUNIT) !-------------------------------------------------------------------------------------------------- ! set F to average values select case(spectral_solver) case('basicpetsc','al','polarization') allocate(spectralF9New(9,resNew(1),resNew(2),resNew(3))) spectralF9New = spread(spread(spread(reshape(Favg,[9]),2,resNew(1)),3,resNew(2)),4,resNew(3)) call IO_write_jobRealFile(FILEUNIT,'F',size(spectralF9New)) write (FILEUNIT,rec=1) spectralF9New close (FILEUNIT) end select !--------------------------------------------------------------------------------- allocate(F_lastIncNew(3,3,resNew(1),resNew(2),resNew(3))) call IO_read_realFile(FILEUNIT,'F_aim_lastInc', & trim(getSolverJobName()),size(Favg_LastInc)) read (FILEUNIT,rec=1) Favg_LastInc close (FILEUNIT) F_lastIncNew = spread(spread(spread(Favg_LastInc,3,resNew(1)),4,resNew(2)),5,resNew(3)) call IO_write_jobRealFile(FILEUNIT,'convergedSpectralDefgrad_lastInc',size(F_LastIncNew)) write (FILEUNIT,rec=1) F_LastIncNew close (FILEUNIT) deallocate(F_lastIncNew) ! relocating data of material subroutine --------------------------------------------------------- allocate(material_phase (1,1, mesh_NcpElems)) allocate(material_phaseNew (1,1, NpointsNew)) call IO_read_intFile(FILEUNIT,'recordedPhase',trim(getSolverJobName()),size(material_phase)) read (FILEUNIT,rec=1) material_phase close (FILEUNIT) do i = 1, NpointsNew material_phaseNew(1,1,i) = material_phase(1,1,indices(i)) enddo do i = 1, mesh_NcpElems if (all(material_phaseNew(1,1,:) /= material_phase(1,1,i))) then write(6,*) 'mismatch in regridding' write(6,*) material_phase(1,1,i), 'not found in material_phaseNew' endif enddo call IO_write_jobIntFile(FILEUNIT,'recordedPhase',size(material_phaseNew)) write (FILEUNIT,rec=1) material_phaseNew close (FILEUNIT) deallocate(material_phase) deallocate(material_phaseNew) !--------------------------------------------------------------------------- allocate(F (3,3,1,1, mesh_NcpElems)) allocate(FNew (3,3,1,1, NpointsNew)) call IO_read_realFile(FILEUNIT,'convergedF',trim(getSolverJobName()),size(F)) read (FILEUNIT,rec=1) F close (FILEUNIT) do i = 1, NpointsNew FNew(1:3,1:3,1,1,i) = F(1:3,1:3,1,1,indices(i)) enddo call IO_write_jobRealFile(FILEUNIT,'convergedF',size(FNew)) write (FILEUNIT,rec=1) FNew close (FILEUNIT) deallocate(F) deallocate(FNew) !--------------------------------------------------------------------- allocate(Fp (3,3,1,1,mesh_NcpElems)) allocate(FpNew (3,3,1,1,NpointsNew)) call IO_read_realFile(FILEUNIT,'convergedFp',trim(getSolverJobName()),size(Fp)) read (FILEUNIT,rec=1) Fp close (FILEUNIT) do i = 1, NpointsNew FpNew(1:3,1:3,1,1,i) = Fp(1:3,1:3,1,1,indices(i)) enddo call IO_write_jobRealFile(FILEUNIT,'convergedFp',size(FpNew)) write (FILEUNIT,rec=1) FpNew close (FILEUNIT) deallocate(Fp) deallocate(FpNew) !------------------------------------------------------------------------ allocate(Lp (3,3,1,1,mesh_NcpElems)) allocate(LpNew (3,3,1,1,NpointsNew)) call IO_read_realFile(FILEUNIT,'convergedLp',trim(getSolverJobName()),size(Lp)) read (FILEUNIT,rec=1) Lp close (FILEUNIT) do i = 1, NpointsNew LpNew(1:3,1:3,1,1,i) = Lp(1:3,1:3,1,1,indices(i)) enddo call IO_write_jobRealFile(FILEUNIT,'convergedLp',size(LpNew)) write (FILEUNIT,rec=1) LpNew close (FILEUNIT) deallocate(Lp) deallocate(LpNew) !---------------------------------------------------------------------------- allocate(dcsdE (6,6,1,1,mesh_NcpElems)) allocate(dcsdENew (6,6,1,1,NpointsNew)) call IO_read_realFile(FILEUNIT,'convergeddcsdE',trim(getSolverJobName()),size(dcsdE)) read (FILEUNIT,rec=1) dcsdE close (FILEUNIT) do i = 1, NpointsNew dcsdENew(1:6,1:6,1,1,i) = dcsdE(1:6,1:6,1,1,indices(i)) enddo call IO_write_jobRealFile(FILEUNIT,'convergeddcsdE',size(dcsdENew)) write (FILEUNIT,rec=1) dcsdENew close (FILEUNIT) deallocate(dcsdE) deallocate(dcsdENew) !--------------------------------------------------------------------------- allocate(dPdF (3,3,3,3,1,1,mesh_NcpElems)) allocate(dPdFNew (3,3,3,3,1,1,NpointsNew)) call IO_read_realFile(FILEUNIT,'convergeddPdF',trim(getSolverJobName()),size(dPdF)) read (FILEUNIT,rec=1) dPdF close (FILEUNIT) do i = 1, NpointsNew dPdFNew(1:3,1:3,1:3,1:3,1,1,i) = dPdF(1:3,1:3,1:3,1:3,1,1,indices(i)) enddo call IO_write_jobRealFile(FILEUNIT,'convergeddPdF',size(dPdFNew)) write (FILEUNIT,rec=1) dPdFNew close (FILEUNIT) deallocate(dPdF) deallocate(dPdFNew) !--------------------------------------------------------------------------- allocate(Tstar (6,1,1,mesh_NcpElems)) allocate(TstarNew (6,1,1,NpointsNew)) call IO_read_realFile(FILEUNIT,'convergedTstar',trim(getSolverJobName()),size(Tstar)) read (FILEUNIT,rec=1) Tstar close (FILEUNIT) do i = 1, NpointsNew TstarNew(1:6,1,1,i) = Tstar(1:6,1,1,indices(i)) enddo call IO_write_jobRealFile(FILEUNIT,'convergedTstar',size(TstarNew)) write (FILEUNIT,rec=1) TstarNew close (FILEUNIT) deallocate(Tstar) deallocate(TstarNew) ! for the state, we first have to know the size---------------------------------------------------- allocate(sizeStateConst(1,1,mesh_NcpElems)) call IO_read_intFile(FILEUNIT,'sizeStateConst',trim(getSolverJobName()),size(sizeStateConst)) read (FILEUNIT,rec=1) sizeStateConst close (FILEUNIT) maxsize = maxval(sizeStateConst(1,1,1:mesh_NcpElems)) allocate(StateConst (1,1,mesh_NcpElems,maxsize)) call IO_read_realFile(FILEUNIT,'convergedStateConst',trim(getSolverJobName())) k = 0_pInt do i =1, mesh_NcpElems do j = 1,sizeStateConst(1,1,i) k = k+1_pInt read(FILEUNIT,rec=k) StateConst(1,1,i,j) enddo enddo close(FILEUNIT) call IO_write_jobRealFile(FILEUNIT,'convergedStateConst') k = 0_pInt do i = 1,NpointsNew do j = 1,sizeStateConst(1,1,indices(i)) k=k+1_pInt write(FILEUNIT,rec=k) StateConst(1,1,indices(i),j) enddo enddo close (FILEUNIT) deallocate(sizeStateConst) deallocate(StateConst) !---------------------------------------------------------------------------- allocate(sizeStateHomog(1,mesh_NcpElems)) call IO_read_intFile(FILEUNIT,'sizeStateHomog',trim(getSolverJobName()),size(sizeStateHomog)) read (FILEUNIT,rec=1) sizeStateHomog close (FILEUNIT) maxsize = maxval(sizeStateHomog(1,1:mesh_NcpElems)) allocate(stateHomog (1,mesh_NcpElems,maxsize)) call IO_read_realFile(FILEUNIT,'convergedStateHomog',trim(getSolverJobName())) k = 0_pInt do i =1, mesh_NcpElems do j = 1,sizeStateHomog(1,i) k = k+1_pInt read(FILEUNIT,rec=k) stateHomog(1,i,j) enddo enddo close(FILEUNIT) call IO_write_jobRealFile(FILEUNIT,'convergedStateHomog') k = 0_pInt do i = 1,NpointsNew do j = 1,sizeStateHomog(1,indices(i)) k=k+1_pInt write(FILEUNIT,rec=k) stateHomog(1,indices(i),j) enddo enddo close (FILEUNIT) deallocate(sizeStateHomog) deallocate(stateHomog) deallocate(indices) write(6,*) 'finished regridding' end function mesh_regrid !-------------------------------------------------------------------------------------------------- !> @brief builds mesh of (distorted) cubes for given coordinates (= center of the cubes) !-------------------------------------------------------------------------------------------------- function mesh_nodesAroundCentres(gDim,Favg,centres) result(nodes) use debug, only: & debug_mesh, & debug_level, & debug_levelBasic use math, only: & math_mul33x3 implicit none real(pReal), intent(in), dimension(:,:,:,:) :: & centres real(pReal), dimension(3,size(centres,2)+1,size(centres,3)+1,size(centres,4)+1) :: & nodes real(pReal), intent(in), dimension(3) :: & gDim real(pReal), intent(in), dimension(3,3) :: & Favg real(pReal), dimension(3,size(centres,2)+2,size(centres,3)+2,size(centres,4)+2) :: & wrappedCentres integer(pInt) :: & i,j,k,n integer(pInt), dimension(3), parameter :: & diag = 1_pInt integer(pInt), dimension(3) :: & shift = 0_pInt, & lookup = 0_pInt, & me = 0_pInt, & iRes = 0_pInt integer(pInt), dimension(3,8) :: & neighbor = reshape([ & 0_pInt, 0_pInt, 0_pInt, & 1_pInt, 0_pInt, 0_pInt, & 1_pInt, 1_pInt, 0_pInt, & 0_pInt, 1_pInt, 0_pInt, & 0_pInt, 0_pInt, 1_pInt, & 1_pInt, 0_pInt, 1_pInt, & 1_pInt, 1_pInt, 1_pInt, & 0_pInt, 1_pInt, 1_pInt ], [3,8]) !-------------------------------------------------------------------------------------------------- ! initializing variables iRes = [size(centres,2),size(centres,3),size(centres,4)] nodes = 0.0_pReal wrappedCentres = 0.0_pReal !-------------------------------------------------------------------------------------------------- ! report if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Meshing cubes around centroids' write(6,'(a,3(e12.5))') ' Dimension: ', gDim write(6,'(a,3(i5))') ' Resolution:', iRes endif !-------------------------------------------------------------------------------------------------- ! building wrappedCentres = centroids + ghosts wrappedCentres(1:3,2_pInt:iRes(1)+1_pInt,2_pInt:iRes(2)+1_pInt,2_pInt:iRes(3)+1_pInt) = centres do k = 0_pInt,iRes(3)+1_pInt do j = 0_pInt,iRes(2)+1_pInt do i = 0_pInt,iRes(1)+1_pInt if (k==0_pInt .or. k==iRes(3)+1_pInt .or. & ! z skin j==0_pInt .or. j==iRes(2)+1_pInt .or. & ! y skin i==0_pInt .or. i==iRes(1)+1_pInt ) then ! x skin me = [i,j,k] ! me on skin shift = sign(abs(iRes+diag-2_pInt*me)/(iRes+diag),iRes+diag-2_pInt*me) lookup = me-diag+shift*iRes wrappedCentres(1:3,i+1_pInt, j+1_pInt, k+1_pInt) = & centres(1:3,lookup(1)+1_pInt,lookup(2)+1_pInt,lookup(3)+1_pInt) - & math_mul33x3(Favg, shift*gDim) endif enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! averaging do k = 0_pInt,iRes(3); do j = 0_pInt,iRes(2); do i = 0_pInt,iRes(1) do n = 1_pInt,8_pInt nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) = & nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) + wrappedCentres(1:3,i+1_pInt+neighbor(1,n), & j+1_pInt+neighbor(2,n), & k+1_pInt+neighbor(3,n) ) enddo enddo; enddo; enddo nodes = nodes/8.0_pReal end function mesh_nodesAroundCentres !-------------------------------------------------------------------------------------------------- !> @brief calculate coordinates in current configuration for given defgrad ! using integration in Fourier space !-------------------------------------------------------------------------------------------------- function mesh_deformedCoordsFFT(gDim,F,FavgIn,scalingIn) result(coords) use IO, only: & IO_error use numerics, only: & fftw_timelimit, & fftw_planner_flag use debug, only: & debug_mesh, & debug_level, & debug_levelBasic use math, only: & PI, & math_mul33x3 implicit none real(pReal), intent(in), dimension(:,:,:,:,:) :: F real(pReal), dimension(3,size(F,3),size(F,4),size(F,5)) :: coords real(pReal), intent(in), dimension(3) :: gDim real(pReal), intent(in), dimension(3,3), optional :: FavgIn real(pReal), intent(in), dimension(3), optional :: scalingIn ! allocatable arrays for fftw c routines type(C_PTR) :: planForth, planBack type(C_PTR) :: coords_fftw, defgrad_fftw real(pReal), dimension(:,:,:,:,:), pointer :: F_real complex(pReal), dimension(:,:,:,:,:), pointer :: F_fourier real(pReal), dimension(:,:,:,:), pointer :: coords_real complex(pReal), dimension(:,:,:,:), pointer :: coords_fourier ! other variables integer(pInt) :: i, j, k, m, res1Red integer(pInt), dimension(3) :: k_s, iRes real(pReal), dimension(3) :: scaling, step, offset_coords, integrator real(pReal), dimension(3,3) :: Favg integer(pInt), dimension(2:3,2) :: Nyquist ! highest frequencies to be removed (1 if even, 2 if odd) if (present(scalingIn)) then where (scalingIn < 0.0_pReal) ! invalid values. in case of f2py -1 if not present scaling = [1.0_pReal,1.0_pReal,1.0_pReal] elsewhere scaling = scalingIn end where else scaling = 1.0_pReal endif iRes = [size(F,3),size(F,4),size(F,5)] integrator = gDim / 2.0_pReal / PI ! see notes where it is used res1Red = iRes(1)/2_pInt + 1_pInt ! size of complex array in first dimension (c2r, r2c) step = gDim/real(iRes, pReal) Nyquist(2,1:2) = [iRes(2)/2_pInt + 1_pInt, iRes(2)/2_pInt + 1_pInt + mod(iRes(2),2_pInt)] Nyquist(3,1:2) = [iRes(3)/2_pInt + 1_pInt, iRes(3)/2_pInt + 1_pInt + mod(iRes(3),2_pInt)] !-------------------------------------------------------------------------------------------------- ! report if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Restore geometry using FFT-based integration' write(6,'(a,3(i12 ))') ' grid a b c: ', iRes write(6,'(a,3(es12.5))') ' size x y z: ', gDim endif !-------------------------------------------------------------------------------------------------- ! sanity check if (pReal /= C_DOUBLE .or. pInt /= C_INT) & call IO_error(0_pInt,ext_msg='Fortran to C in mesh_deformedCoordsFFT') !-------------------------------------------------------------------------------------------------- ! allocation and FFTW initialization defgrad_fftw = fftw_alloc_complex(int(res1Red *iRes(2)*iRes(3)*9_pInt,C_SIZE_T)) ! C_SIZE_T is of type integer(8) coords_fftw = fftw_alloc_complex(int(res1Red *iRes(2)*iRes(3)*3_pInt,C_SIZE_T)) ! C_SIZE_T is of type integer(8) call c_f_pointer(defgrad_fftw, F_real, & [iRes(1)+2_pInt-mod(iRes(1),2_pInt),iRes(2),iRes(3),3_pInt,3_pInt]) call c_f_pointer(defgrad_fftw, F_fourier, & [res1Red, iRes(2),iRes(3),3_pInt,3_pInt]) call c_f_pointer(coords_fftw, coords_real, & [iRes(1)+2_pInt-mod(iRes(1),2_pInt),iRes(2),iRes(3),3_pInt]) call c_f_pointer(coords_fftw, coords_fourier, & [res1Red, iRes(2),iRes(3),3_pInt]) call fftw_set_timelimit(fftw_timelimit) planForth = fftw_plan_many_dft_r2c(3_pInt,[iRes(3),iRes(2) ,iRes(1)],9_pInt,& ! dimensions , length in each dimension in reversed order F_real,[iRes(3),iRes(2) ,iRes(1)+2_pInt-mod(iRes(1),2_pInt)],& ! input data , physical length in each dimension in reversed order 1_pInt, iRes(3)*iRes(2)*(iRes(1)+2_pInt-mod(iRes(1),2_pInt)),& ! striding , product of physical lenght in the 3 dimensions F_fourier,[iRes(3),iRes(2) ,res1Red],& 1_pInt, iRes(3)*iRes(2)* res1Red,fftw_planner_flag) planBack = fftw_plan_many_dft_c2r(3_pInt,[iRes(3),iRes(2) ,iRes(1)],3_pInt,& coords_fourier,[iRes(3),iRes(2) ,res1Red],& 1_pInt, iRes(3)*iRes(2)* res1Red,& coords_real,[iRes(3),iRes(2) ,iRes(1)+2_pInt-mod(iRes(1),2_pInt)],& 1_pInt, iRes(3)*iRes(2)*(iRes(1)+2_pInt-mod(iRes(1),2_pInt)),& fftw_planner_flag) F_real(1:iRes(1),1:iRes(2),1:iRes(3),1:3,1:3) = & reshape(F,[iRes(1),iRes(2),iRes(3),3,3], order = [4,5,1,2,3]) ! F_real is overwritten during plan creatio, is larger (padding) and has different order !