! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !############################################################## !* $Id$ !*************************************** !* Module: CRYSTALLITE * !*************************************** !* contains: * !* - _init * !* - materialpoint_stressAndItsTangent * !* - _partitionDeformation * !* - _updateState * !* - _stressAndItsTangent * !* - _postResults * !*************************************** module crystallite use prec, only: pReal, pInt implicit none private :: crystallite_integrateStateFPI, & crystallite_integrateStateEuler, & crystallite_integrateStateAdaptiveEuler, & crystallite_integrateStateRK4, & crystallite_integrateStateRKCK45, & crystallite_integrateStress, & crystallite_stateJump ! **************************************************************** ! *** General variables for the crystallite calculation *** ! **************************************************************** integer(pInt) crystallite_maxSizePostResults integer(pInt), dimension(:), allocatable :: crystallite_sizePostResults integer(pInt), dimension(:,:), allocatable :: crystallite_sizePostResult character(len=64), dimension(:,:), allocatable :: crystallite_output !< name of each post result output integer(pInt), dimension (:,:,:), allocatable :: & crystallite_symmetryID !< crystallographic symmetry 1=cubic 2=hexagonal, needed in all orientation calcs real(pReal), dimension (:,:,:), allocatable :: & crystallite_dt, & !< requested time increment of each grain crystallite_subdt, & !< substepped time increment of each grain crystallite_subFrac, & !< already calculated fraction of increment crystallite_subStep, & !< size of next integration step crystallite_Temperature, & !< Temp of each grain crystallite_partionedTemperature0, & !< Temp of each grain at start of homog inc crystallite_subTemperature0, & !< Temp of each grain at start of crystallite inc crystallite_dotTemperature !< evolution of Temperature of each grain real(pReal), dimension (:,:,:,:), allocatable :: & crystallite_Tstar_v, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step) crystallite_Tstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc crystallite_partionedTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of homog inc crystallite_subTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of crystallite inc crystallite_orientation, & !< orientation as quaternion crystallite_orientation0, & !< initial orientation as quaternion crystallite_rotation !< grain rotation away from initial orientation as axis-angle (in degrees) real(pReal), dimension (:,:,:,:,:), allocatable :: & crystallite_Fe, & !< current "elastic" def grad (end of converged time step) crystallite_subFe0,& !< "elastic" def grad at start of crystallite inc crystallite_Fp, & !< current plastic def grad (end of converged time step) crystallite_invFp, & !< inverse of current plastic def grad (end of converged time step) crystallite_Fp0, & !< plastic def grad at start of FE inc crystallite_partionedFp0,& !< plastic def grad at start of homog inc crystallite_subFp0,& !< plastic def grad at start of crystallite inc crystallite_F0, & !< def grad at start of FE inc crystallite_partionedF, & !< def grad to be reached at end of homog inc crystallite_partionedF0, & !< def grad at start of homog inc crystallite_subF, & !< def grad to be reached at end of crystallite inc crystallite_subF0, & !< def grad at start of crystallite inc crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step) crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc crystallite_partionedLp0,& !< plastic velocity grad at start of homog inc crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc crystallite_P, & !< 1st Piola-Kirchhoff stress per grain crystallite_disorientation !< disorientation between two neighboring ips (only calculated for single grain IPs) real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: & crystallite_dPdF, & !< current individual dPdF per grain (end of converged time step) crystallite_dPdF0, & !< individual dPdF per grain at start of FE inc crystallite_partioneddPdF0, & !< individual dPdF per grain at start of homog inc crystallite_fallbackdPdF !< dPdF fallback for non-converged grains (elastic prediction) logical, dimension (:,:,:), allocatable :: & crystallite_localPlasticity, & !< indicates this grain to have purely local constitutive law crystallite_requested, & !< flag to request crystallite calculation crystallite_todo, & !< flag to indicate need for further computation crystallite_converged !< convergence flag contains !******************************************************************** ! allocate and initialize per grain variables !******************************************************************** subroutine crystallite_init(Temperature) !*** variables and functions from other modules ***! use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: debug_info, & debug_reset, & debug_level, & debug_crystallite, & debug_levelBasic use math, only: math_I3, & math_EulerToR, & math_inv33, & math_transpose33, & math_mul33xx33, & math_mul33x33 use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use mesh, only: mesh_element, & mesh_NcpElems, & mesh_maxNips, & mesh_maxNipNeighbors use IO use material use lattice, only: lattice_symmetryType use constitutive, only: constitutive_microstructure use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, & constitutive_phenopowerlaw_structure use constitutive_titanmod, only: constitutive_titanmod_label, & constitutive_titanmod_structure use constitutive_dislotwin, only: constitutive_dislotwin_label, & constitutive_dislotwin_structure use constitutive_nonlocal, only: constitutive_nonlocal_label, & constitutive_nonlocal_structure implicit none integer(pInt), parameter :: myFile = 200_pInt, & maxNchunks = 2_pInt !*** input variables ***! real(pReal) Temperature !*** local variables ***! integer(pInt), dimension(1+2*maxNchunks) :: positions integer(pInt) g, & ! grain number i, & ! integration point number e, & ! element number gMax, & ! maximum number of grains iMax, & ! maximum number of integration points eMax, & ! maximum number of elements nMax, & ! maximum number of ip neighbors myNgrains, & ! number of grains in current IP section, & j, & p, & output, & mySize, & myStructure, & ! lattice structure myPhase, & myMat character(len=64) tag character(len=1024) line !$OMP CRITICAL (write2out) write(6,*) write(6,*) '<<<+- crystallite init -+>>>' write(6,*) '$Id$' #include "compilation_info.f90" !$OMP END CRITICAL (write2out) gMax = homogenization_maxNgrains iMax = mesh_maxNips eMax = mesh_NcpElems nMax = mesh_maxNipNeighbors allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal allocate(crystallite_dotTemperature(gMax,iMax,eMax)); crystallite_dotTemperature = 0.0_pReal allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal allocate(crystallite_subFe0(3,3,gMax,iMax,eMax)); crystallite_subFe0 = 0.0_pReal allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal allocate(crystallite_dPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF0 = 0.0_pReal allocate(crystallite_partioneddPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_partioneddPdF0 = 0.0_pReal allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal allocate(crystallite_orientation(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal allocate(crystallite_orientation0(4,gMax,iMax,eMax)); crystallite_orientation0 = 0.0_pReal allocate(crystallite_rotation(4,gMax,iMax,eMax)); crystallite_rotation = 0.0_pReal allocate(crystallite_disorientation(4,nMax,gMax,iMax,eMax)); crystallite_disorientation = 0.0_pReal allocate(crystallite_symmetryID(gMax,iMax,eMax)); crystallite_symmetryID = 0_pInt allocate(crystallite_localPlasticity(gMax,iMax,eMax)); crystallite_localPlasticity = .true. allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false. allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .false. allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true. allocate(crystallite_output(maxval(crystallite_Noutput), & material_Ncrystallite)) ; crystallite_output = '' allocate(crystallite_sizePostResults(material_Ncrystallite)) ; crystallite_sizePostResults = 0_pInt allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), & material_Ncrystallite)) ; crystallite_sizePostResult = 0_pInt if (.not. IO_open_jobFile_stat(myFile,material_localFileExt)) then ! no local material configuration present... call IO_open_file(myFile,material_configFile) ! ...open material.config file endif line = '' section = 0_pInt do while (IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to read(myFile,'(a1024)',END=100) line enddo do ! read thru sections of phase part read(myFile,'(a1024)',END=100) line if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') exit ! stop at next part if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt output = 0_pInt ! reset output counter endif if (section > 0_pInt) then positions = IO_stringPos(line,maxNchunks) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('(output)') output = output + 1_pInt crystallite_output(output,section) = IO_lc(IO_stringValue(line,positions,2_pInt)) end select endif enddo 100 close(myFile) do i = 1_pInt,material_Ncrystallite ! sanity checks enddo do i = 1_pInt,material_Ncrystallite do j = 1_pInt,crystallite_Noutput(i) select case(crystallite_output(j,i)) case('phase','texture','volume') mySize = 1_pInt case('orientation','grainrotation') ! orientation as quaternion, or deviation from initial grain orientation in axis-angle form (angle in degrees) mySize = 4_pInt case('eulerangles') ! Bunge (3-1-3) Euler angles mySize = 3_pInt case('defgrad','f','fe','fp','lp','e','ee','p','firstpiola','1stpiola','s','tstar','secondpiola','2ndpiola') mySize = 9_pInt case('elasmatrix') mySize = 36_pInt case default mySize = 0_pInt end select if (mySize > 0_pInt) then ! any meaningful output found crystallite_sizePostResult(j,i) = mySize crystallite_sizePostResults(i) = crystallite_sizePostResults(i) + mySize endif enddo enddo crystallite_maxSizePostResults = 0_pInt do j = 1_pInt,material_Nmicrostructure if (microstructure_active(j)) & crystallite_maxSizePostResults = max(crystallite_maxSizePostResults,& crystallite_sizePostResults(microstructure_crystallite(j))) enddo ! write description file for crystallite output call IO_write_jobFile(myFile,'outputCrystallite') do p = 1_pInt,material_Ncrystallite write(myFile,*) write(myFile,'(a)') '['//trim(crystallite_name(p))//']' write(myFile,*) do e = 1_pInt,crystallite_Noutput(p) write(myFile,'(a,i4)') trim(crystallite_output(e,p))//char(9),crystallite_sizePostResult(e,p) enddo enddo close(myFile) do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements myNgrains = homogenization_Ngrains(mesh_element(3,e)) ! look up homogenization-->grainCount forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1_pInt:myNgrains) crystallite_Fp0(1:3,1:3,g,i,e) = math_EulerToR(material_EulerAngles(1:3,g,i,e)) ! plastic def gradient reflects init orientation crystallite_F0(1:3,1:3,g,i,e) = math_I3 crystallite_localPlasticity(g,i,e) = phase_localPlasticity(material_phase(g,i,e)) crystallite_Fe(1:3,1:3,g,i,e) = math_transpose33(crystallite_Fp0(1:3,1:3,g,i,e)) crystallite_Fp(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e) crystallite_requested(g,i,e) = .true. endforall enddo crystallite_partionedTemperature0 = Temperature ! isothermal assumption crystallite_partionedFp0 = crystallite_Fp0 crystallite_partionedF0 = crystallite_F0 crystallite_partionedF = crystallite_F0 ! Initialize crystallite_symmetryID(g,i,e) do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do g = 1_pInt,myNgrains myPhase = material_phase(g,i,e) myMat = phase_plasticityInstance(myPhase) select case (phase_plasticity(myPhase)) case (constitutive_phenopowerlaw_label) myStructure = constitutive_phenopowerlaw_structure(myMat) case (constitutive_titanmod_label) myStructure = constitutive_titanmod_structure(myMat) case (constitutive_dislotwin_label) myStructure = constitutive_dislotwin_structure(myMat) case (constitutive_nonlocal_label) myStructure = constitutive_nonlocal_structure(myMat) case default myStructure = -1_pInt ! does this happen for j2 material? end select if (myStructure > 0_pInt) then crystallite_symmetryID(g,i,e) = lattice_symmetryType(myStructure) ! structure = 1(fcc) or 2(bcc) => 1; 3(hex)=>2 endif enddo enddo enddo call crystallite_orientations() crystallite_orientation0 = crystallite_orientation ! Store initial orientations for calculation of grain rotations !