!-------------------------------------------------------------------------------------------------- !> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH !> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH !> @author Chen Zhang, Michigan State University !> @brief crystallite state integration functions and reporting of results !-------------------------------------------------------------------------------------------------- module crystallite use prec use IO use HDF5_utilities use DAMASK_interface use config use debug use numerics use rotations use math use FEsolving use material use constitutive use discretization use lattice use results implicit none private real(pReal), dimension(:,:,:), allocatable, public :: & crystallite_dt !< requested time increment of each grain real(pReal), dimension(:,:,:), allocatable :: & crystallite_subdt, & !< substepped time increment of each grain crystallite_subFrac, & !< already calculated fraction of increment crystallite_subStep !< size of next integration step type(rotation), dimension(:,:,:), allocatable :: & crystallite_orientation !< current orientation real(pReal), dimension(:,:,:,:,:), allocatable, public, protected :: & crystallite_Fe, & !< current "elastic" def grad (end of converged time step) crystallite_P, & !< 1st Piola-Kirchhoff stress per grain crystallite_S0, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc crystallite_Fp0, & !< plastic def grad at start of FE inc crystallite_Fi0, & !< intermediate def grad at start of FE inc crystallite_F0, & !< def grad at start of FE inc crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc crystallite_Li0 !< intermediate velocitiy grad at start of FE inc real(pReal), dimension(:,:,:,:,:), allocatable, public :: & crystallite_S, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step) crystallite_partionedS0, & !< 2nd Piola-Kirchhoff stress vector at start of homog inc crystallite_Fp, & !< current plastic def grad (end of converged time step) crystallite_partionedFp0,& !< plastic def grad at start of homog inc crystallite_Fi, & !< current intermediate def grad (end of converged time step) crystallite_partionedFi0,& !< intermediate def grad at start of homog inc crystallite_partionedF, & !< def grad to be reached at end of homog inc crystallite_partionedF0, & !< def grad at start of homog inc crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step) crystallite_partionedLp0, & !< plastic velocity grad at start of homog inc crystallite_Li, & !< current intermediate velocitiy grad (end of converged time step) crystallite_partionedLi0 !< intermediate velocity grad at start of homog inc real(pReal), dimension(:,:,:,:,:), allocatable :: & crystallite_subFp0,& !< plastic def grad at start of crystallite inc crystallite_subFi0,& !< intermediate def grad at start of crystallite inc crystallite_subF, & !< def grad to be reached at end of crystallite inc crystallite_subF0, & !< def grad at start of crystallite inc crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc crystallite_subLi0 !< intermediate velocity grad at start of crystallite inc real(pReal), dimension(:,:,:,:,:,:,:), allocatable, public, protected :: & crystallite_dPdF !< current individual dPdF per grain (end of converged time step) logical, dimension(:,:,:), allocatable, public :: & crystallite_requested !< used by upper level (homogenization) to request crystallite calculation logical, dimension(:,:,:), allocatable :: & crystallite_converged, & !< convergence flag crystallite_todo, & !< flag to indicate need for further computation crystallite_localPlasticity !< indicates this grain to have purely local constitutive law type :: tOutput !< new requested output (per phase) character(len=pStringLen), allocatable, dimension(:) :: & label end type tOutput type(tOutput), allocatable, dimension(:) :: output_constituent type :: tNumerics integer :: & iJacoLpresiduum, & !