-------------------------------------------------------------------------------------------------- ! FFT call fftw_execute_dft_r2c(planForth, F_real, F_fourier) !-------------------------------------------------------------------------------------------------- ! if no average F is given, compute it in Fourier space if (present(FavgIn)) then if (all(FavgIn < 0.0_pReal)) then Favg = real(F_fourier(1,1,1,1:3,1:3),pReal)/real(product(iRes),pReal) !the f2py way to tell it is not present else Favg = FavgIn endif else Favg = real(F_fourier(1,1,1,1:3,1:3),pReal)/real(product(iRes),pReal) endif !-------------------------------------------------------------------------------------------------- ! remove highest frequency in each direction, in third direction only if not 2D if(iRes(1)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation F_fourier (res1Red, 1:iRes(2), 1:iRes(3), 1:3,1:3) & = cmplx(0.0_pReal,0.0_pReal,pReal) if(iRes(2)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation F_fourier (1:res1Red,Nyquist(2,1):Nyquist(2,2),1:iRes(3), 1:3,1:3) & = cmplx(0.0_pReal,0.0_pReal,pReal) if(iRes(3)/=1_pInt) & ! do not delete the whole slice in case of 2D calculation F_fourier (1:res1Red,1:iRes(2), Nyquist(3,1):Nyquist(3,2),1:3,1:3) & = cmplx(0.0_pReal,0.0_pReal,pReal) !-------------------------------------------------------------------------------------------------- ! integration in Fourier space coords_fourier = cmplx(0.0_pReal,0.0_pReal,pReal) do k = 1_pInt, iRes(3) k_s(3) = k-1_pInt if(k > iRes(3)/2_pInt+1_pInt) k_s(3) = k_s(3)-iRes(3) do j = 1_pInt, iRes(2) k_s(2) = j-1_pInt if(j > iRes(2)/2_pInt+1_pInt) k_s(2) = k_s(2)-iRes(2) do i = 1_pInt, res1Red k_s(1) = i-1_pInt do m = 1_pInt,3_pInt coords_fourier(i,j,k,m) = sum(F_fourier(i,j,k,m,1:3)*& cmplx(0.0_pReal,real(k_s,pReal)*integrator,pReal)) enddo if (any(k_s /= 0_pInt)) coords_fourier(i,j,k,1:3) = & coords_fourier(i,j,k,1:3) / cmplx(-sum(k_s*k_s),0.0_pReal,pReal) enddo; enddo; enddo !-------------------------------------------------------------------------------------------------- ! iFFT and freeing memory call fftw_execute_dft_c2r(planBack,coords_fourier,coords_real) coords = reshape(coords_real(1:iRes(1),1:iRes(2),1:iRes(3),1:3), [3,iRes(1),iRes(2),iRes(3)], & order = [2,3,4,1])/real(product(iRes),pReal) ! weight and change order call fftw_destroy_plan(planForth) call fftw_destroy_plan(planBack) call fftw_free(defgrad_fftw) call fftw_free(coords_fftw) !-------------------------------------------------------------------------------------------------- ! add average to scaled fluctuation and put (0,0,0) on (0,0,0) offset_coords = math_mul33x3(F(1:3,1:3,1,1,1),step/2.0_pReal) - scaling*coords(1:3,1,1,1) forall(k = 1_pInt:iRes(3), j = 1_pInt:iRes(2), i = 1_pInt:iRes(1)) & coords(1:3,i,j,k) = scaling(1:3)*coords(1:3,i,j,k) & + offset_coords & + math_mul33x3(Favg,step*real([i,j,k]-1_pInt,pReal)) end function mesh_deformedCoordsFFT !-------------------------------------------------------------------------------------------------- !> @brief calculates the mismatch between volume of reconstructed (compatible) cube and ! determinant of defgrad at the FP !-------------------------------------------------------------------------------------------------- function mesh_volumeMismatch(gDim,F,nodes) result(vMismatch) use IO, only: & IO_error use debug, only: & debug_mesh, & debug_level, & debug_levelBasic use math, only: & math_det33, & math_volTetrahedron implicit none real(pReal), intent(in), dimension(:,:,:,:,:) :: & F real(pReal), dimension(size(F,3),size(F,4),size(F,5)) :: & vMismatch real(pReal), intent(in), dimension(:,:,:,:) :: & nodes real(pReal), dimension(3) :: & gDim integer(pInt), dimension(3) :: & iRes real(pReal), dimension(3,8) :: coords integer(pInt) :: i,j,k real(pReal) :: volInitial iRes = [size(F,3),size(F,4),size(F,5)] volInitial = product(gDim)/real(product(iRes), pReal) !-------------------------------------------------------------------------------------------------- ! report and check if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Calculating volume mismatch' write(6,'(a,3(i12 ))') ' grid a b c: ', iRes write(6,'(a,3(es12.5))') ' size x y z: ', gDim endif if (any([iRes/=size(nodes,2)-1_pInt,iRes/=size(nodes,3)-1_pInt,iRes/=size(nodes,4)-1_pInt]))& call IO_error(0_pInt,ext_msg='Arrays F and nodes in mesh_volumeMismatch') !-------------------------------------------------------------------------------------------------- ! calculate actual volume and volume resulting from deformation gradient do k = 1_pInt,iRes(3) do j = 1_pInt,iRes(2) do i = 1_pInt,iRes(1) coords(1:3,1) = nodes(1:3,i, j, k ) coords(1:3,2) = nodes(1:3,i+1_pInt,j, k ) coords(1:3,3) = nodes(1:3,i+1_pInt,j+1_pInt,k ) coords(1:3,4) = nodes(1:3,i, j+1_pInt,k ) coords(1:3,5) = nodes(1:3,i, j, k+1_pInt) coords(1:3,6) = nodes(1:3,i+1_pInt,j, k+1_pInt) coords(1:3,7) = nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) coords(1:3,8) = nodes(1:3,i, j+1_pInt,k+1_pInt) vMismatch(i,j,k) = & abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,8),coords(1:3,4))) & + abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,8),coords(1:3,5))) & + abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,3),coords(1:3,4))) & + abs(math_volTetrahedron(coords(1:3,7),coords(1:3,1),coords(1:3,3),coords(1:3,2))) & + abs(math_volTetrahedron(coords(1:3,7),coords(1:3,5),coords(1:3,2),coords(1:3,6))) & + abs(math_volTetrahedron(coords(1:3,7),coords(1:3,5),coords(1:3,2),coords(1:3,1))) vMismatch(i,j,k) = vMismatch(i,j,k)/math_det33(F(1:3,1:3,i,j,k)) enddo; enddo; enddo vMismatch = vMismatch/volInitial end function mesh_volumeMismatch !-------------------------------------------------------------------------------------------------- !> @brief Routine to calculate the mismatch between the vectors from the central point to ! the corners of reconstructed (combatible) volume element and the vectors calculated by deforming ! the initial volume element with the current deformation gradient !-------------------------------------------------------------------------------------------------- function mesh_shapeMismatch(gDim,F,nodes,centres) result(sMismatch) use IO, only: & IO_error use debug, only: & debug_mesh, & debug_level, & debug_levelBasic use math, only: & math_mul33x3 implicit none real(pReal), intent(in), dimension(:,:,:,:,:) :: & F real(pReal), dimension(size(F,3),size(F,4),size(F,5)) :: & sMismatch real(pReal), intent(in), dimension(:,:,:,:) :: & nodes, & centres real(pReal), dimension(3) :: & gDim, & fRes integer(pInt), dimension(3) :: & iRes real(pReal), dimension(3,8) :: coordsInitial integer(pInt) i,j,k iRes = [size(F,3),size(F,4),size(F,5)] fRes = real(iRes,pReal) !-------------------------------------------------------------------------------------------------- ! report and check if (iand(debug_level(debug_mesh),debug_levelBasic) /= 0_pInt) then write(6,'(a)') ' Calculating shape mismatch' write(6,'(a,3(i12 ))') ' grid a b c: ', iRes write(6,'(a,3(es12.5))') ' size x y z: ', gDim endif if(any([iRes/=size(nodes,2)-1_pInt,iRes/=size(nodes,3)-1_pInt,iRes/=size(nodes,4)-1_pInt]) .or.& any([iRes/=size(centres,2), iRes/=size(centres,3), iRes/=size(centres,4)]))& call IO_error(0_pInt,ext_msg='Arrays F and nodes/centres in mesh_shapeMismatch') !-------------------------------------------------------------------------------------------------- ! initial positions coordsInitial(1:3,1) = [-gDim(1)/fRes(1),-gDim(2)/fRes(2),-gDim(3)/fRes(3)] coordsInitial(1:3,2) = [+gDim(1)/fRes(1),-gDim(2)/fRes(2),-gDim(3)/fRes(3)] coordsInitial(1:3,3) = [+gDim(1)/fRes(1),+gDim(2)/fRes(2),-gDim(3)/fRes(3)] coordsInitial(1:3,4) = [-gDim(1)/fRes(1),+gDim(2)/fRes(2),-gDim(3)/fRes(3)] coordsInitial(1:3,5) = [-gDim(1)/fRes(1),-gDim(2)/fRes(2),+gDim(3)/fRes(3)] coordsInitial(1:3,6) = [+gDim(1)/fRes(1),-gDim(2)/fRes(2),+gDim(3)/fRes(3)] coordsInitial(1:3,7) = [+gDim(1)/fRes(1),+gDim(2)/fRes(2),+gDim(3)/fRes(3)] coordsInitial(1:3,8) = [-gDim(1)/fRes(1),+gDim(2)/fRes(2),+gDim(3)/fRes(3)] coordsInitial = coordsInitial/2.0_pReal !-------------------------------------------------------------------------------------------------- ! compare deformed original and deformed positions to actual positions do k = 1_pInt,iRes(3) do j = 1_pInt,iRes(2) do i = 1_pInt,iRes(1) sMismatch(i,j,k) = & sqrt(sum((nodes(1:3,i, j, k ) - centres(1:3,i,j,k)& - math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,1)))**2.0_pReal))& + sqrt(sum((nodes(1:3,i+1_pInt,j, k ) - centres(1:3,i,j,k)& - math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,2)))**2.0_pReal))& + sqrt(sum((nodes(1:3,i+1_pInt,j+1_pInt,k ) - centres(1:3,i,j,k)& - math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,3)))**2.0_pReal))& + sqrt(sum((nodes(1:3,i, j+1_pInt,k ) - centres(1:3,i,j,k)& - math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,4)))**2.0_pReal))& + sqrt(sum((nodes(1:3,i, j, k+1_pInt) - centres(1:3,i,j,k)& - math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,5)))**2.0_pReal))& + sqrt(sum((nodes(1:3,i+1_pInt,j, k+1_pInt) - centres(1:3,i,j,k)& - math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,6)))**2.0_pReal))& + sqrt(sum((nodes(1:3,i+1_pInt,j+1_pInt,k+1_pInt) - centres(1:3,i,j,k)& - math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,7)))**2.0_pReal))& + sqrt(sum((nodes(1:3,i, j+1_pInt,k+1_pInt) - centres(1:3,i,j,k)& - math_mul33x3(F(1:3,1:3,i,j,k), coordsInitial(1:3,8)))**2.0_pReal)) enddo; enddo; enddo end function mesh_shapeMismatch #endif #ifdef Marc4DAMASK !-------------------------------------------------------------------------------------------------- !> @brief Figures out table styles (Marc only) and stores to 'initialcondTableStyle' and !! 'hypoelasticTableStyle' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_get_tableStyles(fileUnit) use IO, only: & IO_lc, & IO_intValue, & IO_stringValue, & IO_stringPos implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 6_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos character(len=300) line initialcondTableStyle = 0_pInt hypoelasticTableStyle = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'table' .and. myPos(1_pInt) > 5) then initialcondTableStyle = IO_intValue(line,myPos,4_pInt) hypoelasticTableStyle = IO_intValue(line,myPos,5_pInt) exit endif enddo 620 end subroutine mesh_marc_get_tableStyles !-------------------------------------------------------------------------------------------------- !> @brief Count overall number of nodes and elements in mesh and stores the numbers in !! 'mesh_Nelems' and 'mesh_Nnodes' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_count_nodesAndElements(fileUnit) use IO, only: & IO_lc, & IO_stringValue, & IO_stringPos, & IO_IntValue implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 4_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos character(len=300) line mesh_Nnodes = 0_pInt mesh_Nelems = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'sizing') & mesh_Nelems = IO_IntValue (line,myPos,3_pInt) if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'coordinates') then read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) mesh_Nnodes = IO_IntValue (line,myPos,2_pInt) exit ! assumes that "coordinates" comes later in file endif enddo 620 end subroutine mesh_marc_count_nodesAndElements !-------------------------------------------------------------------------------------------------- !> @brief Count overall number of element sets in mesh. Stores to 'mesh_NelemSets', and !! 'mesh_maxNelemInSet' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_count_elementSets(fileUnit) use IO, only: & IO_lc, & IO_stringValue, & IO_stringPos, & IO_countContinuousIntValues implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos character(len=300) line mesh_NelemSets = 0_pInt mesh_maxNelemInSet = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_StringValue(line,myPos,1_pInt)) == 'define' .and. & IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'element' ) then mesh_NelemSets = mesh_NelemSets + 1_pInt mesh_maxNelemInSet = max(mesh_maxNelemInSet, & IO_countContinuousIntValues(fileUnit)) endif enddo 620 end subroutine mesh_marc_count_elementSets !******************************************************************** ! map element sets ! ! allocate globals: mesh_nameElemSet, mesh_mapElemSet !