$OMP PARALLEL DO PRIVATE(myNgrains) do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do g = 1_pInt,myNgrains call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states enddo enddo enddo !$OMP END PARALLEL DO call crystallite_stressAndItsTangent(.true.,.false.) ! request elastic answers crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback ! *** Output to MARC output file *** if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Temperature: ', shape(crystallite_Temperature) write(6,'(a35,1x,7(i8,1x))') 'crystallite_dotTemperature: ', shape(crystallite_dotTemperature) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fe: ', shape(crystallite_Fe) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp: ', shape(crystallite_Fp) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp: ', shape(crystallite_Lp) write(6,'(a35,1x,7(i8,1x))') 'crystallite_F0: ', shape(crystallite_F0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp0: ', shape(crystallite_Fp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp0: ', shape(crystallite_Lp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF: ', shape(crystallite_partionedF) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTemp0: ', shape(crystallite_partionedTemperature0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF: ', shape(crystallite_subF) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF0: ', shape(crystallite_subF0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFe0: ', shape(crystallite_subFe0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFp0: ', shape(crystallite_subFp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLp0: ', shape(crystallite_subLp0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_P: ', shape(crystallite_P) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v) write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v) write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF: ', shape(crystallite_dPdF) write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF0: ', shape(crystallite_dPdF0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_partioneddPdF0: ', shape(crystallite_partioneddPdF0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF) write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation: ', shape(crystallite_orientation) write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation0: ', shape(crystallite_orientation0) write(6,'(a35,1x,7(i8,1x))') 'crystallite_rotation: ', shape(crystallite_rotation) write(6,'(a35,1x,7(i8,1x))') 'crystallite_disorientation: ', shape(crystallite_disorientation) write(6,'(a35,1x,7(i8,1x))') 'crystallite_dt: ', shape(crystallite_dt) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subdt: ', shape(crystallite_subdt) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFrac: ', shape(crystallite_subFrac) write(6,'(a35,1x,7(i8,1x))') 'crystallite_subStep: ', shape(crystallite_subStep) write(6,'(a35,1x,7(i8,1x))') 'crystallite_localPlasticity: ', shape(crystallite_localPlasticity) write(6,'(a35,1x,7(i8,1x))') 'crystallite_requested: ', shape(crystallite_requested) write(6,'(a35,1x,7(i8,1x))') 'crystallite_todo: ', shape(crystallite_todo) write(6,'(a35,1x,7(i8,1x))') 'crystallite_converged: ', shape(crystallite_converged) write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults) write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult) write(6,*) write(6,*) 'Number of nonlocal grains: ',count(.not. crystallite_localPlasticity) flush(6) !$OMP END CRITICAL (write2out) endif call debug_info call debug_reset end subroutine crystallite_init !******************************************************************** ! calculate stress (P) and tangent (dPdF) for crystallites !******************************************************************** subroutine crystallite_stressAndItsTangent(updateJaco,rate_sensitivity) !*** variables and functions from other modules ***! use numerics, only: subStepMinCryst, & subStepSizeCryst, & stepIncreaseCryst, & pert_Fg, & pert_method, & nCryst, & numerics_integrator, & numerics_integrationMode, & relevantStrain, & analyticJaco use debug, only: debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_CrystalliteLoopDistribution use IO, only: IO_warning use math, only: math_inv33, & math_identity2nd, & math_transpose33, & math_mul33x33, & math_mul66x6, & math_Mandel6to33, & math_Mandel33to6, & math_I3, & math_mul3333xx3333 use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use mesh, only: mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: homogenization_Ngrains, & homogenization_maxNgrains use constitutive, only: constitutive_sizeState, & constitutive_sizeDotState, & constitutive_state, & constitutive_state_backup, & constitutive_subState0, & constitutive_partionedState0, & constitutive_homogenizedC, & constitutive_dotState, & constitutive_dotState_backup, & constitutive_TandItsTangent implicit none !*** input variables ***! logical, intent(in) :: updateJaco, rate_sensitivity ! flag indicating wehther we want to update the Jacobian (stiffness) or not !*** local variables ***! real(pReal) myPert, & ! perturbation with correct sign formerSubStep real(pReal), dimension(3,3) :: invFp, & ! inverse of the plastic deformation gradient Fe_guess, & ! guess for elastic deformation gradient Tstar ! 2nd Piola-Kirchhoff stress tensor real(pReal), dimension(3,3,3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & dPdF_perturbation1, & dPdF_perturbation2 real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & F_backup, & Fp_backup, & InvFp_backup, & Fe_backup, & Lp_backup, & P_backup real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & Tstar_v_backup real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & Temperature_backup integer(pInt) NiterationCrystallite, & ! number of iterations in crystallite loop e, & ! element index i, & ! integration point index g, & ! grain index k, & l, & o, & p, & perturbation , & ! loop counter for forward,backward perturbation mode myNgrains logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & convergenceFlag_backup ! local variables used for calculating analytic Jacobian real(pReal), dimension(3,3):: Fpinv_rate, & FDot_inv, & junk real(pReal), dimension(3,3,3,3) :: dSdFe, & dFedF, & dFedFdot, & dSdF, & dSdFdot, & dFp_invdFdot, & junk2 real(pReal) :: counter ! --+>> INITIALIZE TO STARTING CONDITION <<+-- if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt& .and. debug_e > 0 .and. debug_e <= mesh_NcpElems & .and. debug_i > 0 .and. debug_i <= mesh_maxNips & .and. debug_g > 0 .and. debug_g <= homogenization_maxNgrains) then !$OMP CRITICAL (write2out) write(6,*) write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> crystallite start at el ip g ', debug_e, debug_i, debug_g write(6,'(a,/,12x,f14.9)') '<< CRYST >> Temp0', crystallite_partionedTemperature0(debug_g,debug_i,debug_e) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F0 ', & math_transpose33(crystallite_partionedF0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp0', & math_transpose33(crystallite_partionedFp0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp0', & math_transpose33(crystallite_partionedLp0(1:3,1:3,debug_g,debug_i,debug_e)) !$OMP END CRITICAL (write2out) endif crystallite_subStep = 0.0_pReal do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1_pInt:myNgrains, crystallite_requested(g,i,e)) crystallite_subTemperature0(g,i,e) = crystallite_partionedTemperature0(g,i,e) ! ...temperature constitutive_subState0(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructure crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_partionedFp0(1:3,1:3,g,i,e) ! ...plastic def grad crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_partionedLp0(1:3,1:3,g,i,e) ! ...plastic velocity grad crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness crystallite_subF0(1:3,1:3,g,i,e) = crystallite_partionedF0(1:3,1:3,g,i,e) ! ...def grad crystallite_subTstar0_v(1:6,g,i,e) = crystallite_partionedTstar0_v(1:6,g,i,e) !...2nd PK stress crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF0(1:3,1:3,g,i,e), & math_inv33(crystallite_subFp0(1:3,1:3,g,i,e))) ! only needed later on for stiffness calculation crystallite_subFrac(g,i,e) = 0.0_pReal crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst crystallite_todo(g,i,e) = .true. crystallite_converged(g,i,e) = .false. ! pretend failed step of twice the required size endforall enddo ! --+>> CRYSTALLITE CUTBACK LOOP <<+-- NiterationCrystallite = 0_pInt numerics_integrationMode = 1_pInt do while (any(crystallite_todo(:,:,FEsolving_execELem(1):FEsolving_execElem(2)))) ! cutback loop for crystallites !$OMP PARALLEL DO PRIVATE(myNgrains,formerSubStep) do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed do g = 1,myNgrains ! --- wind forward --- if (crystallite_converged(g,i,e)) then formerSubStep = crystallite_subStep(g,i,e) crystallite_subFrac(g,i,e) = crystallite_subFrac(g,i,e) + crystallite_subStep(g,i,e) !$OMP FLUSH(crystallite_subFrac) crystallite_subStep(g,i,e) = min( 1.0_pReal - crystallite_subFrac(g,i,e), & stepIncreaseCryst * crystallite_subStep(g,i,e) ) !$OMP FLUSH(crystallite_subStep) if (crystallite_subStep(g,i,e) > 0.0_pReal) then crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward... crystallite_subF0(1:3,1:3,g,i,e) = crystallite_subF(1:3,1:3,g,i,e) ! ...def grad !$OMP FLUSH(crystallite_subF0) crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_Fp(1:3,1:3,g,i,e) ! ...plastic def grad crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e)) ! only needed later on for stiffness calculation crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_Lp(1:3,1:3,g,i,e) ! ...plastic velocity gradient constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure crystallite_subTstar0_v(1:6,g,i,e) = crystallite_Tstar_v(1:6,g,i,e) ! ...2nd PK stress crystallite_todo(g,i,e) = .true. !$OMP FLUSH(crystallite_todo) #ifndef _OPENMP if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,f12.8,a,f12.8,a)') '<< CRYST >> winding forward from ', & crystallite_subFrac(g,i,e)-formerSubStep,' to current crystallite_subfrac ', & crystallite_subFrac(g,i,e),' in crystallite_stressAndItsTangent' write(6,*) endif #endif elseif (formerSubStep > 0.0_pReal) then ! this crystallite just converged crystallite_todo(g,i,e) = .false. ! so done here !$OMP FLUSH(crystallite_todo) if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionCrystallite) debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) = & debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) + 1_pInt !$OMP END CRITICAL (distributionCrystallite) endif endif ! --- cutback --- else crystallite_subStep(g,i,e) = subStepSizeCryst * crystallite_subStep(g,i,e) ! cut step in half and restore... !$OMP FLUSH(crystallite_subStep) crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) ! ...temperature crystallite_Fp(1:3,1:3,g,i,e) = crystallite_subFp0(1:3,1:3,g,i,e) ! ...plastic def grad !$OMP FLUSH(crystallite_Fp) crystallite_invFp(1:3,1:3,g,i,e) = math_inv33(crystallite_Fp(1:3,1:3,g,i,e)) !