< frequency of Jacobian update of residuum in Lp nState, & !< state loop limit nStress !< stress loop limit real(pReal) :: & subStepMinCryst, & !< minimum (relative) size of sub-step allowed during cutback subStepSizeCryst, & !< size of first substep when cutback subStepSizeLp, & !< size of first substep when cutback in Lp calculation subStepSizeLi, & !< size of first substep when cutback in Li calculation stepIncreaseCryst, & !< increase of next substep size when previous substep converged rtol_crystalliteState, & !< relative tolerance in state loop rtol_crystalliteStress, & !< relative tolerance in stress loop atol_crystalliteStress !< absolute tolerance in stress loop end type tNumerics type(tNumerics) :: num ! numerics parameters. Better name? procedure(), pointer :: integrateState public :: & crystallite_init, & crystallite_stress, & crystallite_stressTangent, & crystallite_orientations, & crystallite_push33ToRef, & crystallite_results, & crystallite_restartWrite, & crystallite_restartRead, & crystallite_forward contains !-------------------------------------------------------------------------------------------------- !> @brief allocates and initialize per grain variables !-------------------------------------------------------------------------------------------------- subroutine crystallite_init logical, dimension(discretization_nIP,discretization_nElem) :: devNull integer :: & c, & !< counter in integration point component loop i, & !< counter in integration point loop e, & !< counter in element loop cMax, & !< maximum number of integration point components iMax, & !< maximum number of integration points eMax, & !< maximum number of elements myNcomponents !< number of components at current IP write(6,'(/,a)') ' <<<+- crystallite init -+>>>' cMax = homogenization_maxNgrains iMax = discretization_nIP eMax = discretization_nElem allocate(crystallite_partionedF(3,3,cMax,iMax,eMax),source=0.0_pReal) allocate(crystallite_S0, & crystallite_F0, crystallite_Fi0,crystallite_Fp0, & crystallite_Li0,crystallite_Lp0, & crystallite_partionedS0, & crystallite_partionedF0,crystallite_partionedFp0,crystallite_partionedFi0, & crystallite_partionedLp0,crystallite_partionedLi0, & crystallite_S,crystallite_P, & crystallite_Fe,crystallite_Fi,crystallite_Fp, & crystallite_Li,crystallite_Lp, & crystallite_subF,crystallite_subF0, & crystallite_subFp0,crystallite_subFi0, & crystallite_subLi0,crystallite_subLp0, & source = crystallite_partionedF) allocate(crystallite_dPdF(3,3,3,3,cMax,iMax,eMax),source=0.0_pReal) allocate(crystallite_dt(cMax,iMax,eMax),source=0.0_pReal) allocate(crystallite_subdt,crystallite_subFrac,crystallite_subStep, & source = crystallite_dt) allocate(crystallite_orientation(cMax,iMax,eMax)) allocate(crystallite_localPlasticity(cMax,iMax,eMax), source=.true.) allocate(crystallite_requested(cMax,iMax,eMax), source=.false.) allocate(crystallite_todo(cMax,iMax,eMax), source=.false.) allocate(crystallite_converged(cMax,iMax,eMax), source=.true.) num%subStepMinCryst = config_numerics%getFloat('substepmincryst', defaultVal=1.0e-3_pReal) num%subStepSizeCryst = config_numerics%getFloat('substepsizecryst', defaultVal=0.25_pReal) num%stepIncreaseCryst = config_numerics%getFloat('stepincreasecryst', defaultVal=1.5_pReal) num%subStepSizeLp = config_numerics%getFloat('substepsizelp', defaultVal=0.5_pReal) num%subStepSizeLi = config_numerics%getFloat('substepsizeli', defaultVal=0.5_pReal) num%rtol_crystalliteState = config_numerics%getFloat('rtol_crystallitestate', defaultVal=1.0e-6_pReal) num%rtol_crystalliteStress = config_numerics%getFloat('rtol_crystallitestress',defaultVal=1.0e-6_pReal) num%atol_crystalliteStress = config_numerics%getFloat('atol_crystallitestress',defaultVal=1.0e-8_pReal) num%iJacoLpresiduum = config_numerics%getInt ('ijacolpresiduum', defaultVal=1) num%nState = config_numerics%getInt ('nstate', defaultVal=20) num%nStress = config_numerics%getInt ('nstress', defaultVal=40) if(num%subStepMinCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepMinCryst') if(num%subStepSizeCryst <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeCryst') if(num%stepIncreaseCryst <= 0.0_pReal) call IO_error(301,ext_msg='stepIncreaseCryst') if(num%subStepSizeLp <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLp') if(num%subStepSizeLi <= 0.0_pReal) call IO_error(301,ext_msg='subStepSizeLi') if(num%rtol_crystalliteState <= 0.0_pReal) call IO_error(301,ext_msg='rtol_crystalliteState') if(num%rtol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='rtol_crystalliteStress') if(num%atol_crystalliteStress <= 0.0_pReal) call IO_error(301,ext_msg='atol_crystalliteStress') if(num%iJacoLpresiduum < 1) call IO_error(301,ext_msg='iJacoLpresiduum') if(num%nState < 1) call IO_error(301,ext_msg='nState') if(num%nStress< 1) call IO_error(301,ext_msg='nStress') select case(numerics_integrator) case(1) integrateState => integrateStateFPI case(2) integrateState => integrateStateEuler case(3) integrateState => integrateStateAdaptiveEuler case(4) integrateState => integrateStateRK4 case(5) integrateState => integrateStateRKCK45 end select allocate(output_constituent(size(config_phase))) do c = 1, size(config_phase) #if defined(__GFORTRAN__) allocate(output_constituent(c)%label(1)) output_constituent(c)%label(1)= 'GfortranBug86277' output_constituent(c)%label = config_phase(c)%getStrings('(output)',defaultVal=output_constituent(c)%label ) if (output_constituent(c)%label (1) == 'GfortranBug86277') output_constituent(c)%label = [character(len=pStringLen)::] #else output_constituent(c)%label = config_phase(c)%getStrings('(output)',defaultVal=[character(len=pStringLen)::]) #endif enddo call config_deallocate('material.config/phase') !-------------------------------------------------------------------------------------------------- ! initialize !$OMP PARALLEL DO PRIVATE(myNcomponents,i,c) do e = FEsolving_execElem(1),FEsolving_execElem(2) myNcomponents = homogenization_Ngrains(material_homogenizationAt(e)) do i = FEsolving_execIP(1), FEsolving_execIP(2); do c = 1, myNcomponents crystallite_Fp0(1:3,1:3,c,i,e) = material_orientation0(c,i,e)%asMatrix() ! plastic def gradient reflects init orientation crystallite_Fp0(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e) & / math_det33(crystallite_Fp0(1:3,1:3,c,i,e))**(1.0_pReal/3.0_pReal) crystallite_Fi0(1:3,1:3,c,i,e) = constitutive_initialFi(c,i,e) crystallite_F0(1:3,1:3,c,i,e) = math_I3 crystallite_localPlasticity(c,i,e) = phase_localPlasticity(material_phaseAt(c,e)) crystallite_Fe(1:3,1:3,c,i,e) = math_inv33(matmul(crystallite_Fi0(1:3,1:3,c,i,e), & crystallite_Fp0(1:3,1:3,c,i,e))) ! assuming that euler angles are given in internal strain free configuration crystallite_Fp(1:3,1:3,c,i,e) = crystallite_Fp0(1:3,1:3,c,i,e) crystallite_Fi(1:3,1:3,c,i,e) = crystallite_Fi0(1:3,1:3,c,i,e) crystallite_requested(c,i,e) = .true. enddo; enddo enddo !$OMP END PARALLEL DO if(any(.not. crystallite_localPlasticity) .and. .not. usePingPong) call IO_error(601) ! exit if nonlocal but no ping-pong ToDo: Why not check earlier? or in nonlocal? crystallite_partionedFp0 = crystallite_Fp0 crystallite_partionedFi0 = crystallite_Fi0 crystallite_partionedF0 = crystallite_F0 crystallite_partionedF = crystallite_F0 call crystallite_orientations() !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do c = 1,homogenization_Ngrains(material_homogenizationAt(e)) call constitutive_dependentState(crystallite_partionedF0(1:3,1:3,c,i,e), & crystallite_partionedFp0(1:3,1:3,c,i,e), & c,i,e) ! update dependent state variables to be consistent with basic states enddo enddo enddo !