******************************************************************** subroutine mesh_marc_map_elementSets(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_continuousIntValues implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 4_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos character(len=300) :: line integer(pInt) :: elemSet = 0_pInt allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = '' allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=640) line myPos = IO_stringPos(line,maxNchunks) if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'define' ) .and. & (IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'element' ) ) then elemSet = elemSet+1_pInt mesh_nameElemSet(elemSet) = trim(IO_stringValue(line,myPos,4_pInt)) mesh_mapElemSet(:,elemSet) = & IO_continuousIntValues(fileUnit,mesh_maxNelemInSet,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets) endif enddo 640 end subroutine mesh_marc_map_elementSets !-------------------------------------------------------------------------------------------------- !> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_count_cpElements(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_countContinuousIntValues implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 1_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos integer(pInt) :: i character(len=300):: line mesh_NcpElems = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic') then do i=1_pInt,3_pInt+hypoelasticTableStyle ! Skip 3 or 4 lines read (fileUnit,610,END=620) line enddo mesh_NcpElems = mesh_NcpElems + IO_countContinuousIntValues(fileUnit) ! why not simply mesh_NcpElems = IO_countContinuousIntValues(fileUnit)? exit endif enddo 620 end subroutine mesh_marc_count_cpElements !-------------------------------------------------------------------------------------------------- !> @brief Maps elements from FE ID to internal (consecutive) representation. !! Allocates global array 'mesh_mapFEtoCPelem' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_map_elements(fileUnit) use math, only: math_qsort use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_continuousIntValues implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 1_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) line integer(pInt), dimension (1_pInt+mesh_NcpElems) :: contInts integer(pInt) :: i,cpElem = 0_pInt allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=660) line myPos = IO_stringPos(line,maxNchunks) if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'hypoelastic' ) then do i=1_pInt,3_pInt+hypoelasticTableStyle ! skip three (or four if new table style!) lines read (fileUnit,610,END=660) line enddo contInts = IO_continuousIntValues(fileUnit,mesh_NcpElems,mesh_nameElemSet,& mesh_mapElemSet,mesh_NelemSets) do i = 1_pInt,contInts(1) cpElem = cpElem+1_pInt mesh_mapFEtoCPelem(1,cpElem) = contInts(1_pInt+i) mesh_mapFEtoCPelem(2,cpElem) = cpElem enddo endif enddo 660 call math_qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems end subroutine mesh_marc_map_elements !-------------------------------------------------------------------------------------------------- !> @brief Maps node from FE ID to internal (consecutive) representation. !! Allocates global array 'mesh_mapFEtoCPnode' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_map_nodes(fileUnit) use math, only: math_qsort use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_fixedIntValue implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 1_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) line integer(pInt), dimension (mesh_Nnodes) :: node_count integer(pInt) :: i allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt 610 FORMAT(A300) node_count = 0_pInt rewind(fileUnit) do read (fileUnit,610,END=650) line myPos = IO_stringPos(line,maxNchunks) if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then read (fileUnit,610,END=650) line ! skip crap line do i = 1_pInt,mesh_Nnodes read (fileUnit,610,END=650) line mesh_mapFEtoCPnode(1_pInt,i) = IO_fixedIntValue (line,[ 0_pInt,10_pInt],1_pInt) mesh_mapFEtoCPnode(2_pInt,i) = i enddo exit endif enddo 650 call math_qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt)) end subroutine mesh_marc_map_nodes !-------------------------------------------------------------------------------------------------- !> @brief store x,y,z coordinates of all nodes in mesh. !! Allocates global arrays 'mesh_node0' and 'mesh_node' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_build_nodes(fileUnit) use IO, only: & IO_lc, & IO_stringValue, & IO_stringPos, & IO_fixedIntValue, & IO_fixedNoEFloatValue implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), dimension(5), parameter :: node_ends = int([0,10,30,50,70],pInt) integer(pInt), parameter :: maxNchunks = 1_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) :: line integer(pInt) :: i,j,m allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=670) line myPos = IO_stringPos(line,maxNchunks) if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'coordinates' ) then read (fileUnit,610,END=670) line ! skip crap line do i=1_pInt,mesh_Nnodes read (fileUnit,610,END=670) line m = mesh_FEasCP('node',IO_fixedIntValue(line,node_ends,1_pInt)) do j = 1_pInt,3_pInt mesh_node0(j,m) = mesh_unitlength * IO_fixedNoEFloatValue(line,node_ends,j+1_pInt) enddo enddo exit endif enddo 670 mesh_node = mesh_node0 end subroutine mesh_marc_build_nodes !-------------------------------------------------------------------------------------------------- !> @brief Gets maximum count of nodes, IPs, IP neighbors, and cellnodes among cpElements. !! Sets global values 'mesh_maxNnodes', 'mesh_maxNips', 'mesh_maxNipNeighbors', !! and 'mesh_maxNcellnodes' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_count_cpSizes(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_intValue, & IO_skipChunks implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) :: line integer(pInt) :: i,t,g,e,c mesh_maxNnodes = 0_pInt mesh_maxNips = 0_pInt mesh_maxNipNeighbors = 0_pInt mesh_maxNcellnodes = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=630) line myPos = IO_stringPos(line,maxNchunks) if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then read (fileUnit,610,END=630) line ! Garbage line do i=1_pInt,mesh_Nelems ! read all elements read (fileUnit,610,END=630) line myPos = IO_stringPos(line,maxNchunks) ! limit to id and type e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt)) if (e /= 0_pInt) then t = FE_mapElemtype(IO_stringValue(line,myPos,2_pInt)) g = FE_geomtype(t) c = FE_celltype(g) mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t)) mesh_maxNips = max(mesh_maxNips,FE_Nips(g)) mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(c)) mesh_maxNcellnodes = max(mesh_maxNcellnodes,FE_Ncellnodes(g)) call IO_skipChunks(fileUnit,FE_Nnodes(t)-(myPos(1_pInt)-2_pInt)) ! read on if FE_Nnodes exceeds node count present on current line endif enddo exit endif enddo 630 end subroutine mesh_marc_count_cpSizes !-------------------------------------------------------------------------------------------------- !> @brief Store FEid, type, mat, tex, and node list per element. !! Allocates global array 'mesh_element' !-------------------------------------------------------------------------------------------------- subroutine mesh_marc_build_elements(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_fixedNoEFloatValue, & IO_skipChunks, & IO_stringPos, & IO_intValue, & IO_continuousIntValues implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 66_pInt ! limit to 64 nodes max (plus ID, type) integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) line integer(pInt), dimension(1_pInt+mesh_NcpElems) :: contInts integer(pInt) :: i,j,t,sv,myVal,e,nNodesAlreadyRead allocate (mesh_element(4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=620) line myPos(1:1+2*1) = IO_stringPos(line,1_pInt) if( IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'connectivity' ) then read (fileUnit,610,END=620) line ! garbage line do i = 1_pInt,mesh_Nelems read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt)) if (e /= 0_pInt) then ! disregard non CP elems mesh_element(1,e) = IO_IntValue (line,myPos,1_pInt) ! FE id t = FE_mapElemtype(IO_StringValue(line,myPos,2_pInt)) ! elem type mesh_element(2,e) = t nNodesAlreadyRead = 0_pInt do j = 1_pInt,myPos(1)-2_pInt mesh_element(4_pInt+j,e) = mesh_FEasCP('node',IO_IntValue(line,myPos,j+2_pInt)) ! CP ids of nodes enddo nNodesAlreadyRead = myPos(1) - 2_pInt do while(nNodesAlreadyRead < FE_Nnodes(t)) ! read on if not all nodes in one line read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) do j = 1_pInt,myPos(1) mesh_element(4_pInt+nNodesAlreadyRead+j,e) & = mesh_FEasCP('node',IO_IntValue(line,myPos,j)) ! CP ids of nodes enddo nNodesAlreadyRead = nNodesAlreadyRead + myPos(1) enddo endif enddo exit endif enddo 620 rewind(fileUnit) ! just in case "initial state" appears before "connectivity" read (fileUnit,610,END=620) line do myPos(1:1+2*2) = IO_stringPos(line,2_pInt) if( (IO_lc(IO_stringValue(line,myPos,1_pInt)) == 'initial') .and. & (IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'state') ) then if (initialcondTableStyle == 2_pInt) read (fileUnit,610,END=620) line ! read extra line for new style read (fileUnit,610,END=630) line ! read line with index of state var myPos(1:1+2*1) = IO_stringPos(line,1_pInt) sv = IO_IntValue(line,myPos,1_pInt) ! figure state variable index if( (sv == 2_pInt).or.(sv == 3_pInt) ) then ! only state vars 2 and 3 of interest read (fileUnit,610,END=620) line ! read line with value of state var myPos(1:1+2*1) = IO_stringPos(line,1_pInt) do while (scan(IO_stringValue(line,myPos,1_pInt),'+-',back=.true.)>1) ! is noEfloat value? myVal = nint(IO_fixedNoEFloatValue(line,[0_pInt,20_pInt],1_pInt),pInt) ! state var's value mesh_maxValStateVar(sv-1_pInt) = max(myVal,mesh_maxValStateVar(sv-1_pInt)) ! remember max val of homogenization and microstructure index if (initialcondTableStyle == 2_pInt) then read (fileUnit,610,END=630) line ! read extra line read (fileUnit,610,END=630) line ! read extra line endif contInts = IO_continuousIntValues& ! get affected elements (fileUnit,mesh_NcpElems,mesh_nameElemSet,mesh_mapElemSet,mesh_NelemSets) do i = 1_pInt,contInts(1) e = mesh_FEasCP('elem',contInts(1_pInt+i)) mesh_element(1_pInt+sv,e) = myVal enddo if (initialcondTableStyle == 0_pInt) read (fileUnit,610,END=620) line ! ignore IP range for old table style read (fileUnit,610,END=630) line myPos(1:1+2*1) = IO_stringPos(line,1_pInt) enddo endif else read (fileUnit,610,END=630) line endif enddo 630 end subroutine mesh_marc_build_elements #endif #ifdef Abaqus !-------------------------------------------------------------------------------------------------- !> @brief Count overall number of nodes and elements in mesh and stores them in !! 'mesh_Nelems' and 'mesh_Nnodes' !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_count_nodesAndElements(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_countDataLines, & IO_error implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos character(len=300) :: line logical :: inPart mesh_Nnodes = 0_pInt mesh_Nelems = 0_pInt 610 FORMAT(A300) inPart = .false. rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if (inPart .or. noPart) then select case ( IO_lc(IO_stringValue(line,myPos,1_pInt))) case('*node') if( & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' & ) & mesh_Nnodes = mesh_Nnodes + IO_countDataLines(fileUnit) case('*element') if( & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' & ) then mesh_Nelems = mesh_Nelems + IO_countDataLines(fileUnit) endif endselect endif enddo 620 if (mesh_Nnodes < 2_pInt) call IO_error(error_ID=900_pInt) if (mesh_Nelems == 0_pInt) call IO_error(error_ID=901_pInt) end subroutine mesh_abaqus_count_nodesAndElements !-------------------------------------------------------------------------------------------------- !> @brief count overall number of element sets in mesh and write 'mesh_NelemSets' and !! 'mesh_maxNelemInSet' !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_count_elementSets(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_error implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos character(len=300) :: line logical :: inPart mesh_NelemSets = 0_pInt mesh_maxNelemInSet = mesh_Nelems ! have to be conservative, since Abaqus allows for recursive definitons 610 FORMAT(A300) inPart = .false. rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) & mesh_NelemSets = mesh_NelemSets + 1_pInt enddo 620 continue if (mesh_NelemSets == 0) call IO_error(error_ID=902_pInt) end subroutine mesh_abaqus_count_elementSets !-------------------------------------------------------------------------------------------------- ! count overall number of solid sections sets in mesh (Abaqus only) ! ! mesh_Nmaterials !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_count_materials(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_error implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) :: line logical inPart mesh_Nmaterials = 0_pInt 610 FORMAT(A300) inPart = .false. rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if ( (inPart .or. noPart) .and. & IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. & IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) & mesh_Nmaterials = mesh_Nmaterials + 1_pInt enddo 620 if (mesh_Nmaterials == 0_pInt) call IO_error(error_ID=903_pInt) end subroutine mesh_abaqus_count_materials !-------------------------------------------------------------------------------------------------- ! Build element set mapping ! ! allocate globals: mesh_nameElemSet, mesh_mapElemSet !