$OMP FLUSH(crystallite_invFp) crystallite_Lp(1:3,1:3,g,i,e) = crystallite_subLp0(1:3,1:3,g,i,e) ! ...plastic velocity grad constitutive_state(g,i,e)%p = constitutive_subState0(g,i,e)%p ! ...microstructure crystallite_Tstar_v(1:6,g,i,e) = crystallite_subTstar0_v(1:6,g,i,e) ! ...2nd PK stress ! cant restore dotState here, since not yet calculated in first cutback after initialization crystallite_todo(g,i,e) = crystallite_subStep(g,i,e) > subStepMinCryst ! still on track or already done (beyond repair) !$OMP FLUSH(crystallite_todo) #ifndef _OPENMP if (crystallite_todo(g,i,e) & .and. iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,f12.8)') '<< CRYST >> cutback step in crystallite_stressAndItsTangent with new crystallite_subStep: ',& crystallite_subStep(g,i,e) write(6,*) endif #endif endif ! --- prepare for integration --- if (crystallite_todo(g,i,e)) then crystallite_subF(1:3,1:3,g,i,e) = crystallite_subF0(1:3,1:3,g,i,e) & + crystallite_subStep(g,i,e) & * (crystallite_partionedF(1:3,1:3,g,i,e) - crystallite_partionedF0(1:3,1:3,g,i,e)) !$OMP FLUSH(crystallite_subF) crystallite_Fe(1:3,1:3,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e)) crystallite_subdt(g,i,e) = crystallite_subStep(g,i,e) * crystallite_dt(g,i,e) crystallite_converged(g,i,e) = .false. ! start out non-converged endif enddo ! grains enddo ! IPs enddo ! elements !$OMP END PARALLEL DO ! --- integrate --- requires fully defined state array (basic + dependent state) if (any(crystallite_todo)) then select case(numerics_integrator(numerics_integrationMode)) case(1_pInt) call crystallite_integrateStateFPI() case(2_pInt) call crystallite_integrateStateEuler() case(3_pInt) call crystallite_integrateStateAdaptiveEuler() case(4_pInt) call crystallite_integrateStateRK4() case(5_pInt) call crystallite_integrateStateRKCK45() end select endif where(.not. crystallite_converged .and. crystallite_subStep > subStepMinCryst) & ! do not try non-converged & fully cutbacked any further crystallite_todo = .true. NiterationCrystallite = NiterationCrystallite + 1_pInt enddo ! cutback loop ! --+>> CHECK FOR NON-CONVERGED CRYSTALLITES <<+-- do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed do g = 1,myNgrains if (.not. crystallite_converged(g,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway) if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> no convergence: respond fully elastic at el ip g ',e,i,g write(6,*) !$OMP END CRITICAL (write2out) endif invFp = math_inv33(crystallite_partionedFp0(1:3,1:3,g,i,e)) Fe_guess = math_mul33x33(crystallite_partionedF(1:3,1:3,g,i,e), invFp) call constitutive_TandItsTangent(Tstar, junk2, Fe_guess,g,i,e) crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(Fe_guess,math_mul33x33(Tstar,transpose(invFp))) endif if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) then !$OMP CRITICAL (write2out) write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> central solution of cryst_StressAndTangent at el ip g ',e,i,g write(6,*) write(6,'(a,/,3(12x,3(f12.4,1x)/))') '<< CRYST >> P / MPa', math_transpose33(crystallite_P(1:3,1:3,g,i,e))/1.0e6_pReal write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp', math_transpose33(crystallite_Fp(1:3,1:3,g,i,e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp', math_transpose33(crystallite_Lp(1:3,1:3,g,i,e)) write(6,*) !$OMP END CRITICAL (write2out) endif enddo enddo enddo ! --+>> STIFFNESS CALCULATION <<+-- if(updateJaco) then ! Jacobian required if (.not. analyticJaco) then ! Calculate Jacobian using perturbations numerics_integrationMode = 2_pInt ! --- BACKUP --- do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains) constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = & constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) ! remember unperturbed, converged state, ... constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = & constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) ! ... dotStates, ... endforall enddo Temperature_backup = crystallite_Temperature ! ... Temperature, ... F_backup = crystallite_subF ! ... and kinematics Fp_backup = crystallite_Fp InvFp_backup = crystallite_invFp Fe_backup = crystallite_Fe Lp_backup = crystallite_Lp Tstar_v_backup = crystallite_Tstar_v P_backup = crystallite_P convergenceFlag_backup = crystallite_converged ! --- CALCULATE STATE AND STRESS FOR PERTURBATION --- dPdF_perturbation1 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment dPdF_perturbation2 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment do perturbation = 1,2 ! forward and backward perturbation if (iand(pert_method,perturbation) > 0_pInt) then ! mask for desired direction myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step do k = 1,3; do l = 1,3 ! ...alter individual components if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL (write2out) write(6,'(a,2(1x,i1),1x,a)') '<< CRYST >> [[[[[[ Stiffness perturbation',k,l,']]]]]]' write(6,*) !$OMP END CRITICAL (write2out) endif ! --- INITIALIZE UNPERTURBED STATE --- select case(numerics_integrator(numerics_integrationMode)) case(1_pInt) ! Fix-point method: restore to last converged state at end of subinc, since this is probably closest to perturbed state do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains) constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = & constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e)) constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = & constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) endforall enddo crystallite_Temperature = Temperature_backup crystallite_Fp = Fp_backup crystallite_invFp = InvFp_backup crystallite_Fe = Fe_backup crystallite_Lp = Lp_backup crystallite_Tstar_v = Tstar_v_backup case(2_pInt,3_pInt) ! explicit Euler methods: nothing to restore (except for F), since we are only doing a stress integration step case(4_pInt,5_pInt) ! explicit Runge-Kutta methods: restore to start of subinc, since we are doing a full integration of state and stress do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains) constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = & constitutive_subState0(g,i,e)%p(1:constitutive_sizeState(g,i,e)) constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = & constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) endforall enddo crystallite_Temperature = crystallite_subTemperature0 crystallite_Fp = crystallite_subFp0 crystallite_Fe = crystallite_subFe0 crystallite_Lp = crystallite_subLp0 crystallite_Tstar_v = crystallite_subTstar0_v end select ! --- PERTURB EITHER FORWARD OR BACKWARD --- crystallite_subF = F_backup crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert crystallite_converged = convergenceFlag_backup crystallite_todo = crystallite_requested .and. crystallite_converged where (crystallite_todo) crystallite_converged = .false. ! start out non-converged select case(numerics_integrator(numerics_integrationMode)) case(1_pInt) call crystallite_integrateStateFPI() case(2_pInt) call crystallite_integrateStateEuler() case(3_pInt) call crystallite_integrateStateAdaptiveEuler() case(4_pInt) call crystallite_integrateStateRK4() case(5_pInt) call crystallite_integrateStateRKCK45() end select do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) select case(perturbation) case(1_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, & crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) & ! converged state warrants stiffness update dPdF_perturbation1(1:3,1:3,k,l,g,i,e) = (crystallite_P(1:3,1:3,g,i,e) - P_backup(1:3,1:3,g,i,e)) / myPert ! tangent dP_ij/dFg_kl case(2_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, & crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) & ! converged state warrants stiffness update dPdF_perturbation2(1:3,1:3,k,l,g,i,e) = (crystallite_P(1:3,1:3,g,i,e) - P_backup(1:3,1:3,g,i,e)) / myPert ! tangent dP_ij/dFg_kl end select enddo enddo; enddo ! k,l component perturbation loop endif enddo ! perturbation direction ! --- STIFFNESS ACCORDING TO PERTURBATION METHOD AND CONVERGENCE --- do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) select case(pert_method) case(1_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, & crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 1: central solution converged crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e) case(2_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, & crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 2: central solution converged crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e) case(3_pInt) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, & crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 3: central solution converged crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.5_pReal* ( dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e) & + dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e)) end select forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, & crystallite_requested(g,i,e) .and. .not. convergenceFlag_backup(g,i,e)) ! for any pertubation mode: if central solution did not converge... crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = crystallite_fallbackdPdF(1:3,1:3,1:3,1:3,g,i,e) ! ...use (elastic) fallback endforall enddo ! --- RESTORE --- do e = FEsolving_execElem(1),FEsolving_execElem(2) myNgrains = homogenization_Ngrains(mesh_element(3,e)) forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains) constitutive_state(g,i,e)%p(1:constitutive_sizeState(g,i,e)) = & constitutive_state_backup(g,i,e)%p(1:constitutive_sizeState(g,i,e)) constitutive_dotState(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) = & constitutive_dotState_backup(g,i,e)%p(1:constitutive_sizeDotState(g,i,e)) endforall enddo crystallite_Temperature = Temperature_backup crystallite_subF = F_backup crystallite_Fp = Fp_backup crystallite_invFp = InvFp_backup crystallite_Fe = Fe_backup crystallite_Lp = Lp_backup crystallite_Tstar_v = Tstar_v_backup crystallite_P = P_backup crystallite_converged = convergenceFlag_backup else ! Calculate Jacobian using analytical expression ! --- CALCULATE ANALYTIC dPdF --- !$OMP PARALLEL DO PRIVATE(dFedF,dSdF,dSdFe,myNgrains) do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed do g = 1_pInt,myNgrains dFedF = 0.0_pReal do p=1_pInt,3_pInt; do o=1_pInt,3_pInt dFedF(p,o,o,1:3) = crystallite_invFp(1:3,p,g,i,e) ! dFe^T_ij/dF_kl = delta_jk * (Fp current^-1)_li enddo; enddo call constitutive_TandItsTangent(junk,dSdFe,crystallite_subFe0(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative dSdF = math_mul3333xx3333(dSdFe,dFedF) ! dS/dF = dS/dFe * dFe/dF do p=1_pInt,3_pInt; do o=1_pInt,3_pInt crystallite_dPdF(1:3,1:3,o,p,g,i,e) = math_mul33x33(math_mul33x33(dFedF(1:3,1:3,o,p),& math_Mandel6to33(crystallite_Tstar_v)),math_transpose33(& crystallite_invFp(1:3,1:3,g,i,e))) & ! dP/dF = dFe/dF * S * Fp^-T... + math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e),& math_mul33x33(dSdF(1:3,1:3,o,p),math_transpose33(crystallite_invFp(1:3,1:3,g,i,e)))) ! + Fe * dS/dF * Fp^-T enddo; enddo enddo; enddo; enddo !$OMP END PARALLEL DO endif if (rate_sensitivity) then !