#!/usr/bin/env python # -*- coding: UTF-8 no BOM -*- import os,sys,string import numpy as np import scipy.ndimage from optparse import OptionParser import damask scriptID = string.replace('$Id$','\n','\\n') scriptName = os.path.splitext(scriptID.split()[1])[0] # -------------------------------------------------------------------- # MAIN # -------------------------------------------------------------------- parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """ Average each data block of size 'packing' into single values thus reducing the former grid to grid/packing. """, version = scriptID) parser.add_option('-c','--coordinates', dest = 'coords', type = 'string', metavar = 'string', help = 'column heading for coordinates [%default]') parser.add_option('-p','--packing', dest = 'packing', type = 'int', nargs = 3, metavar = 'int int int', help = 'size of packed group [%default]') parser.add_option('--shift', dest = 'shift', type = 'int', nargs = 3, metavar = 'int int int', help = 'shift vector of packing stencil [%default]') parser.add_option('-g', '--grid', dest = 'grid', type = 'int', nargs = 3, metavar = 'int int int', help = 'grid in x,y,z [autodetect]') parser.add_option('-s', '--size', dest = 'size', type = 'float', nargs = 3, metavar = 'float float float', help = 'size in x,y,z [autodetect]') parser.set_defaults(coords = 'ipinitialcoord', packing = (2,2,2), shift = (0,0,0), grid = (0,0,0), size = (0.0,0.0,0.0), ) (options,filenames) = parser.parse_args() packing = np.array(options.packing,dtype = int) shift = np.array(options.shift, dtype = int) prefix = 'averagedDown{}x{}x{}_'.format(*packing) if any(shift != 0): prefix += 'shift{:+}{:+}{:+}_'.format(*shift) # --- loop over input files ------------------------------------------------------------------------ if filenames == []: filenames = [None] for name in filenames: try: table = damask.ASCIItable(name = name, outname = os.path.join(os.path.dirname(name), prefix+os.path.basename(name)) if name else name, buffered = False) except: continue table.report_name(scriptName,name) # ------------------------------------------ read header ------------------------------------------ table.head_read() # ------------------------------------------ sanity checks ---------------------------------------- errors = [] remarks = [] colCoord = None if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords)) else: colCoord = table.label_index(options.coords) if remarks != []: table.croak(remarks) if errors != []: table.croak(errors) table.close(dismiss = True) continue # ------------------------------------------ assemble header --------------------------------------- table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:])) table.head_write() # --------------- figure out size and grid --------------------------------------------------------- table.data_readArray() if (any(options.grid) == 0 or any(options.size) == 0.0): coords = [np.unique(table.data[:,colCoord+i]) for i in xrange(3)] mincorner = np.array(map(min,coords)) maxcorner = np.array(map(max,coords)) grid = np.array(map(len,coords),'i') size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1) size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other spacings delta = size/np.maximum(np.ones(3,'d'), grid) origin = mincorner - 0.5*delta # shift from cell center to corner else: grid = np.array(options.grid,'i') size = np.array(options.size,'d') origin = np.zeros(3,'d') packing = np.where(grid == 1,1,packing) # reset packing to 1 where grid==1 shift = np.where(grid == 1,0,shift) # reset shift to 0 where grid==1 packedGrid = np.maximum(np.ones(3,'i'),grid//packing) averagedDown = scipy.ndimage.filters.uniform_filter( \ np.roll( np.roll( np.roll(table.data.reshape(list(grid)+[table.data.shape[1]],order = 'F'), -shift[0],axis = 0), -shift[1],axis = 1), -shift[2],axis = 2), size = list(packing) + [1], mode = 'wrap', origin = list(-(packing/2)) + [0])\ [::packing[0],::packing[1],::packing[2],:].reshape((packedGrid.prod(),table.data.shape[1]),order = 'F') table.data = averagedDown #--- generate grid -------------------------------------------------------------------------------- if colCoord: x = (0.5 + shift[0] + np.arange(packedGrid[0],dtype=float))/packedGrid[0]*size[0] + origin[0] y = (0.5 + shift[1] + np.arange(packedGrid[1],dtype=float))/packedGrid[1]*size[1] + origin[1] z = (0.5 + shift[2] + np.arange(packedGrid[2],dtype=float))/packedGrid[2]*size[2] + origin[2] xx = np.tile( x, packedGrid[1]* packedGrid[2]) yy = np.tile(np.repeat(y,packedGrid[0] ),packedGrid[2]) zz = np.repeat(z,packedGrid[0]*packedGrid[1]) table.data[:,colCoord:colCoord+3] = np.squeeze(np.dstack((xx,yy,zz))) # ------------------------------------------ output result ----------------------------------------- table.data_writeArray() # ------------------------------------------ output finalization ----------------------------------- table.close() # close ASCII tables