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_map_elementSets(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_extractValue, & IO_continuousIntValues, & IO_error implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 4_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) :: line integer(pInt) :: elemSet = 0_pInt,i logical :: inPart = .false. allocate (mesh_nameElemSet(mesh_NelemSets)) ; mesh_nameElemSet = '' allocate (mesh_mapElemSet(1_pInt+mesh_maxNelemInSet,mesh_NelemSets)) ; mesh_mapElemSet = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=640) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*elset' ) then elemSet = elemSet + 1_pInt mesh_nameElemSet(elemSet) = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'elset')) mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(fileUnit,mesh_Nelems,mesh_nameElemSet,& mesh_mapElemSet,elemSet-1_pInt) endif enddo 640 do i = 1_pInt,elemSet if (mesh_mapElemSet(1,i) == 0_pInt) call IO_error(error_ID=904_pInt,ext_msg=mesh_nameElemSet(i)) enddo end subroutine mesh_abaqus_map_elementSets !-------------------------------------------------------------------------------------------------- ! map solid section (Abaqus only) ! ! allocate globals: mesh_nameMaterial, mesh_mapMaterial !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_map_materials(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_extractValue, & IO_error implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 20_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) line integer(pInt) :: i,c = 0_pInt logical :: inPart = .false. character(len=64) :: elemSetName,materialName allocate (mesh_nameMaterial(mesh_Nmaterials)) ; mesh_nameMaterial = '' allocate (mesh_mapMaterial(mesh_Nmaterials)) ; mesh_mapMaterial = '' 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if ( (inPart .or. noPart) .and. & IO_lc(IO_StringValue(line,myPos,1_pInt)) == '*solid' .and. & IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'section' ) then elemSetName = '' materialName = '' do i = 3_pInt,myPos(1_pInt) if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset') /= '') & elemSetName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'elset')) if (IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material') /= '') & materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,i)),'material')) enddo if (elemSetName /= '' .and. materialName /= '') then c = c + 1_pInt mesh_nameMaterial(c) = materialName ! name of material used for this section mesh_mapMaterial(c) = elemSetName ! mapped to respective element set endif endif enddo 620 if (c==0_pInt) call IO_error(error_ID=905_pInt) do i=1_pInt,c if (mesh_nameMaterial(i)=='' .or. mesh_mapMaterial(i)=='') call IO_error(error_ID=905_pInt) enddo end subroutine mesh_abaqus_map_materials !-------------------------------------------------------------------------------------------------- !> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems' !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_count_cpElements(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_error, & IO_extractValue implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos character(len=300) line integer(pInt) :: i,k logical :: materialFound = .false. character(len=64) ::materialName,elemSetName mesh_NcpElems = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) ) case('*material') materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value materialFound = materialName /= '' ! valid name? case('*user') if (IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then do i = 1_pInt,mesh_Nmaterials ! look thru material names if (materialName == mesh_nameMaterial(i)) then ! found one elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions if (elemSetName == mesh_nameElemSet(k)) & ! matched? mesh_NcpElems = mesh_NcpElems + mesh_mapElemSet(1,k) ! add those elem count enddo endif enddo materialFound = .false. endif endselect enddo 620 if (mesh_NcpElems == 0_pInt) call IO_error(error_ID=906_pInt) end subroutine mesh_abaqus_count_cpElements !-------------------------------------------------------------------------------------------------- !> @brief Maps elements from FE ID to internal (consecutive) representation. !! Allocates global array 'mesh_mapFEtoCPelem' !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_map_elements(fileUnit) use math, only: math_qsort use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_extractValue, & IO_error implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) :: line integer(pInt) ::i,j,k,cpElem = 0_pInt logical :: materialFound = .false. character (len=64) materialName,elemSetName ! why limited to 64? ABAQUS? allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems)) ; mesh_mapFEtoCPelem = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=660) line myPos = IO_stringPos(line,maxNchunks) select case ( IO_lc(IO_stringValue(line,myPos,1_pInt)) ) case('*material') materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'name')) ! extract name=value materialFound = materialName /= '' ! valid name? case('*user') if (IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'material' .and. materialFound) then do i = 1_pInt,mesh_Nmaterials ! look thru material names if (materialName == mesh_nameMaterial(i)) then ! found one elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions if (elemSetName == mesh_nameElemSet(k)) then ! matched? do j = 1_pInt,mesh_mapElemSet(1,k) cpElem = cpElem + 1_pInt mesh_mapFEtoCPelem(1,cpElem) = mesh_mapElemSet(1_pInt+j,k) ! store FE id mesh_mapFEtoCPelem(2,cpElem) = cpElem ! store our id enddo endif enddo endif enddo materialFound = .false. endif endselect enddo 660 call math_qsort(mesh_mapFEtoCPelem,1_pInt,int(size(mesh_mapFEtoCPelem,2_pInt),pInt)) ! should be mesh_NcpElems if (int(size(mesh_mapFEtoCPelem),pInt) < 2_pInt) call IO_error(error_ID=907_pInt) end subroutine mesh_abaqus_map_elements !-------------------------------------------------------------------------------------------------- !> @brief Maps node from FE ID to internal (consecutive) representation. !! Allocates global array 'mesh_mapFEtoCPnode' !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_map_nodes(fileUnit) use math, only: math_qsort use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_countDataLines, & IO_intValue, & IO_error implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) line integer(pInt) :: i,c,cpNode = 0_pInt logical :: inPart = .false. allocate (mesh_mapFEtoCPnode(2_pInt,mesh_Nnodes)) ; mesh_mapFEtoCPnode = 0_pInt 610 FORMAT(A300) rewind(fileUnit) do read (fileUnit,610,END=650) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if( (inPart .or. noPart) .and. & IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. & ( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) & ) then c = IO_countDataLines(fileUnit) do i = 1_pInt,c backspace(fileUnit) enddo do i = 1_pInt,c read (fileUnit,610,END=650) line myPos = IO_stringPos(line,maxNchunks) cpNode = cpNode + 1_pInt mesh_mapFEtoCPnode(1_pInt,cpNode) = IO_intValue(line,myPos,1_pInt) mesh_mapFEtoCPnode(2_pInt,cpNode) = cpNode enddo endif enddo 650 call math_qsort(mesh_mapFEtoCPnode,1_pInt,int(size(mesh_mapFEtoCPnode,2_pInt),pInt)) if (int(size(mesh_mapFEtoCPnode),pInt) == 0_pInt) call IO_error(error_ID=908_pInt) end subroutine mesh_abaqus_map_nodes !-------------------------------------------------------------------------------------------------- !> @brief store x,y,z coordinates of all nodes in mesh. !! Allocates global arrays 'mesh_node0' and 'mesh_node' !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_build_nodes(fileUnit) use IO, only: & IO_lc, & IO_stringValue, & IO_floatValue, & IO_stringPos, & IO_error, & IO_countDataLines, & IO_intValue implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 4_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) :: line integer(pInt) :: i,j,m,c logical :: inPart allocate ( mesh_node0 (3,mesh_Nnodes) ); mesh_node0 = 0.0_pReal allocate ( mesh_node (3,mesh_Nnodes) ); mesh_node = 0.0_pReal 610 FORMAT(A300) inPart = .false. rewind(fileUnit) do read (fileUnit,610,END=670) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if( (inPart .or. noPart) .and. & IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*node' .and. & ( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'print' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'file' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) & ) then c = IO_countDataLines(fileUnit) ! how many nodes are defined here? do i = 1_pInt,c backspace(fileUnit) ! rewind to first entry enddo do i = 1_pInt,c read (fileUnit,610,END=670) line myPos = IO_stringPos(line,maxNchunks) m = mesh_FEasCP('node',IO_intValue(line,myPos,1_pInt)) do j=1_pInt, 3_pInt mesh_node0(j,m) = mesh_unitlength * IO_floatValue(line,myPos,j+1_pInt) enddo enddo endif enddo 670 if (int(size(mesh_node0,2_pInt),pInt) /= mesh_Nnodes) call IO_error(error_ID=909_pInt) mesh_node = mesh_node0 end subroutine mesh_abaqus_build_nodes !-------------------------------------------------------------------------------------------------- !> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements. !! Sets global values 'mesh_maxNnodes', 'mesh_maxNips', 'mesh_maxNipNeighbors', !! and 'mesh_maxNcellnodes' !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_count_cpSizes(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_stringPos, & IO_extractValue ,& IO_error, & IO_countDataLines, & IO_intValue implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 2_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos character(len=300) :: line integer(pInt) :: i,c,t,g logical :: inPart mesh_maxNnodes = 0_pInt mesh_maxNips = 0_pInt mesh_maxNipNeighbors = 0_pInt mesh_maxNcellnodes = 0_pInt 610 FORMAT(A300) inPart = .false. rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if( (inPart .or. noPart) .and. & IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. & ( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) & ) then t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type g = FE_geomtype(t) c = FE_celltype(g) mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t)) mesh_maxNips = max(mesh_maxNips,FE_Nips(g)) mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(c)) mesh_maxNcellnodes = max(mesh_maxNcellnodes,FE_Ncellnodes(g)) endif enddo 620 end subroutine mesh_abaqus_count_cpSizes !-------------------------------------------------------------------------------------------------- !> @brief Store FEid, type, mat, tex, and node list per elemen. !! Allocates global array 'mesh_element' !-------------------------------------------------------------------------------------------------- subroutine mesh_abaqus_build_elements(fileUnit) use IO, only: IO_lc, & IO_stringValue, & IO_skipChunks, & IO_stringPos, & IO_intValue, & IO_extractValue, & IO_floatValue, & IO_error, & IO_countDataLines implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: maxNchunks = 65_pInt integer(pInt), dimension (1_pInt+2_pInt*maxNchunks) :: myPos integer(pInt) :: i,j,k,c,e,t,homog,micro, nNodesAlreadyRead logical inPart,materialFound character (len=64) :: materialName,elemSetName character(len=300) :: line allocate (mesh_element (4_pInt+mesh_maxNnodes,mesh_NcpElems)) ; mesh_element = 0_pInt 610 FORMAT(A300) inPart = .false. rewind(fileUnit) do read (fileUnit,610,END=620) line myPos(1:1+2*2) = IO_stringPos(line,2_pInt) if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*part' ) inPart = .true. if ( IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*end' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) == 'part' ) inPart = .false. if( (inPart .or. noPart) .and. & IO_lc(IO_stringValue(line,myPos,1_pInt)) == '*element' .and. & ( IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'output' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'matrix' .and. & IO_lc(IO_stringValue(line,myPos,2_pInt)) /= 'response' ) & ) then t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,myPos,2_pInt)),'type')) ! remember elem type c = IO_countDataLines(fileUnit) do i = 1_pInt,c backspace(fileUnit) enddo do i = 1_pInt,c read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) ! limit to 64 nodes max e = mesh_FEasCP('elem',IO_intValue(line,myPos,1_pInt)) if (e /= 0_pInt) then ! disregard non CP elems mesh_element(1,e) = IO_intValue(line,myPos,1_pInt) ! FE id mesh_element(2,e) = t ! elem type nNodesAlreadyRead = 0_pInt do j = 1_pInt,myPos(1)-1_pInt mesh_element(4_pInt+j,e) = mesh_FEasCP('node',IO_intValue(line,myPos,1_pInt+j)) ! put CP ids of nodes to position 5: enddo nNodesAlreadyRead = myPos(1) - 1_pInt do while(nNodesAlreadyRead < FE_Nnodes(t)) ! read on if not all nodes in one line read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) do j = 1_pInt,myPos(1) mesh_element(4_pInt+nNodesAlreadyRead+j,e) & = mesh_FEasCP('node',IO_IntValue(line,myPos,j)) ! CP ids of nodes enddo nNodesAlreadyRead = nNodesAlreadyRead + myPos(1) enddo endif enddo endif enddo 620 rewind(fileUnit) ! just in case "*material" definitions apear before "*element" materialFound = .false. do read (fileUnit,610,END=630) line myPos = IO_stringPos(line,maxNchunks) select case ( IO_lc(IO_StringValue(line,myPos,1_pInt))) case('*material') materialName = trim(IO_extractValue(IO_lc(IO_StringValue(line,myPos,2_pInt)),'name')) ! extract name=value materialFound = materialName /= '' ! valid name? case('*user') if ( IO_lc(IO_StringValue(line,myPos,2_pInt)) == 'material' .and. & materialFound ) then read (fileUnit,610,END=630) line ! read homogenization and microstructure myPos(1:1+2*2) = IO_stringPos(line,2_pInt) homog = nint(IO_floatValue(line,myPos,1_pInt),pInt) micro = nint(IO_floatValue(line,myPos,2_pInt),pInt) do i = 1_pInt,mesh_Nmaterials ! look thru material names if (materialName == mesh_nameMaterial(i)) then ! found one elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet do k = 1_pInt,mesh_NelemSets ! look thru all elemSet definitions if (elemSetName == mesh_nameElemSet(k)) then ! matched? do j = 1_pInt,mesh_mapElemSet(1,k) e = mesh_FEasCP('elem',mesh_mapElemSet(1+j,k)) mesh_element(3,e) = homog ! store homogenization mesh_element(4,e) = micro ! store microstructure mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),homog) mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),micro) enddo endif enddo endif enddo materialFound = .false. endif endselect enddo 630 end subroutine mesh_abaqus_build_elements #endif !