submodule(phase:mechanical) elastic type :: tParameters real(pReal) :: & C_11 = 0.0_pReal, & C_12 = 0.0_pReal, & C_13 = 0.0_pReal, & C_33 = 0.0_pReal, & C_44 = 0.0_pReal, & C_66 = 0.0_pReal end type tParameters type(tParameters), allocatable, dimension(:) :: param contains !-------------------------------------------------------------------------------------------------- !> @brief Initialize elasticity. !-------------------------------------------------------------------------------------------------- module subroutine elastic_init(phases) class(tNode), pointer :: & phases integer :: & ph class(tNode), pointer :: & phase, & mech, & elastic print'(/,1x,a)', '<<<+- phase:mechanical:elastic init -+>>>' print'(/,1x,a)', '<<<+- phase:mechanical:elastic:Hooke init -+>>>' print'(/,a,i0)', ' # phases: ',phases%length; flush(IO_STDOUT) allocate(param(phases%length)) do ph = 1, phases%length phase => phases%get(ph) mech => phase%get('mechanical') elastic => mech%get('elastic') if (elastic%get_asString('type') /= 'Hooke') call IO_error(200,ext_msg=elastic%get_asString('type')) associate(prm => param(ph)) prm%C_11 = elastic%get_asFloat('C_11') prm%C_12 = elastic%get_asFloat('C_12') prm%C_44 = elastic%get_asFloat('C_44') if (any(phase_lattice(ph) == ['hP','tI'])) then prm%C_13 = elastic%get_asFloat('C_13') prm%C_33 = elastic%get_asFloat('C_33') end if if (phase_lattice(ph) == 'tI') prm%C_66 = elastic%get_asFloat('C_66') end associate end do end subroutine elastic_init !-------------------------------------------------------------------------------------------------- !> @brief Return 6x6 elasticity tensor. !-------------------------------------------------------------------------------------------------- module function elastic_C66(ph,en) result(C66) integer, intent(in) :: & ph, & en real(pReal), dimension(6,6) :: C66 associate(prm => param(ph)) C66 = 0.0_pReal C66(1,1) = prm%C_11 C66(1,2) = prm%C_12 C66(4,4) = prm%C_44 if (any(phase_lattice(ph) == ['hP','tI'])) then C66(1,3) = prm%C_13 C66(3,3) = prm%C_33 end if if (phase_lattice(ph) == 'tI') C66(6,6) = prm%C_66 C66 = lattice_symmetrize_C66(C66,phase_lattice(ph)) end associate end function elastic_C66 !-------------------------------------------------------------------------------------------------- !> @brief Return shear modulus. !-------------------------------------------------------------------------------------------------- module function elastic_mu(ph,en) result(mu) integer, intent(in) :: & ph, & en real(pReal) :: & mu mu = lattice_equivalent_mu(elastic_C66(ph,en),'voigt') end function elastic_mu !-------------------------------------------------------------------------------------------------- !> @brief Return Poisson ratio. !-------------------------------------------------------------------------------------------------- module function elastic_nu(ph,en) result(nu) integer, intent(in) :: & ph, & en real(pReal) :: & nu nu = lattice_equivalent_nu(elastic_C66(ph,en),'voigt') end function elastic_nu !-------------------------------------------------------------------------------------------------- !> @brief returns the 2nd Piola-Kirchhoff stress tensor and its tangent with respect to !> the elastic and intermediate deformation gradients using Hooke's law !-------------------------------------------------------------------------------------------------- module subroutine phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, & Fe, Fi, ph, en) integer, intent(in) :: & ph, & en real(pReal), intent(in), dimension(3,3) :: & Fe, & !< elastic deformation gradient Fi !< intermediate deformation gradient real(pReal), intent(out), dimension(3,3) :: & S !< 2nd Piola-Kirchhoff stress tensor in lattice configuration real(pReal), intent(out), dimension(3,3,3,3) :: & dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient real(pReal), dimension(3,3) :: E real(pReal), dimension(3,3,3,3) :: C integer :: & i, j C = math_66toSym3333(phase_damage_C66(phase_homogenizedC66(ph,en),ph,en)) E = 0.5_pReal*(matmul(transpose(Fe),Fe)-math_I3) !< Green-Lagrange strain in unloaded configuration S = math_mul3333xx33(C,matmul(matmul(transpose(Fi),E),Fi)) !< 2PK stress in lattice configuration in work conjugate with GL strain pulled back to lattice configuration do i =1, 3;do j=1,3 dS_dFe(i,j,1:3,1:3) = matmul(Fe,matmul(matmul(Fi,C(i,j,1:3,1:3)),transpose(Fi))) !< dS_ij/dFe_kl = C_ijmn * Fi_lm * Fi_on * Fe_ko dS_dFi(i,j,1:3,1:3) = 2.0_pReal*matmul(matmul(E,Fi),C(i,j,1:3,1:3)) !< dS_ij/dFi_kl = C_ijln * E_km * Fe_mn end do; end do end subroutine phase_hooke_SandItsTangents !-------------------------------------------------------------------------------------------------- !> @brief returns the homogenized elasticity matrix !-------------------------------------------------------------------------------------------------- module function phase_homogenizedC66(ph,en) result(C) real(pReal), dimension(6,6) :: C integer, intent(in) :: ph, en plasticType: select case (phase_plasticity(ph)) case (PLASTICITY_DISLOTWIN_ID) plasticType C = plastic_dislotwin_homogenizedC(ph,en) case default plasticType C = math_sym3333to66(math_Voigt66to3333(elastic_C66(ph,en))) end select plasticType end function phase_homogenizedC66 end submodule elastic