$OMP PARALLEL DO PRIVATE(dFedFdot,dSdFdot,dSdFe,Fpinv_rate,FDot_inv,counter,dFp_invdFdot,myNgrains) do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed myNgrains = homogenization_Ngrains(mesh_element(3,e)) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed do g = 1_pInt,myNgrains Fpinv_rate = math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e),crystallite_Lp(1:3,1:3,g,i,e)) ! dFp^-1 = dFp^-1/dt *dt... dFp may overshoot dF by small ammount as FDot_inv = crystallite_subF(1:3,1:3,g,i,e) - crystallite_F0(1:3,1:3,g,i,e) counter = 0.0_pReal do p=1_pInt,3_pInt; do o=1_pInt,3_pInt if (abs(FDot_inv(o,p)) < relevantStrain) then FDot_inv(o,p) = 0.0_pReal else counter = counter + 1.0_pReal FDot_inv(o,p) = crystallite_dt(g,i,e)/FDot_inv(o,p) endif enddo; enddo if (counter > 0.0_pReal) FDot_inv = FDot_inv/counter do p=1_pInt,3_pInt; do o=1_pInt,3_pInt dFp_invdFdot(o,p,1:3,1:3) = Fpinv_rate(o,p)*FDot_inv enddo; enddo do p=1_pInt,3_pInt; do o=1_pInt,3_pInt dFedFdot(1:3,1:3,o,p) = math_transpose33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), & dFp_invdFdot(1:3,1:3,o,p))) enddo; enddo call constitutive_TandItsTangent(junk,dSdFe,crystallite_subFe0(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative dSdFdot = math_mul3333xx3333(dSdFe,dFedFdot) do p=1_pInt,3_pInt; do o=1_pInt,3_pInt crystallite_dPdF(1:3,1:3,o,p,g,i,e) = crystallite_dPdF(1:3,1:3,o,p,g,i,e) - & (math_mul33x33(math_mul33x33(dFedFdot(1:3,1:3,o,p), & math_Mandel6to33(crystallite_Tstar_v)),math_transpose33( & crystallite_invFp(1:3,1:3,g,i,e))) + & ! dP/dFdot = dFe/dFdot * S * Fp^-T... math_mul33x33(math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e), & math_Mandel6to33(crystallite_Tstar_v)),math_transpose33(dFp_invdFdot(1:3,1:3,o,p))) & ! + Fe * S * dFp^-T/dFdot... + math_mul33x33(crystallite_subFe0(1:3,1:3,g,i,e), & math_mul33x33(dSdFdot(1:3,1:3,o,p),math_transpose33(crystallite_invFp(1:3,1:3,g,i,e))))) ! + Fe * dS/dFdot * Fp^-T enddo; enddo enddo; enddo; enddo !$OMP END PARALLEL DO endif endif ! jacobian calculation end subroutine crystallite_stressAndItsTangent !******************************************************************** ! integrate stress, state and Temperature with ! 4h order explicit Runge Kutta method !******************************************************************** subroutine crystallite_integrateStateRK4(gg,ii,ee) !*** variables and functions from other modules ***! use prec, only: pInt, & pReal use numerics, only: numerics_integrationMode use debug, only: debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_StateLoopDistribution use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use mesh, only: mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: homogenization_Ngrains, & homogenization_maxNgrains use constitutive, only: constitutive_sizeDotState, & constitutive_state, & constitutive_subState0, & constitutive_dotState, & constitutive_RK4dotState, & constitutive_collectDotState, & constitutive_deltaState, & constitutive_collectDeltaState, & constitutive_dotTemperature, & constitutive_microstructure implicit none real(pReal), dimension(4), parameter :: timeStepFraction = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration real(pReal), dimension(4), parameter :: weight = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal] ! weight of slope used for Runge Kutta integration !*** input variables ***! integer(pInt), optional, intent(in):: ee, & ! element index ii, & ! integration point index gg ! grain index !*** output variables ***! !*** local variables ***! integer(pInt) e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop n, & mySizeDotState integer(pInt), dimension(2) :: eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & RK4dotTemperature ! evolution of Temperature of each grain for Runge Kutta integration logical singleRun ! flag indicating computation for single (g,i,e) triple if (present(ee) .and. present(ii) .and. present(gg)) then eIter = ee iIter(1:2,ee) = ii gIter(1:2,ee) = gg singleRun = .true. else eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = .false. endif !$OMP PARALLEL PRIVATE(mySizeDotState) ! --- FIRST RUNGE KUTTA STEP --- RK4dotTemperature = 0.0_pReal ! initialize Runge-Kutta dotTemperature !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains constitutive_RK4dotState(g,i,e)%p = 0.0_pReal ! initialize Runge-Kutta dotState if (crystallite_todo(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION --- do n = 1_pInt,4_pInt ! --- state update --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) if (n < 4) then constitutive_RK4dotState(g,i,e)%p = constitutive_RK4dotState(g,i,e)%p + weight(n)*constitutive_dotState(g,i,e)%p RK4dotTemperature(g,i,e) = RK4dotTemperature(g,i,e) + weight(n)*crystallite_dotTemperature(g,i,e) elseif (n == 4) then constitutive_dotState(g,i,e)%p = (constitutive_RK4dotState(g,i,e)%p + & weight(n)*constitutive_dotState(g,i,e)%p) / 6.0_pReal ! use weighted RKdotState for final integration crystallite_dotTemperature(g,i,e) = (RK4dotTemperature(g,i,e) + weight(n)*crystallite_dotTemperature(g,i,e)) / 6.0_pReal endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) & + constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) * timeStepFraction(n) crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) & + crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) * timeStepFraction(n) if (n == 4) then ! final integration step #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g)& .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then mySizeDotState = constitutive_sizeDotState(g,i,e) write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g write(6,*) write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState) write(6,*) write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState) write(6,*) endif #endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- state jump --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- update dependent states --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states endif enddo; enddo; enddo !$OMP ENDDO ! --- stress integration --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,timeStepFraction(n)) ! fraction of original times step if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- dot state and RK dot state--- if (n < 4) then !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), timeStepFraction(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO endif enddo ! --- SET CONVERGENCE FLAG --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(4,numerics_integrationMode) = & debug_StateLoopDistribution(4,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL ! --- CHECK NONLOCAL CONVERGENCE --- if (.not. singleRun) then ! if not requesting Integration of just a single IP if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged endif endif end subroutine crystallite_integrateStateRK4 !******************************************************************** ! integrate stress, state and Temperature with ! 5th order Runge-Kutta Cash-Karp method with adaptive step size ! (use 5th order solution to advance = "local extrapolation") !******************************************************************** subroutine crystallite_integrateStateRKCK45(gg,ii,ee) !*** variables and functions from other modules ***! use debug, only: debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_StateLoopDistribution use numerics, only: rTol_crystalliteState, & rTol_crystalliteTemperature, & numerics_integrationMode use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use mesh, only: mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: homogenization_Ngrains, & homogenization_maxNgrains use constitutive, only: constitutive_sizeDotState, & constitutive_maxSizeDotState, & constitutive_state, & constitutive_aTolState, & constitutive_subState0, & constitutive_dotState, & constitutive_RKCK45dotState, & constitutive_collectDotState, & constitutive_deltaState, & constitutive_collectDeltaState, & constitutive_dotTemperature, & constitutive_microstructure implicit none !*** input variables ***! integer(pInt), optional, intent(in):: ee, & ! element index ii, & ! integration point index gg ! grain index !*** local variables ***! integer(pInt) e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop n, & ! stage index in integration stage loop mySizeDotState, & ! size of dot State s ! state index integer(pInt), dimension(2) :: eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & RKCK45dotTemperature ! evolution of Temperature of each grain for Runge Kutta Cash Karp integration real(pReal), dimension(5,5) :: a ! coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6) real(pReal), dimension(6) :: b, db ! coefficients in Butcher tableau (used for final integration and error estimate) real(pReal), dimension(5) :: c ! coefficients in Butcher tableau (fractions of original time step in stages 2 to 6) real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & stateResiduum, & ! residuum from evolution in micrstructure relStateResiduum ! relative residuum from evolution in microstructure real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & temperatureResiduum, & ! residuum from evolution in temperature relTemperatureResiduum ! relative residuum from evolution in temperature logical singleRun ! flag indicating computation for single (g,i,e) triple ! --- FILL BUTCHER TABLEAU --- a = 0.0_pReal b = 0.0_pReal db = 0.0_pReal c = 0.0_pReal a(1,1) = 0.2_pReal a(1,2) = 0.075_pReal a(2,2) = 0.225_pReal a(1,3) = 0.3_pReal a(2,3) = -0.9_pReal a(3,3) = 1.2_pReal a(1,4) = -11.0_pReal / 54.0_pReal a(2,4) = 2.5_pReal a(3,4) = -70.0_pReal / 27.0_pReal a(4,4) = 35.0_pReal / 27.0_pReal a(1,5) = 1631.0_pReal / 55296.0_pReal a(2,5) = 175.0_pReal / 512.0_pReal a(3,5) = 575.0_pReal / 13824.0_pReal a(4,5) = 44275.0_pReal / 110592.0_pReal a(5,5) = 253.0_pReal / 4096.0_pReal b(1) = 37.0_pReal / 378.0_pReal b(3) = 250.0_pReal / 621.0_pReal b(4) = 125.0_pReal / 594.0_pReal b(6) = 512.0_pReal / 1771.0_pReal db(1) = b(1) - 2825.0_pReal / 27648.0_pReal db(3) = b(3) - 18575.0_pReal / 48384.0_pReal db(4) = b(4) - 13525.0_pReal / 55296.0_pReal db(5) = - 277.0_pReal / 14336.0_pReal db(6) = b(6) - 0.25_pReal c(1) = 0.2_pReal c(2) = 0.3_pReal c(3) = 0.6_pReal c(4) = 1.0_pReal c(5) = 0.875_pReal ! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP --- if (present(ee) .and. present(ii) .and. present(gg)) then eIter = ee iIter(1:2,ee) = ii gIter(1:2,ee) = gg singleRun = .true. else eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = .false. endif !$OMP PARALLEL PRIVATE(mySizeDotState) ! --- FIRST RUNGE KUTTA STEP --- #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then write(6,'(a,1x,i1)') '<< CRYST >> RUNGE KUTTA STEP',1 endif #endif !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- SECOND TO SIXTH RUNGE KUTTA STEP --- do n = 1_pInt,5_pInt ! --- state update --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) constitutive_RKCK45dotState(n,g,i,e)%p = constitutive_dotState(g,i,e)%p ! store Runge-Kutta dotState RKCK45dotTemperature(n,g,i,e) = crystallite_dotTemperature(g,i,e) ! store Runge-Kutta dotTemperature endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if (n == 1) then ! NEED TO DO THE ADDITION IN THIS LENGTHY WAY BECAUSE OF PARALLELIZATION (CAN'T USE A REDUCTION CLAUSE ON A POINTER OR USER DEFINED TYPE) constitutive_dotState(g,i,e)%p = a(1,1) * constitutive_RKCK45dotState(1,g,i,e)%p crystallite_dotTemperature(g,i,e) = a(1,1) * RKCK45dotTemperature(1,g,i,e) elseif (n == 2) then constitutive_dotState(g,i,e)%p = a(1,2) * constitutive_RKCK45dotState(1,g,i,e)%p & + a(2,2) * constitutive_RKCK45dotState(2,g,i,e)%p crystallite_dotTemperature(g,i,e) = a(1,2) * RKCK45dotTemperature(1,g,i,e) & + a(2,2) * RKCK45dotTemperature(2,g,i,e) elseif (n == 3) then constitutive_dotState(g,i,e)%p = a(1,3) * constitutive_RKCK45dotState(1,g,i,e)%p & + a(2,3) * constitutive_RKCK45dotState(2,g,i,e)%p & + a(3,3) * constitutive_RKCK45dotState(3,g,i,e)%p crystallite_dotTemperature(g,i,e) = a(1,3) * RKCK45dotTemperature(1,g,i,e) & + a(2,3) * RKCK45dotTemperature(2,g,i,e) & + a(3,3) * RKCK45dotTemperature(3,g,i,e) elseif (n == 4) then constitutive_dotState(g,i,e)%p = a(1,4) * constitutive_RKCK45dotState(1,g,i,e)%p & + a(2,4) * constitutive_RKCK45dotState(2,g,i,e)%p & + a(3,4) * constitutive_RKCK45dotState(3,g,i,e)%p & + a(4,4) * constitutive_RKCK45dotState(4,g,i,e)%p crystallite_dotTemperature(g,i,e) = a(1,4) * RKCK45dotTemperature(1,g,i,e) & + a(2,4) * RKCK45dotTemperature(2,g,i,e) & + a(3,4) * RKCK45dotTemperature(3,g,i,e) & + a(4,4) * RKCK45dotTemperature(4,g,i,e) elseif (n == 5) then constitutive_dotState(g,i,e)%p = a(1,5) * constitutive_RKCK45dotState(1,g,i,e)%p & + a(2,5) * constitutive_RKCK45dotState(2,g,i,e)%p & + a(3,5) * constitutive_RKCK45dotState(3,g,i,e)%p & + a(4,5) * constitutive_RKCK45dotState(4,g,i,e)%p & + a(5,5) * constitutive_RKCK45dotState(5,g,i,e)%p crystallite_dotTemperature(g,i,e) = a(1,5) * RKCK45dotTemperature(1,g,i,e) & + a(2,5) * RKCK45dotTemperature(2,g,i,e) & + a(3,5) * RKCK45dotTemperature(3,g,i,e) & + a(4,5) * RKCK45dotTemperature(4,g,i,e) & + a(5,5) * RKCK45dotTemperature(5,g,i,e) endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) & + constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) & + crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) endif enddo; enddo; enddo !