-------------------------------------------------------------------------------------------------- !> @brief get any additional damask options from input file, sets mesh_periodicSurface !-------------------------------------------------------------------------------------------------- subroutine mesh_get_damaskOptions(fileUnit) use IO, only: & IO_lc, & IO_stringValue, & IO_stringPos implicit none integer(pInt), intent(in) :: fileUnit #ifndef Spectral integer(pInt), parameter :: maxNchunks = 5_pInt integer(pInt), dimension (1+2*maxNchunks) :: myPos integer(pInt) chunk, Nchunks character(len=300) :: line, damaskOption, v character(len=300) :: keyword #endif #ifdef Spectral mesh_periodicSurface = .true. #else mesh_periodicSurface = .false. #ifdef Marc4DAMASK keyword = '$damask' #endif #ifdef Abaqus keyword = '**damask' #endif rewind(fileUnit) do read (fileUnit,610,END=620) line myPos = IO_stringPos(line,maxNchunks) Nchunks = myPos(1) if (IO_lc(IO_stringValue(line,myPos,1_pInt)) == keyword .and. Nchunks > 1_pInt) then ! found keyword for damask option and there is at least one more chunk to read damaskOption = IO_lc(IO_stringValue(line,myPos,2_pInt)) select case(damaskOption) case('periodic') ! damask Option that allows to specify periodic fluxes do chunk = 3_pInt,Nchunks ! loop through chunks (skipping the keyword) v = IO_lc(IO_stringValue(line,myPos,chunk)) ! chunk matches keyvalues x,y, or z? mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x' mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y' mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z' enddo endselect endif enddo 610 FORMAT(A300) #endif 620 end subroutine mesh_get_damaskOptions !-------------------------------------------------------------------------------------------------- !> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal' !-------------------------------------------------------------------------------------------------- subroutine mesh_build_ipAreas use math, only: & math_norm3, & math_vectorproduct implicit none integer(pInt) :: e,t,g,c,i,f,n,m real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals real(pReal), dimension(3) :: normal allocate(mesh_ipArea(mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) allocate(mesh_ipAreaNormal(3_pInt,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems), source=0.0_pReal) !$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals) do e = 1_pInt,mesh_NcpElems ! loop over cpElems t = mesh_element(2_pInt,e) ! get element type g = FE_geomtype(t) ! get geometry type c = FE_celltype(g) ! get cell type select case (c) case (1_pInt,2_pInt) ! 2D 3 or 4 node do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) & nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e)) normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector normal(3) = 0.0_pReal mesh_ipArea(f,i,e) = math_norm3(normal) mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) ! ensure unit length of area normal enddo enddo case (3_pInt) ! 3D 4node do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) & nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e)) normal = math_vectorproduct(nodePos(1:3,2) - nodePos(1:3,1), & nodePos(1:3,3) - nodePos(1:3,1)) mesh_ipArea(f,i,e) = math_norm3(normal) mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) ! ensure unit length of area normal enddo enddo case (4_pInt) ! 3D 8node ! for this cell type we get the normal of the quadrilateral face as an average of ! four normals of triangular subfaces; since the face consists only of two triangles, ! the sum has to be divided by two; this whole prcedure tries to compensate for ! probable non-planar cell surfaces m = FE_NcellnodesPerCellface(c) do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element do f = 1_pInt,FE_NipNeighbors(c) ! loop over cell faces forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) & nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e)) forall(n = 1_pInt:FE_NcellnodesPerCellface(c)) & normals(1:3,n) = 0.5_pReal & * math_vectorproduct(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), & nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n)) normal = 0.5_pReal * sum(normals,2) mesh_ipArea(f,i,e) = math_norm3(normal) mesh_ipAreaNormal(1:3,f,i,e) = normal / math_norm3(normal) enddo enddo end select enddo !$OMP END PARALLEL DO end subroutine mesh_build_ipAreas !-------------------------------------------------------------------------------------------------- !> @brief assignment of twin nodes for each cp node, allocate globals '_nodeTwins' !-------------------------------------------------------------------------------------------------- subroutine mesh_build_nodeTwins implicit none integer(pInt) dir, & ! direction of periodicity node, & minimumNode, & maximumNode, & n1, & n2 integer(pInt), dimension(mesh_Nnodes+1) :: minimumNodes, maximumNodes ! list of surface nodes (minimum and maximum coordinate value) with first entry giving the number of nodes real(pReal) minCoord, maxCoord, & ! extreme positions in one dimension tolerance ! tolerance below which positions are assumed identical real(pReal), dimension(3) :: distance ! distance between two nodes in all three coordinates logical, dimension(mesh_Nnodes) :: unpaired allocate(mesh_nodeTwins(3,mesh_Nnodes)) mesh_nodeTwins = 0_pInt tolerance = 0.001_pReal * minval(mesh_ipVolume) ** 0.333_pReal do dir = 1_pInt,3_pInt ! check periodicity in directions of x,y,z if (mesh_periodicSurface(dir)) then ! only if periodicity is requested !*** find out which nodes sit on the surface !*** and have a minimum or maximum position in this dimension minimumNodes = 0_pInt maximumNodes = 0_pInt minCoord = minval(mesh_node0(dir,:)) maxCoord = maxval(mesh_node0(dir,:)) do node = 1_pInt,mesh_Nnodes ! loop through all nodes and find surface nodes if (abs(mesh_node0(dir,node) - minCoord) <= tolerance) then minimumNodes(1) = minimumNodes(1) + 1_pInt minimumNodes(minimumNodes(1)+1_pInt) = node elseif (abs(mesh_node0(dir,node) - maxCoord) <= tolerance) then maximumNodes(1) = maximumNodes(1) + 1_pInt maximumNodes(maximumNodes(1)+1_pInt) = node endif enddo !*** find the corresponding node on the other side with the same position in this dimension unpaired = .true. do n1 = 1_pInt,minimumNodes(1) minimumNode = minimumNodes(n1+1_pInt) if (unpaired(minimumNode)) then do n2 = 1_pInt,maximumNodes(1) maximumNode = maximumNodes(n2+1_pInt) distance = abs(mesh_node0(:,minimumNode) - mesh_node0(:,maximumNode)) if (sum(distance) - distance(dir) <= tolerance) then ! minimum possible distance (within tolerance) mesh_nodeTwins(dir,minimumNode) = maximumNode mesh_nodeTwins(dir,maximumNode) = minimumNode unpaired(maximumNode) = .false. ! remember this node, we don't have to look for his partner again exit endif enddo endif enddo endif enddo end subroutine mesh_build_nodeTwins !-------------------------------------------------------------------------------------------------- !> @brief get maximum count of shared elements among cpElements and build list of elements shared !! by each node in mesh. Allocate globals '_maxNsharedElems' and '_sharedElem' !-------------------------------------------------------------------------------------------------- subroutine mesh_build_sharedElems implicit none integer(pint) e, & ! element index g, & ! element type node, & ! CP node index n, & ! node index per element myDim, & ! dimension index nodeTwin ! node twin in the specified dimension integer(pInt), dimension (mesh_Nnodes) :: node_count integer(pInt), dimension (:), allocatable :: node_seen allocate(node_seen(maxval(FE_NmatchingNodes))) node_count = 0_pInt do e = 1_pInt,mesh_NcpElems g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType node_seen = 0_pInt ! reset node duplicates do n = 1_pInt,FE_NmatchingNodes(g) ! check each node of element node = mesh_element(4+n,e) if (all(node_seen /= node)) then node_count(node) = node_count(node) + 1_pInt ! if FE node not yet encountered -> count it do myDim = 1_pInt,3_pInt ! check in each dimension... nodeTwin = mesh_nodeTwins(myDim,node) if (nodeTwin > 0_pInt) & ! if I am a twin of some node... node_count(nodeTwin) = node_count(nodeTwin) + 1_pInt ! -> count me again for the twin node enddo endif node_seen(n) = node ! remember this node to be counted already enddo enddo mesh_maxNsharedElems = int(maxval(node_count),pInt) ! most shared node allocate(mesh_sharedElem(1+mesh_maxNsharedElems,mesh_Nnodes)) mesh_sharedElem = 0_pInt do e = 1_pInt,mesh_NcpElems g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType node_seen = 0_pInt do n = 1_pInt,FE_NmatchingNodes(g) node = mesh_element(4_pInt+n,e) if (all(node_seen /= node)) then mesh_sharedElem(1,node) = mesh_sharedElem(1,node) + 1_pInt ! count for each node the connected elements mesh_sharedElem(mesh_sharedElem(1,node)+1_pInt,node) = e ! store the respective element id do myDim = 1_pInt,3_pInt ! check in each dimension... nodeTwin = mesh_nodeTwins(myDim,node) if (nodeTwin > 0_pInt) then ! if i am a twin of some node... mesh_sharedElem(1,nodeTwin) = mesh_sharedElem(1,nodeTwin) + 1_pInt ! ...count me again for the twin mesh_sharedElem(mesh_sharedElem(1,nodeTwin)+1,nodeTwin) = e ! store the respective element id endif enddo endif node_seen(n) = node enddo enddo deallocate(node_seen) end subroutine mesh_build_sharedElems !-------------------------------------------------------------------------------------------------- !> @brief build up of IP neighborhood, allocate globals '_ipNeighborhood' !-------------------------------------------------------------------------------------------------- subroutine mesh_build_ipNeighborhood use math, only: & math_mul3x3 implicit none integer(pInt) :: myElem, & ! my CP element index myIP, & myType, & ! my element type myFace, & neighbor, & ! neighor index neighboringIPkey, & ! positive integer indicating the neighboring IP (for intra-element) and negative integer indicating the face towards neighbor (for neighboring element) candidateIP, & neighboringType, & ! element type of neighbor NlinkedNodes, & ! number of linked nodes twin_of_linkedNode, & ! node twin of a specific linkedNode NmatchingNodes, & ! number of matching nodes dir, & ! direction of periodicity matchingElem, & ! CP elem number of matching element matchingFace, & ! face ID of matching element a, anchor, & neighboringIP, & neighboringElem, & pointingToMe integer(pInt), dimension(FE_maxmaxNnodesAtIP) :: & linkedNodes = 0_pInt, & matchingNodes logical checkTwins allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems)) mesh_ipNeighborhood = 0_pInt do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem do neighbor = 1_pInt,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP neighboringIPkey = FE_ipNeighbor(neighbor,myIP,myType) !*** if the key is positive, the neighbor is inside the element !*** that means, we have already found our neighboring IP if (neighboringIPkey > 0_pInt) then mesh_ipNeighborhood(1,neighbor,myIP,myElem) = myElem mesh_ipNeighborhood(2,neighbor,myIP,myElem) = neighboringIPkey !*** if the key is negative, the neighbor resides in a neighboring element !*** that means, we have to look through the face indicated by the key and see which element is behind that face elseif (neighboringIPkey < 0_pInt) then ! neighboring element's IP myFace = -neighboringIPkey call mesh_faceMatch(myElem, myFace, matchingElem, matchingFace) ! get face and CP elem id of face match if (matchingElem > 0_pInt) then ! found match? neighboringType = FE_geomtype(mesh_element(2,matchingElem)) !*** trivial solution if neighbor has only one IP if (FE_Nips(neighboringType) == 1_pInt) then mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem mesh_ipNeighborhood(2,neighbor,myIP,myElem) = 1_pInt cycle endif !*** find those nodes which build the link to the neighbor NlinkedNodes = 0_pInt linkedNodes = 0_pInt do a = 1_pInt,FE_maxNnodesAtIP(myType) ! figure my anchor nodes on connecting face anchor = FE_nodesAtIP(a,myIP,myType) if (anchor /= 0_pInt) then ! valid anchor node if (any(FE_face(:,myFace,myType) == anchor)) then ! ip anchor sits on face? NlinkedNodes = NlinkedNodes + 1_pInt linkedNodes(NlinkedNodes) = mesh_element(4_pInt+anchor,myElem) ! CP id of anchor node else ! something went wrong with the linkage, since not all anchors sit on my face NlinkedNodes = 0_pInt linkedNodes = 0_pInt exit endif endif enddo !