$OMP END PARALLEL DO devNull = crystallite_stress() call crystallite_stressTangent #ifdef DEBUG if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0) then write(6,'(a42,1x,i10)') ' # of elements: ', eMax write(6,'(a42,1x,i10)') 'max # of integration points/element: ', iMax write(6,'(a42,1x,i10)') 'max # of constituents/integration point: ', cMax write(6,'(a42,1x,i10)') ' # of nonlocal constituents: ',count(.not. crystallite_localPlasticity) flush(6) endif call debug_info call debug_reset #endif end subroutine crystallite_init !-------------------------------------------------------------------------------------------------- !> @brief calculate stress (P) !-------------------------------------------------------------------------------------------------- function crystallite_stress(dummyArgumentToPreventInternalCompilerErrorWithGCC) logical, dimension(discretization_nIP,discretization_nElem) :: crystallite_stress real(pReal), intent(in), optional :: & dummyArgumentToPreventInternalCompilerErrorWithGCC real(pReal) :: & formerSubStep integer :: & NiterationCrystallite, & ! number of iterations in crystallite loop c, & !< counter in integration point component loop i, & !< counter in integration point loop e, & !< counter in element loop startIP, endIP, & s #ifdef DEBUG if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0 & .and. FEsolving_execElem(1) <= debug_e & .and. debug_e <= FEsolving_execElem(2)) then write(6,'(/,a,i8,1x,i2,1x,i3)') '<< CRYST stress >> boundary and initial values at el ip ipc ', & debug_e,debug_i, debug_g write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> F ', & transpose(crystallite_partionedF(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> F0 ', & transpose(crystallite_partionedF0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Fp0', & transpose(crystallite_partionedFp0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Fi0', & transpose(crystallite_partionedFi0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Lp0', & transpose(crystallite_partionedLp0(1:3,1:3,debug_g,debug_i,debug_e)) write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST stress >> Li0', & transpose(crystallite_partionedLi0(1:3,1:3,debug_g,debug_i,debug_e)) endif #endif !-------------------------------------------------------------------------------------------------- ! initialize to starting condition crystallite_subStep = 0.0_pReal !$OMP PARALLEL DO elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2); do c = 1,homogenization_Ngrains(material_homogenizationAt(e)) homogenizationRequestsCalculation: if (crystallite_requested(c,i,e)) then plasticState (material_phaseAt(c,e))%subState0( :,material_phaseMemberAt(c,i,e)) = & plasticState (material_phaseAt(c,e))%partionedState0(:,material_phaseMemberAt(c,i,e)) do s = 1, phase_Nsources(material_phaseAt(c,e)) sourceState(material_phaseAt(c,e))%p(s)%subState0( :,material_phaseMemberAt(c,i,e)) = & sourceState(material_phaseAt(c,e))%p(s)%partionedState0(:,material_phaseMemberAt(c,i,e)) enddo crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_partionedFp0(1:3,1:3,c,i,e) crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_partionedLp0(1:3,1:3,c,i,e) crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_partionedFi0(1:3,1:3,c,i,e) crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_partionedLi0(1:3,1:3,c,i,e) crystallite_subF0(1:3,1:3,c,i,e) = crystallite_partionedF0(1:3,1:3,c,i,e) crystallite_subFrac(c,i,e) = 0.0_pReal crystallite_subStep(c,i,e) = 1.0_pReal/num%subStepSizeCryst crystallite_todo(c,i,e) = .true. crystallite_converged(c,i,e) = .false. ! pretend failed step of 1/subStepSizeCryst endif homogenizationRequestsCalculation enddo; enddo enddo elementLooping1 !