$OMP ENDDO ! --- state jump --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- update dependent states --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states endif enddo; enddo; enddo !$OMP ENDDO ! --- stress integration --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,c(n)) ! fraction of original time step if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- dot state and RK dot state--- #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',n+1_pInt endif #endif !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), c(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO enddo ! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE AND TEMPERATURE --- relStateResiduum = 0.0_pReal relTemperatureResiduum = 0.0_pReal !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) constitutive_RKCK45dotState(6,g,i,e)%p = constitutive_dotState(g,i,e)%p ! store Runge-Kutta dotState RKCK45dotTemperature(6,g,i,e) = crystallite_dotTemperature(g,i,e) ! store Runge-Kutta dotTemperature endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) ! --- absolute residuum in state and temperature --- ! NEED TO DO THE ADDITION IN THIS LENGTHY WAY BECAUSE OF PARALLELIZATION ! CAN'T USE A REDUCTION CLAUSE ON A POINTER OR USER DEFINED TYPE stateResiduum(1:mySizeDotState,g,i,e) = & ( db(1) * constitutive_RKCK45dotState(1,g,i,e)%p(1:mySizeDotState) & + db(2) * constitutive_RKCK45dotState(2,g,i,e)%p(1:mySizeDotState) & + db(3) * constitutive_RKCK45dotState(3,g,i,e)%p(1:mySizeDotState) & + db(4) * constitutive_RKCK45dotState(4,g,i,e)%p(1:mySizeDotState) & + db(5) * constitutive_RKCK45dotState(5,g,i,e)%p(1:mySizeDotState) & + db(6) * constitutive_RKCK45dotState(6,g,i,e)%p(1:mySizeDotState)) & * crystallite_subdt(g,i,e) temperatureResiduum(g,i,e) = ( db(1) * RKCK45dotTemperature(1,g,i,e) & + db(2) * RKCK45dotTemperature(2,g,i,e) & + db(3) * RKCK45dotTemperature(3,g,i,e) & + db(4) * RKCK45dotTemperature(4,g,i,e) & + db(5) * RKCK45dotTemperature(5,g,i,e) & + db(6) * RKCK45dotTemperature(6,g,i,e)) & * crystallite_subdt(g,i,e) ! --- dot state and dot temperature --- constitutive_dotState(g,i,e)%p = b(1) * constitutive_RKCK45dotState(1,g,i,e)%p & + b(2) * constitutive_RKCK45dotState(2,g,i,e)%p & + b(3) * constitutive_RKCK45dotState(3,g,i,e)%p & + b(4) * constitutive_RKCK45dotState(4,g,i,e)%p & + b(5) * constitutive_RKCK45dotState(5,g,i,e)%p & + b(6) * constitutive_RKCK45dotState(6,g,i,e)%p crystallite_dotTemperature(g,i,e) = b(1) * RKCK45dotTemperature(1,g,i,e) & + b(2) * RKCK45dotTemperature(2,g,i,e) & + b(3) * RKCK45dotTemperature(3,g,i,e) & + b(4) * RKCK45dotTemperature(4,g,i,e) & + b(5) * RKCK45dotTemperature(5,g,i,e) & + b(6) * RKCK45dotTemperature(6,g,i,e) endif enddo; enddo; enddo !$OMP ENDDO ! --- state and temperature update --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) & + constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) & + crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) endif enddo; enddo; enddo !$OMP ENDDO ! --- relative residui and state convergence --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) forall (s = 1_pInt:mySizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) & relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / constitutive_state(g,i,e)%p(s) if (crystallite_Temperature(g,i,e) > 0) & relTemperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) / crystallite_Temperature(g,i,e) !$OMP FLUSH(relStateResiduum,relTemperatureResiduum) crystallite_todo(g,i,e) = & ( all( abs(relStateResiduum(:,g,i,e)) < rTol_crystalliteState & .or. abs(stateResiduum(1:mySizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState) ) & .and. abs(relTemperatureResiduum(g,i,e)) < rTol_crystalliteTemperature ) #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt& .and. ((e == debug_e .and. i == debug_i .and. g == debug_g)& .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i3,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g write(6,*) write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> absolute residuum tolerance', & stateResiduum(1:mySizeDotState,g,i,e) / constitutive_aTolState(g,i,e)%p(1:mySizeDotState) write(6,*) write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> relative residuum tolerance', & relStateResiduum(1:mySizeDotState,g,i,e) / rTol_crystalliteState write(6,*) write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState) write(6,*) write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState) write(6,*) endif #endif endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE JUMP --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE DEPENDENT STATES IF RESIDUUM BELOW TOLERANCE --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states endif enddo; enddo; enddo !$OMP ENDDO ! --- FINAL STRESS INTEGRATION STEP IF RESIDUUM BELOW TOLERANCE --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- SET CONVERGENCE FLAG --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(6,numerics_integrationMode) = & debug_StateLoopDistribution(6,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL ! --- nonlocal convergence check --- #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged' write(6,*) endif #endif if (.not. singleRun) then ! if not requesting Integration of just a single IP if ( any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged endif endif end subroutine crystallite_integrateStateRKCK45 !******************************************************************** ! integrate stress, state and Temperature with ! 1nd order Euler method with adaptive step size !******************************************************************** subroutine crystallite_integrateStateAdaptiveEuler(gg,ii,ee) !*** variables and functions from other modules ***! use debug, only: debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_StateLoopDistribution use numerics, only: rTol_crystalliteState, & rTol_crystalliteTemperature, & numerics_integrationMode use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use mesh, only: mesh_element, & mesh_NcpElems, & mesh_maxNips use material, only: homogenization_Ngrains, & homogenization_maxNgrains use constitutive, only: constitutive_sizeDotState, & constitutive_maxSizeDotState, & constitutive_state, & constitutive_aTolState, & constitutive_subState0, & constitutive_dotState, & constitutive_collectDotState, & constitutive_dotTemperature, & constitutive_microstructure implicit none !*** input variables ***! integer(pInt), optional, intent(in):: ee, & ! element index ii, & ! integration point index gg ! grain index !*** local variables ***! integer(pInt) e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop mySizeDotState, & ! size of dot State s ! state index integer(pInt), dimension(2) :: eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & stateResiduum, & ! residuum from evolution in micrstructure relStateResiduum ! relative residuum from evolution in microstructure real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: & temperatureResiduum, & ! residuum from evolution in temperature relTemperatureResiduum ! relative residuum from evolution in temperature logical singleRun ! flag indicating computation for single (g,i,e) triple ! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP --- if (present(ee) .and. present(ii) .and. present(gg)) then eIter = ee iIter(1:2,ee) = ii gIter(1:2,ee) = gg singleRun = .true. else eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = .false. endif !$OMP PARALLEL PRIVATE(mySizeDotState) if (numerics_integrationMode == 1_pInt) then ! --- DOT STATE AND TEMPERATURE (EULER INTEGRATION) --- stateResiduum = 0.0_pReal !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE UPDATE (EULER INTEGRATION) --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) stateResiduum(1:mySizeDotState,g,i,e) = - 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature temperatureResiduum(g,i,e) = - 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) & + constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) & + crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE JUMP --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states endif enddo; enddo; enddo !$OMP ENDDO endif ! --- STRESS INTEGRATION (EULER INTEGRATION) --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO if (numerics_integrationMode == 1_pInt) then ! --- DOT STATE AND TEMPERATURE (HEUN METHOD) --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p /= constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e) /= crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- ERROR ESTIMATE FOR STATE AND TEMPERATURE (HEUN METHOD) --- relStateResiduum = 0.0_pReal relTemperatureResiduum = 0.0_pReal !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) ! --- contribution of heun step to absolute residui --- stateResiduum(1:mySizeDotState,g,i,e) = stateResiduum(1:mySizeDotState,g,i,e) & + 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature temperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) & + 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) !$OMP FLUSH(stateResiduum,temperatureResiduum) ! --- relative residui --- forall (s = 1_pInt:mySizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) & relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / constitutive_state(g,i,e)%p(s) if (crystallite_Temperature(g,i,e) > 0_pInt) & relTemperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) / crystallite_Temperature(g,i,e) !$OMP FLUSH(relStateResiduum,relTemperatureResiduum) #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g)& .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> updateState at el ip g ',e,i,g write(6,*) write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> absolute residuum tolerance', & stateResiduum(1:mySizeDotState,g,i,e) / constitutive_aTolState(g,i,e)%p(1:mySizeDotState) write(6,*) write(6,'(a,/,(12x,12(f12.1,1x)))') '<< CRYST >> relative residuum tolerance', & relStateResiduum(1:mySizeDotState,g,i,e) / rTol_crystalliteState write(6,*) write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState) & - 2.0_pReal * stateResiduum(1:mySizeDotState,g,i,e) / crystallite_subdt(g,i,e) ! calculate former dotstate from higher order solution and state residuum write(6,*) write(6,'(a,/,(12x,12(e12.5,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState) write(6,*) endif #endif ! --- converged ? --- if ( all( abs(relStateResiduum(:,g,i,e)) < rTol_crystalliteState & .or. abs(stateResiduum(1:mySizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState)) & .and. abs(relTemperatureResiduum(g,i,e)) < rTol_crystalliteTemperature ) then crystallite_converged(g,i,e) = .true. ! ... converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(2,numerics_integrationMode) = & debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif endif enddo; enddo; enddo !$OMP ENDDO elseif (numerics_integrationMode > 1) then ! stiffness calculation !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_converged(g,i,e) = .true. ! ... converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(2,numerics_integrationMode) = & debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif enddo; enddo; enddo !$OMP ENDDO endif !