*** loop through the ips of my neighbor !*** and try to find an ip with matching nodes !*** also try to match with node twins checkCandidateIP: do candidateIP = 1_pInt,FE_Nips(neighboringType) NmatchingNodes = 0_pInt matchingNodes = 0_pInt do a = 1_pInt,FE_maxNnodesAtIP(neighboringType) ! check each anchor node of that ip anchor = FE_nodesAtIP(a,candidateIP,neighboringType) if (anchor /= 0_pInt) then ! valid anchor node if (any(FE_face(:,matchingFace,neighboringType) == anchor)) then ! sits on matching face? NmatchingNodes = NmatchingNodes + 1_pInt matchingNodes(NmatchingNodes) = mesh_element(4+anchor,matchingElem) ! CP id of neighbor's anchor node else ! no matching, because not all nodes sit on the matching face NmatchingNodes = 0_pInt matchingNodes = 0_pInt exit endif endif enddo if (NmatchingNodes /= NlinkedNodes) & ! this ip has wrong count of anchors on face cycle checkCandidateIP !*** check "normal" nodes whether they match or not checkTwins = .false. do a = 1_pInt,NlinkedNodes if (all(matchingNodes /= linkedNodes(a))) then ! this linkedNode does not match any matchingNode checkTwins = .true. exit ! no need to search further endif enddo !*** if no match found, then also check node twins if(checkTwins) then dir = int(maxloc(abs(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem)),1),pInt) ! check for twins only in direction of the surface normal do a = 1_pInt,NlinkedNodes twin_of_linkedNode = mesh_nodeTwins(dir,linkedNodes(a)) if (twin_of_linkedNode == 0_pInt .or. & ! twin of linkedNode does not exist... all(matchingNodes /= twin_of_linkedNode)) then ! ... or it does not match any matchingNode cycle checkCandidateIP ! ... then check next candidateIP endif enddo endif !*** we found a match !!! mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem mesh_ipNeighborhood(2,neighbor,myIP,myElem) = candidateIP exit checkCandidateIP enddo checkCandidateIP endif ! end of valid external matching endif ! end of internal/external matching enddo enddo enddo do myElem = 1_pInt,mesh_NcpElems ! loop over cpElems myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType do myIP = 1_pInt,FE_Nips(myType) ! loop over IPs of elem do neighbor = 1_pInt,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP neighboringElem = mesh_ipNeighborhood(1,neighbor,myIP,myElem) neighboringIP = mesh_ipNeighborhood(2,neighbor,myIP,myElem) if (neighboringElem > 0_pInt .and. neighboringIP > 0_pInt) then ! if neighbor exists ... neighboringType = FE_geomtype(mesh_element(2,neighboringElem)) do pointingToMe = 1_pInt,FE_NipNeighbors(FE_celltype(neighboringType)) ! find neighboring index that points from my neighbor to myself if ( myElem == mesh_ipNeighborhood(1,pointingToMe,neighboringIP,neighboringElem) & .and. myIP == mesh_ipNeighborhood(2,pointingToMe,neighboringIP,neighboringElem)) then ! possible candidate if (math_mul3x3(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem),& mesh_ipAreaNormal(1:3,pointingToMe,neighboringIP,neighboringElem)) < 0.0_pReal) then ! area normals have opposite orientation (we have to check that because of special case for single element with two ips and periodicity. In this case the neighbor is identical in two different directions.) mesh_ipNeighborhood(3,neighbor,myIP,myElem) = pointingToMe ! found match exit ! so no need to search further endif endif enddo endif enddo enddo enddo end subroutine mesh_build_ipNeighborhood !-------------------------------------------------------------------------------------------------- !> @brief write statistics regarding input file parsing to the output file !-------------------------------------------------------------------------------------------------- subroutine mesh_tell_statistics use math, only: & math_range use IO, only: & IO_error use debug, only: & debug_level, & debug_MESH, & debug_LEVELBASIC, & debug_LEVELEXTENSIVE, & debug_LEVELSELECTIVE, & debug_e, & debug_i implicit none integer(pInt), dimension (:,:), allocatable :: mesh_HomogMicro character(len=64) :: myFmt integer(pInt) :: i,e,n,f,t,g,c, myDebug myDebug = debug_level(debug_mesh) if (mesh_maxValStateVar(1) < 1_pInt) call IO_error(error_ID=170_pInt) ! no homogenization specified if (mesh_maxValStateVar(2) < 1_pInt) call IO_error(error_ID=180_pInt) ! no microstructure specified allocate (mesh_HomogMicro(mesh_maxValStateVar(1),mesh_maxValStateVar(2))); mesh_HomogMicro = 0_pInt do e = 1_pInt,mesh_NcpElems if (mesh_element(3,e) < 1_pInt) call IO_error(error_ID=170_pInt,el=e) ! no homogenization specified if (mesh_element(4,e) < 1_pInt) call IO_error(error_ID=180_pInt,el=e) ! no microstructure specified mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) = & mesh_HomogMicro(mesh_element(3,e),mesh_element(4,e)) + 1_pInt ! count combinations of homogenization and microstructure enddo !$OMP CRITICAL (write2out) if (iand(myDebug,debug_levelBasic) /= 0_pInt) then write(6,'(/,a,/)') ' Input Parser: STATISTICS' write(6,*) mesh_Nelems, ' : total number of elements in mesh' write(6,*) mesh_NcpElems, ' : total number of CP elements in mesh' write(6,*) mesh_Nnodes, ' : total number of nodes in mesh' write(6,*) mesh_maxNnodes, ' : max number of nodes in any CP element' write(6,*) mesh_maxNips, ' : max number of IPs in any CP element' write(6,*) mesh_maxNipNeighbors, ' : max number of IP neighbors in any CP element' write(6,*) mesh_maxNsharedElems, ' : max number of CP elements sharing a node' write(6,'(/,a,/)') ' Input Parser: HOMOGENIZATION/MICROSTRUCTURE' write(6,*) mesh_maxValStateVar(1), ' : maximum homogenization index' write(6,*) mesh_maxValStateVar(2), ' : maximum microstructure index' write(6,*) write (myFmt,'(a,i32.32,a)') '(9x,a2,1x,',mesh_maxValStateVar(2),'(i8))' write(6,myFmt) '+-',math_range(mesh_maxValStateVar(2)) write (myFmt,'(a,i32.32,a)') '(i8,1x,a2,1x,',mesh_maxValStateVar(2),'(i8))' do i=1_pInt,mesh_maxValStateVar(1) ! loop over all (possibly assigned) homogenizations write(6,myFmt) i,'| ',mesh_HomogMicro(i,:) ! loop over all (possibly assigned) microstructures enddo write(6,'(/,a,/)') ' Input Parser: ADDITIONAL MPIE OPTIONS' write(6,*) 'periodic surface : ', mesh_periodicSurface write(6,*) flush(6) endif if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then write(6,*) write(6,*) 'Input Parser: ELEMENT TYPE' write(6,*) write(6,'(a8,3(1x,a8))') 'elem','elemtype','geomtype','celltype' do e = 1_pInt,mesh_NcpElems if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle t = mesh_element(2,e) ! get elemType g = FE_geomtype(t) ! get elemGeomType c = FE_celltype(g) ! get cellType write(6,'(i8,3(1x,i8))') e,t,g,c enddo write(6,*) write(6,*) 'Input Parser: ELEMENT VOLUME' write(6,*) write(6,'(a13,1x,e15.8)') 'total volume', sum(mesh_ipVolume) write(6,*) write(6,'(a8,1x,a5,1x,a15,1x,a5,1x,a15,1x,a16)') 'elem','IP','volume','face','area','-- normal --' do e = 1_pInt,mesh_NcpElems if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle t = mesh_element(2,e) ! get element type g = FE_geomtype(t) ! get geometry type c = FE_celltype(g) ! get cell type do i = 1_pInt,FE_Nips(g) if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle write(6,'(i8,1x,i5,1x,e15.8)') e,i,mesh_IPvolume(i,e) do f = 1_pInt,FE_NipNeighbors(c) write(6,'(i33,1x,e15.8,1x,3(f6.3,1x))') f,mesh_ipArea(f,i,e),mesh_ipAreaNormal(:,f,i,e) enddo enddo enddo write(6,*) write(6,*) 'Input Parser: CELLNODE COORDINATES' write(6,*) write(6,'(a8,1x,a2,1x,a8,3(1x,a12))') 'elem','IP','cellnode','x','y','z' do e = 1_pInt,mesh_NcpElems ! loop over cpElems if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle t = mesh_element(2,e) ! get element type g = FE_geomtype(t) ! get geometry type c = FE_celltype(g) ! get cell type do i = 1_pInt,FE_Nips(g) ! loop over IPs of elem if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle write(6,'(i8,1x,i2)') e,i do n = 1_pInt,FE_NcellnodesPerCell(c) ! loop over cell nodes in the cell write(6,'(12x,i8,3(1x,f12.8))') mesh_cell(n,i,e), & mesh_cellnode(1:3,mesh_cell(n,i,e)) enddo enddo enddo write(6,*) write(6,*) 'Input Parser: IP COORDINATES' write(6,'(a8,1x,a5,3(1x,a12))') 'elem','IP','x','y','z' do e = 1_pInt,mesh_NcpElems if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e))) if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle write(6,'(i8,1x,i5,3(1x,f12.8))') e, i, mesh_ipCoordinates(:,i,e) enddo enddo write(6,*) #ifndef Spectral write(6,*) 'Input Parser: NODE TWINS' write(6,*) write(6,'(a6,3(3x,a6))') ' node','twin_x','twin_y','twin_z' do n = 1_pInt,mesh_Nnodes ! loop over cpNodes if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. .not. any(mesh_element(5:,debug_e) == n)) cycle write(6,'(i6,3(3x,i6))') n, mesh_nodeTwins(1:3,n) enddo write(6,*) #endif write(6,*) 'Input Parser: IP NEIGHBORHOOD' write(6,*) write(6,'(a8,1x,a10,1x,a10,1x,a3,1x,a13,1x,a13)') 'elem','IP','neighbor','','elemNeighbor','ipNeighbor' do e = 1_pInt,mesh_NcpElems ! loop over cpElems if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_e /= e) cycle t = mesh_element(2,e) ! get element type g = FE_geomtype(t) ! get geometry type c = FE_celltype(g) ! get cell type do i = 1_pInt,FE_Nips(g) ! loop over IPs of elem if (iand(myDebug,debug_levelSelective) /= 0_pInt .and. debug_i /= i) cycle do n = 1_pInt,FE_NipNeighbors(c) ! loop over neighbors of IP write(6,'(i8,1x,i10,1x,i10,1x,a3,1x,i13,1x,i13)') e,i,n,'-->',mesh_ipNeighborhood(1,n,i,e),mesh_ipNeighborhood(2,n,i,e) enddo enddo enddo endif !$OMP END CRITICAL (write2out) deallocate(mesh_HomogMicro) end subroutine mesh_tell_statistics !-------------------------------------------------------------------------------------------------- !> @brief mapping of FE element types to internal representation !-------------------------------------------------------------------------------------------------- integer(pInt) function FE_mapElemtype(what) use IO, only: IO_lc, IO_error implicit none character(len=*), intent(in) :: what select case (IO_lc(what)) case ( '6') FE_mapElemtype = 1_pInt ! Two-dimensional Plane Strain Triangle case ( '155', & '125', & '128') FE_mapElemtype = 2_pInt ! Two-dimensional Plane Strain triangle (155: cubic shape function, 125/128: second order isoparametric) case ( '11', & 'cpe4', & 'cpe4t') FE_mapElemtype = 3_pInt ! Arbitrary Quadrilateral Plane-strain case ( '27', & 'cpe8', & 'cpe8t') FE_mapElemtype = 4_pInt ! Plane Strain, Eight-node Distorted Quadrilateral case ( '54') FE_mapElemtype = 5_pInt ! Plane Strain, Eight-node Distorted Quadrilateral with reduced integration case ( '134', & 'c3d4', & 'c3d4t') FE_mapElemtype = 6_pInt ! Three-dimensional Four-node Tetrahedron case ( '157') FE_mapElemtype = 7_pInt ! Three-dimensional, Low-order, Tetrahedron, Herrmann Formulations case ( '127') FE_mapElemtype = 8_pInt ! Three-dimensional Ten-node Tetrahedron case ( '136', & 'c3d6', & 'c3d6t') FE_mapElemtype = 9_pInt ! Three-dimensional Arbitrarily Distorted Pentahedral case ( '117', & '123', & 'c3d8r', & 'c3d8rt') FE_mapElemtype = 10_pInt ! Three-dimensional Arbitrarily Distorted linear hexahedral with reduced integration case ( '7', & 'c3d8', & 'c3d8t') FE_mapElemtype = 11_pInt ! Three-dimensional Arbitrarily Distorted Brick case ( '57', & 'c3d20r', & 'c3d20rt') FE_mapElemtype = 12_pInt ! Three-dimensional Arbitrarily Distorted quad hexahedral with reduced integration case ( '21', & 'c3d20', & 'c3d20t') FE_mapElemtype = 13_pInt ! Three-dimensional Arbitrarily Distorted quadratic hexahedral case default call IO_error(error_ID=190_pInt,ext_msg=IO_lc(what)) end select end function FE_mapElemtype !-------------------------------------------------------------------------------------------------- !> @brief find face-matching element of same type !-------------------------------------------------------------------------------------------------- subroutine mesh_faceMatch(elem, face ,matchingElem, matchingFace) implicit none !*** output variables integer(pInt), intent(out) :: matchingElem, & ! matching CP element ID matchingFace ! matching face ID !*** input variables integer(pInt), intent(in) :: face, & ! face ID elem ! CP elem ID !