$OMP END PARALLEL ! --- NONLOCAL CONVERGENCE CHECK --- #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged' write(6,*) endif #endif if (.not. singleRun) then ! if not requesting Integration of just a single IP if ( any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged endif endif end subroutine crystallite_integrateStateAdaptiveEuler !******************************************************************** ! integrate stress, state and Temperature with ! 1st order explicit Euler method !******************************************************************** subroutine crystallite_integrateStateEuler(gg,ii,ee) !*** variables and functions from other modules ***! use numerics, only: numerics_integrationMode use debug, only: debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_StateLoopDistribution use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use mesh, only: mesh_element, & mesh_NcpElems use material, only: homogenization_Ngrains use constitutive, only: constitutive_sizeDotState, & constitutive_state, & constitutive_subState0, & constitutive_dotState, & constitutive_collectDotState, & constitutive_dotTemperature, & constitutive_microstructure implicit none !*** input variables ***! integer(pInt), optional, intent(in):: ee, & ! element index ii, & ! integration point index gg ! grain index !*** local variables ***! integer(pInt) e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop mySizeDotState integer(pInt), dimension(2) :: eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration logical singleRun ! flag indicating computation for single (g,i,e) triple if (present(ee) .and. present(ii) .and. present(gg)) then eIter = ee iIter(1:2,ee) = ii gIter(1:2,ee) = gg singleRun = .true. else eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo singleRun = .false. endif !$OMP PARALLEL if (numerics_integrationMode == 1_pInt) then ! --- DOT STATE AND TEMPERATURE --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) else ! if broken local... crystallite_todo(g,i,e) = .false. ! ... skip this one next time endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE STATE AND TEMPERATURE --- !$OMP DO PRIVATE(mySizeDotState) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) & + constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) & + crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g write(6,*) write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState) write(6,*) write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState) write(6,*) endif #endif endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE JUMP --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE DEPENDENT STATES --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states endif enddo; enddo; enddo !$OMP ENDDO endif ! --- STRESS INTEGRATION --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO ! --- SET CONVERGENCE FLAG --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(1,numerics_integrationMode) = & debug_StateLoopDistribution(1,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL ! --- CHECK NON-LOCAL CONVERGENCE --- if (.not. singleRun) then ! if not requesting Integration of just a single IP if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged endif endif end subroutine crystallite_integrateStateEuler !******************************************************************** ! integrate stress, state and Temperature with ! adaptive 1st order explicit Euler method ! using Fixed Point Iteration to adapt the stepsize !******************************************************************** subroutine crystallite_integrateStateFPI(gg,ii,ee) !*** variables and functions from other modules ***! use debug, only: debug_e, & debug_i, & debug_g, & debug_level,& debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_StateLoopDistribution use numerics, only: nState, & numerics_integrationMode, & rTol_crystalliteState, & rTol_crystalliteTemperature use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use mesh, only: mesh_element, & mesh_NcpElems use material, only: homogenization_Ngrains use constitutive, only: constitutive_subState0, & constitutive_state, & constitutive_sizeDotState, & constitutive_maxSizeDotState, & constitutive_dotState, & constitutive_collectDotState, & constitutive_dotTemperature, & constitutive_microstructure, & constitutive_previousDotState, & constitutive_previousDotState2, & constitutive_aTolState implicit none !*** input variables ***! integer(pInt), optional, intent(in):: ee, & ! element index ii, & ! integration point index gg ! grain index !*** output variables ***! !*** local variables ***! integer(pInt) NiterationState, & ! number of iterations in state loop e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop mySizeDotState integer(pInt), dimension(2) :: eIter ! bounds for element iteration integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration gIter ! bounds for grain iteration real(pReal) dot_prod12, & dot_prod22, & stateDamper, & ! damper for integration of state temperatureResiduum real(pReal), dimension(constitutive_maxSizeDotState) :: & stateResiduum, & tempState logical singleRun ! flag indicating computation for single (g,i,e) triple singleRun = present(ee) .and. present(ii) .and. present(gg) if (singleRun) then eIter = ee iIter(1:2,ee) = ii gIter(1:2,ee) = gg else eIter = FEsolving_execElem(1:2) do e = eIter(1),eIter(2) iIter(1:2,e) = FEsolving_execIP(1:2,e) gIter(1:2,e) = [1_pInt,homogenization_Ngrains(mesh_element(3,e))] enddo endif ! --+>> PREGUESS FOR STATE <<+-- !$OMP PARALLEL !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains constitutive_previousDotState(g,i,e)%p = 0.0_pReal constitutive_previousDotState2(g,i,e)%p = 0.0_pReal enddo; enddo; enddo !$OMP ENDDO ! --- DOT STATES --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken is a non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals done (and broken) !$OMP END CRITICAL (checkTodo) else ! broken one was local... crystallite_todo(g,i,e) = .false. ! ... done (and broken) endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE STATE AND TEMPERATURE --- !$OMP DO PRIVATE(mySizeDotState) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e)) then mySizeDotState = constitutive_sizeDotState(g,i,e) constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) & + constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) & + crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL ! --+>> STATE LOOP <<+-- NiterationState = 0_pInt do while (any(crystallite_todo .and. .not. crystallite_converged) .and. NiterationState < nState ) ! convergence loop for crystallite NiterationState = NiterationState + 1_pInt !$OMP PARALLEL ! --- UPDATE DEPENDENT STATES --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states endif constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p ! remember previous dotState constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p ! remember current dotState enddo; enddo; enddo !$OMP ENDDO ! --- STRESS INTEGRATION --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e) if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ... then all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP CRITICAL (write2out) if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after stress integration' endif !$OMP END CRITICAL (write2out) ! --- DOT STATE AND TEMPERATURE --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Fe, crystallite_Fp, & crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), crystallite_orientation, g,i,e) crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Temperature(g,i,e),g,i,e) endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState .or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature crystallite_todo(g,i,e) = .false. ! ... skip me next time if (.not. crystallite_localPlasticity(g,i,e)) then ! if me is non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif endif enddo; enddo; enddo !$OMP ENDDO ! --- UPDATE STATE AND TEMPERATURE --- !$OMP DO PRIVATE(dot_prod12,dot_prod22,statedamper,mySizeDotState,stateResiduum,temperatureResiduum,tempState) do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then ! --- state damper --- dot_prod12 = dot_product( constitutive_dotState(g,i,e)%p - constitutive_previousDotState(g,i,e)%p, & constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p ) dot_prod22 = dot_product( constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p, & constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p ) if ( dot_prod22 > 0.0_pReal & .and. ( dot_prod12 < 0.0_pReal & .or. dot_product(constitutive_dotState(g,i,e)%p, constitutive_previousDotState(g,i,e)%p) < 0.0_pReal) ) then statedamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22) else statedamper = 1.0_pReal endif ! --- get residui --- mySizeDotState = constitutive_sizeDotState(g,i,e) stateResiduum(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) & - constitutive_subState0(g,i,e)%p(1:mySizeDotState) & - (constitutive_dotState(g,i,e)%p * statedamper & + constitutive_previousDotState(g,i,e)%p * (1.0_pReal - statedamper)) * crystallite_subdt(g,i,e) temperatureResiduum = crystallite_Temperature(g,i,e) & - crystallite_subTemperature0(g,i,e) & - crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) ! --- correct state and temperature with residuum --- tempState(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) - stateResiduum(1:mySizeDotState) ! need to copy to local variable, since we cant flush a pointer in openmp crystallite_Temperature(g,i,e) = crystallite_Temperature(g,i,e) - temperatureResiduum !$OMP FLUSH(crystallite_Temperature) #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g write(6,*) write(6,'(a,f6.1)') '<< CRYST >> statedamper ',statedamper write(6,*) write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> state residuum',stateResiduum(1:mySizeDotState) write(6,*) write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state',tempState(1:mySizeDotState) write(6,*) endif #endif ! --- store corrected dotState --- (cannot do this before state update, because not sure how to flush pointers in openmp) constitutive_dotState(g,i,e)%p = constitutive_dotState(g,i,e)%p * statedamper & + constitutive_previousDotState(g,i,e)%p * (1.0_pReal - statedamper) ! --- converged ? --- if ( all( abs(stateResiduum(1:mySizeDotState)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState) & .or. abs(stateResiduum(1:mySizeDotState)) < rTol_crystalliteState & * abs(tempState(1:mySizeDotState)) ) & .and. (abs(temperatureResiduum) < rTol_crystalliteTemperature * crystallite_Temperature(g,i,e) & .or. crystallite_Temperature(g,i,e) == 0.0_pReal) ) then crystallite_converged(g,i,e) = .true. ! ... converged per definitionem if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionState) debug_StateLoopDistribution(NiterationState,numerics_integrationMode) = & debug_StateLoopDistribution(NiterationState,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionState) endif endif constitutive_state(g,i,e)%p(1:mySizeDotState) = tempState(1:mySizeDotState) ! copy local backup to global pointer endif enddo; enddo; enddo !$OMP ENDDO ! --- STATE JUMP --- !$OMP DO do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains if (crystallite_todo(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged and still alive... crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e) if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken crystallite_converged(g,i,e) = .false. if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL(write2out) write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), & ' grains converged after state integration no. ', NiterationState write(6,*) !$OMP END CRITICAL(write2out) endif ! --- NON-LOCAL CONVERGENCE CHECK --- if (.not. singleRun) then ! if not requesting Integration of just a single IP if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)... crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged endif endif if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then !