*** local variables integer(pInt), dimension(FE_NmatchingNodesPerFace(face,FE_geomtype(mesh_element(2,elem)))) :: & myFaceNodes ! global node ids on my face integer(pInt) :: myType, & candidateType, & candidateElem, & candidateFace, & candidateFaceNode, & minNsharedElems, & NsharedElems, & lonelyNode = 0_pInt, & i, & n, & dir ! periodicity direction integer(pInt), dimension(:), allocatable :: element_seen logical checkTwins matchingElem = 0_pInt matchingFace = 0_pInt minNsharedElems = mesh_maxNsharedElems + 1_pInt ! init to worst case myType = FE_geomtype(mesh_element(2_pInt,elem)) ! figure elemGeomType do n = 1_pInt,FE_NmatchingNodesPerFace(face,myType) ! loop over nodes on face myFaceNodes(n) = mesh_element(4_pInt+FE_face(n,face,myType),elem) ! CP id of face node NsharedElems = mesh_sharedElem(1_pInt,myFaceNodes(n)) ! figure # shared elements for this node if (NsharedElems < minNsharedElems) then minNsharedElems = NsharedElems ! remember min # shared elems lonelyNode = n ! remember most lonely node endif enddo allocate(element_seen(minNsharedElems)) element_seen = 0_pInt checkCandidate: do i = 1_pInt,minNsharedElems ! iterate over lonelyNode's shared elements candidateElem = mesh_sharedElem(1_pInt+i,myFaceNodes(lonelyNode)) ! present candidate elem if (all(element_seen /= candidateElem)) then ! element seen for the first time? element_seen(i) = candidateElem candidateType = FE_geomtype(mesh_element(2_pInt,candidateElem)) ! figure elemGeomType of candidate checkCandidateFace: do candidateFace = 1_pInt,FE_maxNipNeighbors ! check each face of candidate if (FE_NmatchingNodesPerFace(candidateFace,candidateType) & /= FE_NmatchingNodesPerFace(face,myType) & ! incompatible face .or. (candidateElem == elem .and. candidateFace == face)) then ! this is my face cycle checkCandidateFace endif checkTwins = .false. do n = 1_pInt,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face candidateFaceNode = mesh_element(4_pInt+FE_face(n,candidateFace,candidateType),candidateElem) if (all(myFaceNodes /= candidateFaceNode)) then ! candidate node does not match any of my face nodes checkTwins = .true. ! perhaps the twin nodes do match exit endif enddo if(checkTwins) then checkCandidateFaceTwins: do dir = 1_pInt,3_pInt do n = 1_pInt,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face candidateFaceNode = mesh_element(4+FE_face(n,candidateFace,candidateType),candidateElem) if (all(myFaceNodes /= mesh_nodeTwins(dir,candidateFaceNode))) then ! node twin does not match either if (dir == 3_pInt) then cycle checkCandidateFace else cycle checkCandidateFaceTwins ! try twins in next dimension endif endif enddo exit checkCandidateFaceTwins enddo checkCandidateFaceTwins endif matchingFace = candidateFace matchingElem = candidateElem exit checkCandidate ! found my matching candidate enddo checkCandidateFace endif enddo checkCandidate deallocate(element_seen) end subroutine mesh_faceMatch !-------------------------------------------------------------------------------------------------- !> @brief get properties of different types of finite elements !> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_cellnodeParentnodeWeights, FE_subNodeOnIPFace !-------------------------------------------------------------------------------------------------- subroutine mesh_build_FEdata implicit none integer(pInt) :: me allocate(FE_nodesAtIP(FE_maxmaxNnodesAtIP,FE_maxNips,FE_Ngeomtypes)); FE_nodesAtIP = 0_pInt allocate(FE_ipNeighbor(FE_maxNipNeighbors,FE_maxNips,FE_Ngeomtypes)); FE_ipNeighbor = 0_pInt allocate(FE_cell(FE_maxNcellnodesPerCell,FE_maxNips,FE_Ngeomtypes)); FE_cell = 0_pInt allocate(FE_cellnodeParentnodeWeights(FE_maxNnodes,FE_maxNcellnodes,FE_Nelemtypes)); FE_cellnodeParentnodeWeights = 0.0_pReal allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes)); FE_cellface = 0_pInt !*** fill FE_nodesAtIP with data *** me = 0_pInt me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip) reshape(int([& 1,2,3 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip) reshape(int([& 1, & 2, & 3 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip) reshape(int([& 1, & 2, & 4, & 3 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip) reshape(int([& 1,0, & 1,2, & 2,0, & 1,4, & 0,0, & 2,3, & 4,0, & 3,4, & 3,0 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip) reshape(int([& 1,2,3,4 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip) reshape(int([& 1, & 2, & 3, & 4 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip) reshape(int([& 1, & 2, & 3, & 4, & 5, & 6 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip) reshape(int([& 1,2,3,4,5,6,7,8 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip) reshape(int([& 1, & 2, & 4, & 3, & 5, & 6, & 8, & 7 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) me = me + 1_pInt FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip) reshape(int([& 1,0, 0,0, & 1,2, 0,0, & 2,0, 0,0, & 1,4, 0,0, & 1,3, 2,4, & 2,3, 0,0, & 4,0, 0,0, & 3,4, 0,0, & 3,0, 0,0, & 1,5, 0,0, & 1,6, 2,5, & 2,6, 0,0, & 1,8, 4,5, & 0,0, 0,0, & 2,7, 3,6, & 4,8, 0,0, & 3,8, 4,7, & 3,7, 0,0, & 5,0, 0,0, & 5,6, 0,0, & 6,0, 0,0, & 5,8, 0,0, & 5,7, 6,8, & 6,7, 0,0, & 8,0, 0,0, & 7,8, 0,0, & 7,0, 0,0 & ],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)]) ! *** FE_ipNeighbor *** ! is a list of the neighborhood of each IP. ! It is sorted in (local) +x,-x, +y,-y, +z,-z direction. ! Positive integers denote an intra-FE IP identifier. ! Negative integers denote the interface behind which the neighboring (extra-FE) IP will be located. me = 0_pInt me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip) reshape(int([& -2,-3,-1 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip) reshape(int([& 2,-3, 3,-1, & -2, 1, 3,-1, & 2,-3,-2, 1 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip) reshape(int([& 2,-4, 3,-1, & -2, 1, 4,-1, & 4,-4,-3, 1, & -2, 3,-3, 2 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip) reshape(int([& 2,-4, 4,-1, & 3, 1, 5,-1, & -2, 2, 6,-1, & 5,-4, 7, 1, & 6, 4, 8, 2, & -2, 5, 9, 3, & 8,-4,-3, 4, & 9, 7,-3, 5, & -2, 8,-3, 6 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip) reshape(int([& -1,-2,-3,-4 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip) reshape(int([& 2,-4, 3,-2, 4,-1, & -2, 1, 3,-2, 4,-1, & 2,-4,-3, 1, 4,-1, & 2,-4, 3,-2,-3, 1 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip) reshape(int([& 2,-4, 3,-2, 4,-1, & -3, 1, 3,-2, 5,-1, & 2,-4,-3, 1, 6,-1, & 5,-4, 6,-2,-5, 1, & -3, 4, 6,-2,-5, 2, & 5,-4,-3, 4,-5, 3 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip) reshape(int([& -3,-5,-4,-2,-6,-1 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip) reshape(int([& 2,-5, 3,-2, 5,-1, & -3, 1, 4,-2, 6,-1, & 4,-5,-4, 1, 7,-1, & -3, 3,-4, 2, 8,-1, & 6,-5, 7,-2,-6, 1, & -3, 5, 8,-2,-6, 2, & 8,-5,-4, 5,-6, 3, & -3, 7,-4, 6,-6, 4 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip) reshape(int([& 2,-5, 4,-2,10,-1, & 3, 1, 5,-2,11,-1, & -3, 2, 6,-2,12,-1, & 5,-5, 7, 1,13,-1, & 6, 4, 8, 2,14,-1, & -3, 5, 9, 3,15,-1, & 8,-5,-4, 4,16,-1, & 9, 7,-4, 5,17,-1, & -3, 8,-4, 6,18,-1, & 11,-5,13,-2,19, 1, & 12,10,14,-2,20, 2, & -3,11,15,-2,21, 3, & 14,-5,16,10,22, 4, & 15,13,17,11,23, 5, & -3,14,18,12,24, 6, & 17,-5,-4,13,25, 7, & 18,16,-4,14,26, 8, & -3,17,-4,15,27, 9, & 20,-5,22,-2,-6,10, & 21,19,23,-2,-6,11, & -3,20,24,-2,-6,12, & 23,-5,25,19,-6,13, & 24,22,26,20,-6,14, & -3,23,27,21,-6,15, & 26,-5,-4,22,-6,16, & 27,25,-4,23,-6,17, & -3,26,-4,24,-6,18 & ],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)]) ! *** FE_cell *** me = 0_pInt me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip) reshape(int([& 1,2,3 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip) reshape(int([& 1, 4, 7, 6, & 2, 5, 7, 4, & 3, 6, 7, 5 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip) reshape(int([& 1, 5, 9, 8, & 5, 2, 6, 9, & 8, 9, 7, 4, & 9, 6, 3, 7 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip) reshape(int([& 1, 5,13,12, & 5, 6,14,13, & 6, 2, 7,14, & 12,13,16,11, & 13,14,15,16, & 14, 7, 8,15, & 11,16,10, 4, & 16,15, 9,10, & 15, 8, 3, 9 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip) reshape(int([& 1, 2, 3, 4 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip) reshape(int([& 1, 5,11, 7, 8,12,15,14, & 5, 2, 6,11,12, 9,13,15, & 7,11, 6, 3,14,15,13,10, & 8,12,15, 4, 4, 9,13,10 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip) reshape(int([& 1, 7,16, 9,10,17,21,19, & 7, 2, 8,16,17,11,18,21, & 9,16, 8, 3,19,21,18,12, & 10,17,21,19, 4,13,20,15, & 17,11,18,21,13, 5,14,20, & 19,21,18,12,15,20,14, 6 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip) reshape(int([& 1, 2, 3, 4, 5, 6, 7, 8 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip) reshape(int([& 1, 9,21,12,13,22,27,25, & 9, 2,10,21,22,14,23,27, & 12,21,11, 4,25,27,24,16, & 21,10, 3,11,27,23,15,24, & 13,22,27,25, 5,17,26,20, & 22,14,23,27,17, 6,18,26, & 25,27,24,16,20,26,19, 8, & 27,23,15,24,26,18, 7,19 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) me = me + 1_pInt FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip) reshape(int([& 1, 9,33,16,17,37,57,44, & 9,10,34,33,37,38,58,57, & 10, 2,11,34,38,18,39,58, & 16,33,36,15,44,57,60,43, & 33,34,35,36,57,58,59,60, & 34,11,12,35,58,39,40,59, & 15,36,14, 4,43,60,42,20, & 36,35,13,14,60,59,41,42, & 35,12, 3,13,59,40,19,41, & 17,37,57,44,21,45,61,52, & 37,38,58,57,45,46,62,61, & 38,18,39,58,46,22,47,62, & 44,57,60,43,52,61,64,51, & 57,58,59,60,61,62,63,64, & 58,39,40,59,62,47,48,63, & 43,60,42,20,51,64,50,24, & 60,59,41,42,64,63,49,50, & 59,40,19,41,63,48,23,49, & 21,45,61,52, 5,25,53,32, & 45,46,62,61,25,26,54,53, & 46,22,47,62,26, 6,27,54, & 52,61,64,51,32,53,56,31, & 61,62,63,64,53,54,55,56, & 62,47,48,63,54,27,28,55, & 51,64,50,24,31,56,30, 8, & 64,63,49,50,56,55,29,30, & 63,48,23,49,55,28, 7,29 & ],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)]) ! *** FE_cellnodeParentnodeWeights *** ! center of gravity of the weighted nodes gives the position of the cell node. ! fill with 0. ! example: face-centered cell node with face nodes 1,2,5,6 to be used in, ! e.g., an 8 node element, would be encoded: ! 1, 1, 0, 0, 1, 1, 0, 0 me = 0_pInt me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 6 (2D 3node 1ip) reshape(real([& 1, 0, 0, & 0, 1, 0, & 0, 0, 1 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 125 (2D 6node 3ip) reshape(real([& 1, 0, 0, 0, 0, 0, & 0, 1, 0, 0, 0, 0, & 0, 0, 1, 0, 0, 0, & 0, 0, 0, 1, 0, 0, & 0, 0, 0, 0, 1, 0, & 0, 0, 0, 0, 0, 1, & 1, 1, 1, 2, 2, 2 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 11 (2D 4node 4ip) reshape(real([& 1, 0, 0, 0, & 0, 1, 0, 0, & 0, 0, 1, 0, & 0, 0, 0, 1, & 1, 1, 0, 0, & 0, 1, 1, 0, & 0, 0, 1, 1, & 1, 0, 0, 1, & 1, 1, 1, 1 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 27 (2D 8node 9ip) reshape(real([& 1, 0, 0, 0, 0, 0, 0, 0, & 0, 1, 0, 0, 0, 0, 0, 0, & 0, 0, 1, 0, 0, 0, 0, 0, & 0, 0, 0, 1, 0, 0, 0, 0, & 1, 0, 0, 0, 2, 0, 0, 0, & 0, 1, 0, 0, 2, 0, 0, 0, & 0, 1, 0, 0, 0, 2, 0, 0, & 0, 0, 1, 0, 0, 2, 0, 0, & 0, 0, 1, 0, 0, 0, 2, 0, & 0, 0, 0, 1, 0, 0, 2, 0, & 0, 0, 0, 1, 0, 0, 0, 2, & 1, 0, 0, 0, 0, 0, 0, 2, & 4, 1, 1, 1, 8, 2, 2, 8, & 1, 4, 1, 1, 8, 8, 2, 2, & 1, 1, 4, 1, 2, 8, 8, 2, & 1, 1, 1, 4, 2, 2, 8, 8 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 54 (2D 8node 4ip) reshape(real([& 1, 0, 0, 0, 0, 0, 0, 0, & 0, 1, 0, 0, 0, 0, 0, 0, & 0, 0, 1, 0, 0, 0, 0, 0, & 0, 0, 0, 1, 0, 0, 0, 0, & 0, 0, 0, 0, 1, 0, 0, 0, & 0, 0, 0, 0, 0, 1, 0, 0, & 0, 0, 0, 0, 0, 0, 1, 0, & 0, 0, 0, 0, 0, 0, 0, 1, & 1, 1, 1, 1, 2, 2, 2, 2 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 134 (3D 4node 1ip) reshape(real([& 1, 0, 0, 0, & 0, 1, 0, 0, & 0, 0, 1, 0, & 0, 0, 0, 1 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 157 (3D 5node 4ip) reshape(real([& 1, 0, 0, 0, 0, & 0, 1, 0, 0, 0, & 0, 0, 1, 0, 0, & 0, 0, 0, 1, 0, & 1, 1, 0, 0, 0, & 0, 1, 1, 0, 0, & 1, 0, 1, 0, 0, & 1, 0, 0, 1, 0, & 0, 1, 0, 1, 0, & 0, 0, 1, 1, 0, & 1, 1, 1, 0, 0, & 1, 1, 0, 1, 0, & 0, 1, 1, 1, 0, & 1, 0, 1, 1, 0, & 0, 0, 0, 0, 1 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 127 (3D 10node 4ip) reshape(real([& 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, & 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, & 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, & 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, & 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, & 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, & 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, & 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, & 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, & 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, & 1, 1, 1, 0, 2, 2, 2, 0, 0, 0, & 1, 1, 0, 1, 2, 0, 0, 2, 2, 0, & 0, 1, 1, 1, 0, 2, 0, 0, 2, 2, & 1, 0, 1, 1, 0, 0, 2, 2, 0, 2, & 3, 3, 3, 3, 4, 4, 4, 4, 4, 4 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 136 (3D 6node 6ip) reshape(real([& 1, 0, 0, 0, 0, 0, & 0, 1, 0, 0, 0, 0, & 0, 0, 1, 0, 0, 0, & 0, 0, 0, 1, 0, 0, & 0, 0, 0, 0, 1, 0, & 0, 0, 0, 0, 0, 1, & 1, 1, 0, 0, 0, 0, & 0, 1, 1, 0, 0, 0, & 1, 0, 1, 0, 0, 0, & 1, 0, 0, 1, 0, 0, & 0, 1, 0, 0, 1, 0, & 0, 0, 1, 0, 0, 1, & 0, 0, 0, 1, 1, 0, & 0, 0, 0, 0, 1, 1, & 0, 0, 0, 1, 0, 1, & 1, 1, 1, 0, 0, 0, & 1, 1, 0, 1, 1, 0, & 0, 1, 1, 0, 1, 1, & 1, 0, 1, 1, 0, 1, & 0, 0, 0, 1, 1, 1, & 1, 1, 1, 1, 1, 1 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 117 (3D 8node 1ip) reshape(real([& 1, 0, 0, 0, 0, 0, 0, 0, & 0, 1, 0, 0, 0, 0, 0, 0, & 0, 0, 1, 0, 0, 0, 0, 0, & 0, 0, 0, 1, 0, 0, 0, 0, & 0, 0, 0, 0, 1, 0, 0, 0, & 0, 0, 0, 0, 0, 1, 0, 0, & 0, 0, 0, 0, 0, 0, 1, 0, & 0, 0, 0, 0, 0, 0, 0, 1 & ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 7 (3D 8node 8ip) reshape(real([& 1, 0, 0, 0, 0, 0, 0, 0, & ! 0, 1, 0, 0, 0, 0, 0, 0, & ! 0, 0, 1, 0, 0, 0, 0, 0, & ! 0, 0, 0, 1, 0, 0, 0, 0, & ! 0, 0, 0, 0, 1, 0, 0, 0, & ! 5 0, 0, 0, 0, 0, 1, 0, 0, & ! 0, 0, 0, 0, 0, 0, 1, 0, & ! 0, 0, 0, 0, 0, 0, 0, 1, & ! 1, 1, 0, 0, 0, 0, 0, 0, & ! 0, 1, 1, 0, 0, 0, 0, 0, & ! 10 0, 0, 1, 1, 0, 0, 0, 0, & ! 1, 0, 0, 1, 0, 0, 0, 0, & ! 1, 0, 0, 0, 1, 0, 0, 0, & ! 0, 1, 0, 0, 0, 1, 0, 0, & ! 0, 0, 1, 0, 0, 0, 1, 0, & ! 15 0, 0, 0, 1, 0, 0, 0, 1, & ! 0, 0, 0, 0, 1, 1, 0, 0, & ! 0, 0, 0, 0, 0, 1, 1, 0, & ! 0, 0, 0, 0, 0, 0, 1, 1, & ! 0, 0, 0, 0, 1, 0, 0, 1, & ! 20 1, 1, 1, 1, 0, 0, 0, 0, & ! 1, 1, 0, 0, 1, 1, 0, 0, & ! 0, 1, 1, 0, 0, 1, 1, 0, & ! 0, 0, 1, 1, 0, 0, 1, 1, & ! 1, 0, 0, 1, 1, 0, 0, 1, & ! 25 0, 0, 0, 0, 1, 1, 1, 1, & ! 1, 1, 1, 1, 1, 1, 1, 1 & ! ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 57 (3D 20node 8ip) reshape(real([& 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, & ! 15 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, & ! 20 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, & ! 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, & ! 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, & ! 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, & ! 25 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, & ! 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 & ! ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) me = me + 1_pInt FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 21 (3D 20node 27ip) reshape(real([& 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 15 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & ! 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & ! 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & ! 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & ! 20 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & ! 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & ! 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & ! 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & ! 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & ! 25 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & ! 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & ! 30 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & ! 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & ! 4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, 0, 0, 0, 0, & ! 1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 35 1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, & ! 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, & ! 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, 0, & ! 0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, & ! 0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, & ! 40 0, 0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, & ! 0, 0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, & ! 1, 0, 0, 4, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 2, 0, 0, 8, & ! 4, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, 2, & ! 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, 0, & ! 45 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, & ! 0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, & ! 0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, & ! 0, 0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, & ! 0, 0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, & ! 50 1, 0, 0, 1, 1, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, 8, & ! 1, 0, 0, 1, 4, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 8, 8, 0, 0, 2, & ! 0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, & ! 0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, & ! 0, 0, 0, 0, 1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, & ! 55 0, 0, 0, 0, 1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, & ! 24, 8, 4, 8, 8, 4, 3, 4, 32,12,12,32, 12, 4, 4,12, 32,12, 4,12, & ! 8,24, 8, 4, 4, 8, 4, 3, 32,32,12,12, 12,12, 4, 4, 12,32,12, 4, & ! 4, 8,24, 8, 3, 4, 8, 4, 12,32,32,12, 4,12,12, 4, 4,12,32,12, & ! 8, 4, 8,24, 4, 3, 4, 8, 12,12,32,32, 4, 4,12,12, 12, 4,12,32, & ! 60 8, 4, 3, 4, 24, 8, 4, 8, 12, 4, 4,12, 32,12,12,32, 32,12, 4,12, & ! 4, 8, 4, 3, 8,24, 8, 4, 12,12, 4, 4, 32,32,12,12, 12,32,12, 4, & ! 3, 4, 8, 4, 4, 8,24, 8, 4,12,12, 4, 12,32,32,12, 4,12,32,12, & ! 4, 3, 4, 8, 8, 4, 8,24, 4, 4,12,12, 12,12,32,32, 12, 4,12,32 & ! ],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))]) ! *** FE_cellface *** me = 0_pInt me = me + 1_pInt FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5) reshape(int([& 2,3, & 3,1, & 1,2 & ],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)]) me = me + 1_pInt FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9) reshape(int([& 2,3, & 4,1, & 3,4, & 1,2 & ],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)]) me = me + 1_pInt FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10) reshape(int([& 1,3,2, & 1,2,4, & 2,3,4, & 1,4,3 & ],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)]) me = me + 1_pInt FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12) reshape(int([& 2,3,7,6, & 4,1,5,8, & 3,4,8,7, & 1,2,6,5, & 5,6,7,8, & 1,4,3,2 & ],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)]) end subroutine mesh_build_FEdata !-------------------------------------------------------------------------------------------------- !> @brief writes out initial cell geometry !-------------------------------------------------------------------------------------------------- subroutine mesh_write_cellGeom use DAMASK_interface, only: & getSolverJobName, & getSolverWorkingDirectoryName use IR_Precision, only: & I4P use Lib_VTK_IO, only: & VTK_ini, & VTK_geo, & VTK_con, & VTK_end #ifdef HDF use IO, only: & HDF5_mappingCells #endif implicit none integer(I4P), dimension(1:mesh_Ncells) :: celltype integer(I4P), dimension(mesh_Ncells*(1_pInt+FE_maxNcellnodesPerCell)) :: cellconnection #ifdef HDF integer(pInt), dimension(mesh_Ncells*FE_maxNcellnodesPerCell) :: cellconnectionHDF5 integer(pInt) :: j2=0_pInt #endif integer(I4P):: error integer(I4P):: g, c, e, CellID, i, j cellID = 0_pInt j = 0_pInt do e = 1_pInt, mesh_NcpElems ! loop over cpElems g = FE_geomtype(mesh_element(2_pInt,e)) ! get geometry type c = FE_celltype(g) ! get cell type do i = 1_pInt,FE_Nips(g) ! loop over ips=cells in this element cellID = cellID + 1_pInt celltype(cellID) = MESH_VTKCELLTYPE(c) cellconnection(j+1_pInt:j+FE_NcellnodesPerCell(c)+1_pInt) & = [FE_NcellnodesPerCell(c),mesh_cell(1:FE_NcellnodesPerCell(c),i,e)-1_pInt] ! number of cellnodes per cell & list of global cellnode IDs belnging to this cell (cellnode counting starts at 0) j = j + FE_NcellnodesPerCell(c) + 1_pInt #ifdef HDF cellconnectionHDF5(j2+1_pInt:j2+FE_NcellnodesPerCell(c)) & = mesh_cell(1:FE_NcellnodesPerCell(c),i,e)-1_pInt j2=j2 + FE_ncellnodesPerCell(c) #endif enddo enddo #ifdef HDF call HDF5_mappingCells(cellconnectionHDF5(1:j2)) #endif error=VTK_ini(output_format = 'ASCII', & title=trim(getSolverJobName())//' cell mesh', & filename = trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'_ipbased.vtk', & mesh_topology = 'UNSTRUCTURED_GRID') !ToDo: check error here error=VTK_geo(NN = int(mesh_Ncellnodes,I4P), & X = mesh_cellnode(1,1:mesh_Ncellnodes), & Y = mesh_cellnode(2,1:mesh_Ncellnodes), & Z = mesh_cellnode(3,1:mesh_Ncellnodes)) !ToDo: check error here error=VTK_con(NC = int(mesh_Ncells,I4P), & connect = cellconnection(1:j), & !ToDo: check error here cell_type = celltype) error=VTK_end() !ToDo: check error here end subroutine mesh_write_cellGeom !-------------------------------------------------------------------------------------------------- !> @brief writes out initial element geometry !-------------------------------------------------------------------------------------------------- subroutine mesh_write_elemGeom use DAMASK_interface, only: & getSolverJobName, & getSolverWorkingDirectoryName use IR_Precision, only: & I4P use Lib_VTK_IO, only: & VTK_ini, & VTK_geo, & VTK_con, & VTK_end implicit none integer(I4P), dimension(1:mesh_NcpElems) :: elemtype integer(I4P), dimension(mesh_NcpElems*(1_pInt+FE_maxNnodes)) :: elementconnection integer(I4P):: error integer(pInt):: e, t, n, i i = 0_pInt do e = 1_pInt, mesh_NcpElems ! loop over cpElems t = mesh_element(2,e) ! get element type elemtype(e) = MESH_VTKELEMTYPE(t) elementconnection(i+1_pInt) = FE_Nnodes(t) ! number of nodes per element do n = 1_pInt,FE_Nnodes(t) elementconnection(i+1_pInt+n) = mesh_element(4_pInt+n,e) - 1_pInt ! global node ID of node that belongs to this element (node counting starts at 0) enddo i = i + 1_pInt + FE_Nnodes(t) enddo error=VTK_ini(output_format = 'ASCII', & title=trim(getSolverJobName())//' element mesh', & filename = trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())//'_nodebased.vtk', & mesh_topology = 'UNSTRUCTURED_GRID') !ToDo: check error here error=VTK_geo(NN = int(mesh_Nnodes,I4P), & X = mesh_node0(1,1:mesh_Nnodes), & Y = mesh_node0(2,1:mesh_Nnodes), & Z = mesh_node0(3,1:mesh_Nnodes)) !ToDo: check error here error=VTK_con(NC = int(mesh_Nelems,I4P), & connect = elementconnection(1:i), & cell_type = elemtype) !ToDo: check error here error =VTK_end() !ToDo: check error here end subroutine mesh_write_elemGeom !-------------------------------------------------------------------------------------------------- !> @brief writes description file for mesh !-------------------------------------------------------------------------------------------------- subroutine mesh_write_meshfile use IO, only: & IO_write_jobFile implicit none integer(pInt), parameter :: fileUnit = 223_pInt integer(pInt) :: e,i,t,g,c,n call IO_write_jobFile(fileUnit,'mesh') write(fileUnit,'(A16,E10.3)') 'unitlength', mesh_unitlength write(fileUnit,'(A16,I10)') 'maxNcellnodes', mesh_maxNcellnodes write(fileUnit,'(A16,I10)') 'maxNips', mesh_maxNips write(fileUnit,'(A16,I10)') 'maxNnodes', mesh_maxNnodes write(fileUnit,'(A16,I10)') 'Nnodes', mesh_Nnodes write(fileUnit,'(A16,I10)') 'NcpElems', mesh_NcpElems do e = 1_pInt,mesh_NcpElems t = mesh_element(2,e) write(fileUnit,'(20(I10))') mesh_element(1_pInt:4_pInt+FE_Nnodes(t),e) enddo write(fileUnit,'(A16,I10)') 'Ncellnodes', mesh_Ncellnodes do n = 1_pInt,mesh_Ncellnodes write(fileUnit,'(2(I10))') mesh_cellnodeParent(1:2,n) enddo write(fileUnit,'(A16,I10)') 'Ncells', mesh_Ncells do e = 1_pInt,mesh_NcpElems t = mesh_element(2,e) g = FE_geomtype(t) c = FE_celltype(g) do i = 1_pInt,FE_Nips(g) write(fileUnit,'(8(I10))') & mesh_cell(1_pInt:FE_NcellnodesPerCell(c),i,e) enddo enddo close(fileUnit) end subroutine mesh_write_meshfile !-------------------------------------------------------------------------------------------------- !> @brief reads mesh description file !-------------------------------------------------------------------------------------------------- integer function mesh_read_meshfile(filepath) implicit none character(len=*), intent(in) :: filepath integer(pInt), parameter :: fileUnit = 223_pInt integer(pInt) :: e,i,t,g,n open(fileUnit,status='old',err=100,iostat=mesh_read_meshfile,action='read',file=filepath) read(fileUnit,'(TR16,E10.3)',err=100,iostat=mesh_read_meshfile) mesh_unitlength read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNcellnodes read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNips read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_maxNnodes read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Nnodes read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_NcpElems if (.not. allocated(mesh_element)) allocate(mesh_element(4_pInt+mesh_maxNnodes,mesh_NcpElems)) mesh_element = 0_pInt do e = 1_pInt,mesh_NcpElems read(fileUnit,'(20(I10))',err=100,iostat=mesh_read_meshfile) & mesh_element(:,e) enddo read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Ncellnodes if (.not. allocated(mesh_cellnodeParent)) allocate(mesh_cellnodeParent(2_pInt,mesh_Ncellnodes)) do n = 1_pInt,mesh_Ncellnodes read(fileUnit,'(2(I10))',err=100,iostat=mesh_read_meshfile) mesh_cellnodeParent(1:2,n) enddo read(fileUnit,'(TR16,I10)',err=100,iostat=mesh_read_meshfile) mesh_Ncells if (.not. allocated(mesh_cell)) allocate(mesh_cell(FE_maxNcellnodesPerCell,mesh_maxNips,mesh_NcpElems)) do e = 1_pInt,mesh_NcpElems t = mesh_element(2,e) g = FE_geomtype(t) do i = 1_pInt,FE_Nips(g) read(fileUnit,'(8(I10))',err=100,iostat=mesh_read_meshfile) mesh_cell(:,i,e) enddo enddo close(fileUnit) mesh_read_meshfile = 0 ! successfully read data 100 continue end function mesh_read_meshfile !-------------------------------------------------------------------------------------------------- !> @brief initializes mesh data for use in post processing !-------------------------------------------------------------------------------------------------- integer function mesh_init_postprocessing(filepath) implicit none character(len=*), intent(in) :: filepath call mesh_build_FEdata mesh_init_postprocessing = mesh_read_meshfile(filepath) end function mesh_init_postprocessing !-------------------------------------------------------------------------------------------------- !> @brief returns global variable mesh_Ncellnodes !-------------------------------------------------------------------------------------------------- integer(pInt) function mesh_get_Ncellnodes() implicit none mesh_get_Ncellnodes = mesh_Ncellnodes end function mesh_get_Ncellnodes !-------------------------------------------------------------------------------------------------- !> @brief returns global variable mesh_unitlength !-------------------------------------------------------------------------------------------------- real(pReal) function mesh_get_unitlength() implicit none mesh_get_unitlength = mesh_unitlength end function mesh_get_unitlength !-------------------------------------------------------------------------------------------------- !> @brief returns node that is located at an ip !> @details return zero if requested ip does not exist or not available (more ips than nodes) !-------------------------------------------------------------------------------------------------- integer(pInt) function mesh_get_nodeAtIP(elemtypeFE,ip) implicit none character(len=*), intent(in) :: elemtypeFE integer(pInt), intent(in) :: ip integer(pInt) :: elemtype integer(pInt) :: geomtype mesh_get_nodeAtIP = 0_pInt elemtype = FE_mapElemtype(elemtypeFE) geomtype = FE_geomtype(elemtype) if (FE_Nips(geomtype) >= ip .and. FE_Nips(geomtype) <= FE_Nnodes(elemtype)) & mesh_get_nodeAtIP = FE_nodesAtIP(1,ip,geomtype) end function mesh_get_nodeAtIP end module mesh