$OMP CRITICAL(write2out) write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_converged(:,:,:)),' grains converged after non-local check' write(6,'(a,i8,a,i2)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after state integration no. ',& NiterationState write(6,*) !$OMP END CRITICAL(write2out) endif enddo ! crystallite convergence loop end subroutine crystallite_integrateStateFPI !*********************************************************** !* calculates a jump in the state according to the current * !* state and the current stress * !*********************************************************** function crystallite_stateJump(g,i,e) !*** variables and functions from other modules ***! use debug, only: debug_level, & debug_crystallite, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use mesh, only: mesh_element, & mesh_NcpElems use material, only: homogenization_Ngrains use constitutive, only: constitutive_sizeDotState, & constitutive_state, & constitutive_deltaState, & constitutive_collectDeltaState, & constitutive_microstructure implicit none !*** input variables ***! integer(pInt), intent(in):: e, & ! element index i, & ! integration point index g ! grain index !*** output variables ***! logical crystallite_stateJump !*** local variables ***! integer(pInt) mySizeDotState crystallite_stateJump = .false. call constitutive_collectDeltaState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Temperature(g,i,e), g,i,e) mySizeDotState = constitutive_sizeDotState(g,i,e) if (any(constitutive_deltaState(g,i,e)%p(1:mySizeDotState) /= constitutive_deltaState(g,i,e)%p(1:mySizeDotState))) then return endif constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_state(g,i,e)%p(1:mySizeDotState) & + constitutive_deltaState(g,i,e)%p(1:mySizeDotState) #ifndef _OPENMP if (any(constitutive_deltaState(g,i,e)%p(1:mySizeDotState) /= 0.0_pReal) & .and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> update state at el ip g ',e,i,g write(6,*) write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> deltaState', constitutive_deltaState(g,i,e)%p(1:mySizeDotState) write(6,*) write(6,'(a,/,(12x,12(e12.6,1x)))') '<< CRYST >> new state', constitutive_state(g,i,e)%p(1:mySizeDotState) write(6,*) endif #endif call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states crystallite_stateJump = .true. end function crystallite_stateJump !*********************************************************************** !*** calculation of stress (P) with time integration *** !*** based on a residuum in Lp and intermediate *** !*** acceleration of the Newton-Raphson correction *** !*********************************************************************** function crystallite_integrateStress(& g,& ! grain number i,& ! integration point number e,& ! element number timeFraction & ) use prec, only: pLongInt use numerics, only: nStress, & aTol_crystalliteStress, & rTol_crystalliteStress, & iJacoLpresiduum, & numerics_integrationMode use debug, only: debug_level, & debug_crystallite, & debug_levelBasic, & debug_levelExtensive, & debug_levelSelective, & debug_e, & debug_i, & debug_g, & debug_cumLpCalls, & debug_cumLpTicks, & debug_StressLoopDistribution use constitutive, only: constitutive_LpAndItsTangent, & constitutive_TandItsTangent, & constitutive_homogenizedC use math, only: math_mul33x33, & math_mul33xx33, & math_mul66x6, & math_mul99x99, & math_transpose33, & math_inv33, & math_invert33, & math_invert, & math_det33, & math_norm33, & math_I3, & math_identity2nd, & math_Mandel66to3333, & math_Mandel6to33, & math_Mandel33to6, & math_Plain3333to99, & math_Plain33to9, & math_Plain9to33 implicit none !*** input variables ***! integer(pInt), intent(in):: e, & ! element index i, & ! integration point index g ! grain index real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep !*** output variables ***! logical crystallite_integrateStress ! flag indicating if integration suceeded !*** local variables ***! real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep Fp_current, & ! plastic deformation gradient at start of timestep Fp_new, & ! plastic deformation gradient at end of timestep Fe_new, & ! elastic deformation gradient at end of timestep invFp_new, & ! inverse of Fp_new invFp_current, & ! inverse of Fp_current Lpguess, & ! current guess for plastic velocity gradient Lpguess_old, & ! known last good guess for plastic velocity gradient Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law residuum, & ! current residuum of plastic velocity gradient residuum_old, & ! last residuum of plastic velocity gradient deltaLp, & ! direction of next guess Tstar,& ! 2nd Piola-Kirchhoff Stress A,& B, & Fe ! elastic deformation gradient real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation real(pReal), dimension(9):: work ! needed for matrix inversion by LAPACK integer(pInt), dimension(9) :: ipiv ! needed for matrix inversion by LAPACK real(pReal), dimension(9,9) :: dLp_dT_constitutive, & ! partial derivative of plastic velocity gradient calculated by constitutive law dT_dFe_constitutive, & ! partial derivative of 2nd Piola-Kirchhoff stress calculated by constitutive law dFe_dLp, & ! partial derivative of elastic deformation gradient dR_dLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme) dR_dLp2 ! working copy of dRdLp real(pReal), dimension(3,3,3,3):: dT_dFe3333, & ! partial derivative of 2nd Piola-Kirchhoff stress dFe_dLp3333 ! partial derivative of elastic deformation gradient real(pReal) p_hydro, & ! volumetric part of 2nd Piola-Kirchhoff Stress det, & ! determinant steplength0, & steplength, & dt, & ! time increment aTol logical error ! flag indicating an error integer(pInt) NiterationStress, & ! number of stress integrations ierr, & ! error indicator for LAPACK k, & l, & m, & n, & o, & p, & jacoCounter ! counter to check for Jacobian update integer(pLongInt) tick, & tock, & tickrate, & maxticks !* be pessimistic crystallite_integrateStress = .false. #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress at el ip g ',e,i,g endif #endif !* only integrate over fraction of timestep? if (present(timeFraction)) then dt = crystallite_subdt(g,i,e) * timeFraction Fg_new = crystallite_subF0(1:3,1:3,g,i,e) + (crystallite_subF(1:3,1:3,g,i,e) - crystallite_subF0(1:3,1:3,g,i,e)) * timeFraction else dt = crystallite_subdt(g,i,e) Fg_new = crystallite_subF(1:3,1:3,g,i,e) endif !* feed local variables Fp_current = crystallite_subFp0(1:3,1:3,g,i,e) ! "Fp_current" is only used as temp var here... Lpguess_old = crystallite_Lp(1:3,1:3,g,i,e) ! consider present Lp good (i.e. worth remembering) ... Lpguess = crystallite_Lp(1:3,1:3,g,i,e) ! ... and take it as first guess !* inversion of Fp_current... invFp_current = math_inv33(Fp_current) if (all(invFp_current == 0.0_pReal)) then ! ... failed? #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fp_current at el ip g ',e,i,g if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) then write(6,*) write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',math_transpose33(Fp_current(1:3,1:3)) endif endif #endif return endif A = math_mul33x33(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp !* start LpLoop with normal step length NiterationStress = 0_pInt jacoCounter = 0_pInt steplength0 = 1.0_pReal steplength = steplength0 residuum_old = 0.0_pReal LpLoop: do NiterationStress = NiterationStress + 1_pInt !* too many loops required ? if (NiterationStress > nStress) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i3,a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress reached loop limit',nStress,' at el ip g ',e,i,g write(6,*) endif #endif return endif !* calculate (elastic) 2nd Piola--Kirchhoff stress tensor and its tangent from constitutive law B = math_I3 - dt*Lpguess Fe = math_mul33x33(A,B) ! current elastic deformation tensor call constitutive_TandItsTangent(Tstar, dT_dFe3333, Fe, g,i,e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative Tstar_v = math_Mandel33to6(Tstar) p_hydro = sum(Tstar_v(1:3)) / 3.0_pReal forall(n=1_pInt:3_pInt) Tstar_v(n) = Tstar_v(n) - p_hydro ! get deviatoric stress tensor !* calculate plastic velocity gradient and its tangent from constitutive law if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) & call system_clock(count=tick,count_rate=tickrate,count_max=maxticks) call constitutive_LpAndItsTangent(Lp_constitutive, dLp_dT_constitutive, Tstar_v, crystallite_Temperature(g,i,e), g, i, e) if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then call system_clock(count=tock,count_rate=tickrate,count_max=maxticks) !$OMP CRITICAL (debugTimingLpTangent) debug_cumLpCalls = debug_cumLpCalls + 1_pInt debug_cumLpTicks = debug_cumLpTicks + tock-tick !$OMP FLUSH (debug_cumLpTicks) if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks !$OMP END CRITICAL (debugTimingLpTangent) endif #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,i3)') '<< CRYST >> iteration ', NiterationStress write(6,*) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive', math_transpose33(Lp_constitutive) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess', math_transpose33(Lpguess) endif #endif !* update current residuum and check for convergence of loop aTol = max(rTol_crystalliteStress * max(math_norm33(Lpguess),math_norm33(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error aTol_crystalliteStress) ! minimum lower cutoff residuum = Lpguess - Lp_constitutive if (any(residuum /= residuum)) then ! NaN in residuum... #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,i2,1x,i3,a,i3,a)') '<< CRYST >> integrateStress encountered NaN at el ip g ',e,i,g,& ' ; iteration ', NiterationStress,& ' >> returning..!' endif #endif return ! ...me = .false. to inform integrator about problem elseif (math_norm33(residuum) < aTol) then ! converged if below absolute tolerance exit LpLoop ! ...leave iteration loop elseif (math_norm33(residuum) < math_norm33(residuum_old) .or. NiterationStress == 1_pInt ) then ! not converged, but improved norm of residuum (always proceed in first iteration)... residuum_old = residuum ! ...remember old values and... Lpguess_old = Lpguess steplength = steplength0 ! ...proceed with normal step length (calculate new search direction) else ! not converged and residuum not improved... steplength = 0.5_pReal * steplength ! ...try with smaller step length in same direction Lpguess = Lpguess_old + steplength * deltaLp cycle LpLoop endif !* calculate Jacobian for correction term if (mod(jacoCounter, iJacoLpresiduum) == 0_pInt) then dFe_dLp3333 = 0.0_pReal do o=1_pInt,3_pInt; do p=1_pInt,3_pInt dFe_dLp3333(p,o,1:3,p) = A(o,1:3) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) delta(j,l) enddo; enddo dFe_dLp3333 = -dt * dFe_dLp3333 dFe_dLp = math_Plain3333to99(dFe_dLp3333) dT_dFe_constitutive = math_Plain3333to99(dT_dFe3333) dR_dLp = math_identity2nd(9_pInt) - & math_mul99x99(dLp_dT_constitutive, math_mul99x99(dT_dFe_constitutive , dFe_dLp)) dR_dLp2 = dR_dLp ! will be overwritten in first call to LAPACK routine work = math_plain33to9(residuum) #if(FLOAT==8) call dgesv(9,1,dR_dLp2,9,ipiv,work,9,ierr) ! solve dR/dLp * delta Lp = -res for dR/dLp #elif(FLOAT==4) call sgesv(9,1,dR_dLp2,9,ipiv,work,9,ierr) ! solve dR/dLp * delta Lp = -res for dR/dLp #endif if (ierr /= 0_pInt) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on dR/dLp inversion at el ip g ',e,i,g if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g)& .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,*) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLp',transpose(dR_dLp) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLp',transpose(dFe_dLp) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFe_constitutive',transpose(dT_dFe_constitutive) write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLp_dT_constitutive',transpose(dLp_dT_constitutive) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> A',math_transpose33(A) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> B',math_transpose33(B) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive',math_transpose33(Lp_constitutive) write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess',math_transpose33(Lpguess) endif endif #endif return endif deltaLp = - math_plain9to33(work) endif jacoCounter = jacoCounter + 1_pInt ! increase counter for jaco update Lpguess = Lpguess + steplength * deltaLp enddo LpLoop !* calculate new plastic and elastic deformation gradient invFp_new = math_mul33x33(invFp_current,B) invFp_new = invFp_new/math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det call math_invert33(invFp_new,Fp_new,det,error) if (error .or. any(Fp_new/=Fp_new)) then #ifndef _OPENMP if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then write(6,'(a,i8,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on invFp_new inversion at el ip g ',& e,i,g, ' ; iteration ', NiterationStress if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,*) write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> invFp_new',math_transpose33(invFp_new) endif endif #endif return endif Fe_new = math_mul33x33(Fg_new,invFp_new) ! calc resulting Fe !* add volumetric component to 2nd Piola-Kirchhoff stress and calculate 1st Piola-Kirchhoff stress forall (n=1_pInt:3_pInt) Tstar_v(n) = Tstar_v(n) + p_hydro crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(Fe_new, math_mul33x33(math_Mandel6to33(Tstar_v), math_transpose33(invFp_new))) !* store local values in global variables crystallite_Lp(1:3,1:3,g,i,e) = Lpguess crystallite_Tstar_v(1:6,g,i,e) = Tstar_v crystallite_Fp(1:3,1:3,g,i,e) = Fp_new crystallite_Fe(1:3,1:3,g,i,e) = Fe_new crystallite_invFp(1:3,1:3,g,i,e) = invFp_new !* set return flag to true crystallite_integrateStress = .true. #ifndef _OPENMP if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt & .and. ((e == debug_e .and. i == debug_i .and. g == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> P / MPa',math_transpose33(crystallite_P(1:3,1:3,g,i,e))/1.0e6_pReal write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Cauchy / MPa', & math_mul33x33(crystallite_P(1:3,1:3,g,i,e), math_transpose33(Fg_new)) / 1.0e6_pReal / math_det33(Fg_new) write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fe Lp Fe^-1', & math_transpose33(math_mul33x33(Fe_new, math_mul33x33(crystallite_Lp(1:3,1:3,g,i,e), math_inv33(Fe_new)))) ! transpose to get correct print out order write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp',math_transpose33(crystallite_Fp(1:3,1:3,g,i,e)) endif #endif if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then !$OMP CRITICAL (distributionStress) debug_StressLoopDistribution(NiterationStress,numerics_integrationMode) = & debug_StressLoopDistribution(NiterationStress,numerics_integrationMode) + 1_pInt !$OMP END CRITICAL (distributionStress) endif end function crystallite_integrateStress !******************************************************************** ! calculates orientations and disorientations (in case of single grain ips) !******************************************************************** subroutine crystallite_orientations !*** variables and functions from other modules ***! use math, only: math_pDecomposition, & math_RtoQuaternion, & math_QuaternionDisorientation, & math_qConj use FEsolving, only: FEsolving_execElem, & FEsolving_execIP use IO, only: IO_warning use material, only: material_phase, & homogenization_Ngrains, & phase_localPlasticity, & phase_plasticityInstance use mesh, only: mesh_element, & mesh_ipNeighborhood, & FE_NipNeighbors, & FE_geomtype use constitutive_nonlocal, only: constitutive_nonlocal_structure, & constitutive_nonlocal_updateCompatibility implicit none !*** input variables ***! !*** output variables ***! !*** local variables ***! integer(pInt) e, & ! element index i, & ! integration point index g, & ! grain index n, & ! neighbor index neighboring_e, & ! element index of my neighbor neighboring_i, & ! integration point index of my neighbor myPhase, & ! phase neighboringPhase, & myInstance, & ! instance of plasticity neighboringInstance, & myStructure, & ! lattice structure neighboringStructure real(pReal), dimension(3,3) :: U, R real(pReal), dimension(4) :: orientation logical error ! --- CALCULATE ORIENTATION AND LATTICE ROTATION --- !$OMP PARALLEL DO PRIVATE(error,U,R,orientation) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) do g = 1_pInt,homogenization_Ngrains(mesh_element(3,e)) call math_pDecomposition(crystallite_Fe(1:3,1:3,g,i,e), U, R, error) ! polar decomposition of Fe if (error) then call IO_warning(650_pInt, e, i, g) orientation = [1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal] ! fake orientation else orientation = math_RtoQuaternion(transpose(R)) endif crystallite_rotation(1:4,g,i,e) = math_QuaternionDisorientation(crystallite_orientation0(1:4,g,i,e), & ! active rotation from ori0 orientation, & ! to current orientation 0_pInt ) ! we don't want symmetry here crystallite_orientation(1:4,g,i,e) = orientation enddo enddo enddo !$OMP END PARALLEL DO ! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL --- ! --- we use crystallite_orientation from above, so need a seperate loop !$OMP PARALLEL DO PRIVATE(myPhase,myInstance,myStructure,neighboring_e,neighboring_i,neighboringPhase,& !$OMP neighboringInstance,neighboringStructure) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) myPhase = material_phase(1,i,e) ! get my phase if (.not. phase_localPlasticity(myPhase)) then ! if nonlocal model myInstance = phase_plasticityInstance(myPhase) myStructure = constitutive_nonlocal_structure(myInstance) ! get my crystal structure ! --- calculate disorientation between me and my neighbor --- do n = 1_pInt,FE_NipNeighbors(FE_geomtype(mesh_element(2,e))) ! loop through my neighbors neighboring_e = mesh_ipNeighborhood(1,n,i,e) neighboring_i = mesh_ipNeighborhood(2,n,i,e) if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase if (.not. phase_localPlasticity(neighboringPhase)) then ! neighbor got also nonlocal plasticity neighboringInstance = phase_plasticityInstance(neighboringPhase) neighboringStructure = constitutive_nonlocal_structure(neighboringInstance) ! get my neighbor's crystal structure if (myStructure == neighboringStructure) then ! if my neighbor has same crystal structure like me crystallite_disorientation(:,n,1,i,e) = & math_QuaternionDisorientation( crystallite_orientation(1:4,1,i,e), & crystallite_orientation(1:4,1,neighboring_i,neighboring_e), & crystallite_symmetryID(1,i,e)) ! calculate disorientation else ! for neighbor with different phase crystallite_disorientation(:,n,1,i,e) = (/0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! 180 degree rotation about 100 axis endif else ! for neighbor with local plasticity crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity endif else ! no existing neighbor crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity endif enddo ! --- calculate compatibility and transmissivity between me and my neighbor --- call constitutive_nonlocal_updateCompatibility(crystallite_orientation,i,e) endif enddo enddo !$OMP END PARALLEL DO end subroutine crystallite_orientations !******************************************************************** ! return results of particular grain !******************************************************************** function crystallite_postResults(& dt,& ! time increment g,& ! grain number i,& ! integration point number e & ! element number ) !*** variables and functions from other modules ***! use math, only: math_QuaternionToEuler, & math_QuaternionToAxisAngle, & math_mul33x33, & math_transpose33, & math_det33, & math_I3, & inDeg, & math_Mandel6to33 use mesh, only: mesh_element, & mesh_ipVolume use material, only: microstructure_crystallite, & crystallite_Noutput, & material_phase, & material_texture, & homogenization_Ngrains use constitutive, only: constitutive_sizePostResults, & constitutive_postResults, & constitutive_homogenizedC implicit none !*** input variables ***! integer(pInt), intent(in):: e, & ! element index i, & ! integration point index g ! grain index real(pReal), intent(in):: dt ! time increment !*** output variables ***! real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,e)))+ & 1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults !*** local variables ***! real(pReal), dimension(3,3) :: Ee real(pReal) detF integer(pInt) o,c,crystID,mySize crystID = microstructure_crystallite(mesh_element(4,e)) crystallite_postResults = 0.0_pReal c = 0_pInt crystallite_postResults(c+1) = real(crystallite_sizePostResults(crystID),pReal) ! size of results from cryst c = c + 1_pInt do o = 1_pInt,crystallite_Noutput(crystID) mySize = 0_pInt select case(crystallite_output(o,crystID)) case ('phase') mySize = 1_pInt crystallite_postResults(c+1) = real(material_phase(g,i,e),pReal) ! phaseID of grain case ('texture') mySize = 1_pInt crystallite_postResults(c+1) = real(material_texture(g,i,e),pReal) ! textureID of grain case ('volume') mySize = 1_pInt detF = math_det33(crystallite_partionedF(1:3,1:3,g,i,e)) ! V_current = det(F) * V_reference crystallite_postResults(c+1) = detF * mesh_ipVolume(i,e) / homogenization_Ngrains(mesh_element(3,e)) ! grain volume (not fraction but absolute) case ('orientation') mySize = 4_pInt crystallite_postResults(c+1:c+mySize) = crystallite_orientation(1:4,g,i,e) ! grain orientation as quaternion case ('eulerangles') mySize = 3_pInt crystallite_postResults(c+1:c+mySize) = inDeg * math_QuaternionToEuler(crystallite_orientation(1:4,g,i,e)) ! grain orientation as Euler angles in degree case ('grainrotation') mySize = 4_pInt crystallite_postResults(c+1:c+mySize) = math_QuaternionToAxisAngle(crystallite_rotation(1:4,g,i,e)) ! grain rotation away from initial orientation as axis-angle crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree ! remark: tensor output is of the form 11,12,13, 21,22,23, 31,32,33 ! thus row index i is slow, while column index j is fast. reminder: "row is slow" case ('defgrad','f') mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_partionedF(1:3,1:3,g,i,e)),[mySize]) case ('e') mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = 0.5_pReal * reshape((math_mul33x33( & math_transpose33(crystallite_partionedF(1:3,1:3,g,i,e)), & crystallite_partionedF(1:3,1:3,g,i,e)) - math_I3),[mySize]) case ('fe') mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Fe(1:3,1:3,g,i,e)),[mySize]) case ('ee') Ee = 0.5_pReal * (math_mul33x33(math_transpose33(crystallite_Fe(1:3,1:3,g,i,e)), crystallite_Fe(1:3,1:3,g,i,e)) - math_I3) mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = reshape(Ee,[mySize]) case ('fp') mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Fp(1:3,1:3,g,i,e)),[mySize]) case ('lp') mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_Lp(1:3,1:3,g,i,e)),[mySize]) case ('p','firstpiola','1stpiola') mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = reshape(math_transpose33(crystallite_P(1:3,1:3,g,i,e)),[mySize]) case ('s','tstar','secondpiola','2ndpiola') mySize = 9_pInt crystallite_postResults(c+1:c+mySize) = reshape(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)),[mySize]) case ('elasmatrix') mySize = 36_pInt crystallite_postResults(c+1:c+mySize) = reshape(constitutive_homogenizedC(g,i,e),(/mySize/)) end select c = c + mySize enddo crystallite_postResults(c+1) = real(constitutive_sizePostResults(g,i,e),pReal) ! size of constitutive results c = c + 1_pInt if (constitutive_sizePostResults(g,i,e) > 0_pInt) & crystallite_postResults(c+1:c+constitutive_sizePostResults(g,i,e)) = constitutive_postResults(crystallite_Tstar_v(1:6,g,i,e), & crystallite_Fe, & crystallite_Temperature(g,i,e), & dt, g, i, e) c = c + constitutive_sizePostResults(g,i,e) end function crystallite_postResults END MODULE !##############################################################