$OMP END PARALLEL DO singleRun: if (FEsolving_execELem(1) == FEsolving_execElem(2) .and. & FEsolving_execIP (1) == FEsolving_execIP (2)) then startIP = FEsolving_execIP(1) endIP = startIP else singleRun startIP = 1 endIP = discretization_nIP endif singleRun NiterationCrystallite = 0 cutbackLooping: do while (any(crystallite_todo(:,startIP:endIP,FEsolving_execELem(1):FEsolving_execElem(2)))) NiterationCrystallite = NiterationCrystallite + 1 #ifdef DEBUG if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0) & write(6,'(a,i6)') '<< CRYST stress >> crystallite iteration ',NiterationCrystallite #endif !$OMP PARALLEL DO PRIVATE(formerSubStep) elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do c = 1,homogenization_Ngrains(material_homogenizationAt(e)) !-------------------------------------------------------------------------------------------------- ! wind forward if (crystallite_converged(c,i,e)) then formerSubStep = crystallite_subStep(c,i,e) crystallite_subFrac(c,i,e) = crystallite_subFrac(c,i,e) + crystallite_subStep(c,i,e) crystallite_subStep(c,i,e) = min(1.0_pReal - crystallite_subFrac(c,i,e), & num%stepIncreaseCryst * crystallite_subStep(c,i,e)) crystallite_todo(c,i,e) = crystallite_subStep(c,i,e) > 0.0_pReal ! still time left to integrate on? if (crystallite_todo(c,i,e)) then crystallite_subF0 (1:3,1:3,c,i,e) = crystallite_subF(1:3,1:3,c,i,e) crystallite_subLp0(1:3,1:3,c,i,e) = crystallite_Lp (1:3,1:3,c,i,e) crystallite_subLi0(1:3,1:3,c,i,e) = crystallite_Li (1:3,1:3,c,i,e) crystallite_subFp0(1:3,1:3,c,i,e) = crystallite_Fp (1:3,1:3,c,i,e) crystallite_subFi0(1:3,1:3,c,i,e) = crystallite_Fi (1:3,1:3,c,i,e) !if abbrevation, make c and p private in omp plasticState( material_phaseAt(c,e))%subState0(:,material_phaseMemberAt(c,i,e)) & = plasticState(material_phaseAt(c,e))%state( :,material_phaseMemberAt(c,i,e)) do s = 1, phase_Nsources(material_phaseAt(c,e)) sourceState( material_phaseAt(c,e))%p(s)%subState0(:,material_phaseMemberAt(c,i,e)) & = sourceState(material_phaseAt(c,e))%p(s)%state( :,material_phaseMemberAt(c,i,e)) enddo endif !-------------------------------------------------------------------------------------------------- ! cut back (reduced time and restore) else crystallite_subStep(c,i,e) = num%subStepSizeCryst * crystallite_subStep(c,i,e) crystallite_Fp (1:3,1:3,c,i,e) = crystallite_subFp0(1:3,1:3,c,i,e) crystallite_Fi (1:3,1:3,c,i,e) = crystallite_subFi0(1:3,1:3,c,i,e) crystallite_S (1:3,1:3,c,i,e) = crystallite_S0 (1:3,1:3,c,i,e) if (crystallite_subStep(c,i,e) < 1.0_pReal) then ! actual (not initial) cutback crystallite_Lp (1:3,1:3,c,i,e) = crystallite_subLp0(1:3,1:3,c,i,e) crystallite_Li (1:3,1:3,c,i,e) = crystallite_subLi0(1:3,1:3,c,i,e) endif plasticState (material_phaseAt(c,e))%state( :,material_phaseMemberAt(c,i,e)) & = plasticState(material_phaseAt(c,e))%subState0(:,material_phaseMemberAt(c,i,e)) do s = 1, phase_Nsources(material_phaseAt(c,e)) sourceState( material_phaseAt(c,e))%p(s)%state( :,material_phaseMemberAt(c,i,e)) & = sourceState(material_phaseAt(c,e))%p(s)%subState0(:,material_phaseMemberAt(c,i,e)) enddo ! cant restore dotState here, since not yet calculated in first cutback after initialization crystallite_todo(c,i,e) = crystallite_subStep(c,i,e) > num%subStepMinCryst ! still on track or already done (beyond repair) endif !-------------------------------------------------------------------------------------------------- ! prepare for integration if (crystallite_todo(c,i,e)) then crystallite_subF(1:3,1:3,c,i,e) = crystallite_subF0(1:3,1:3,c,i,e) & + crystallite_subStep(c,i,e) *( crystallite_partionedF (1:3,1:3,c,i,e) & -crystallite_partionedF0(1:3,1:3,c,i,e)) crystallite_Fe(1:3,1:3,c,i,e) = matmul(matmul(crystallite_subF(1:3,1:3,c,i,e), & math_inv33(crystallite_Fp(1:3,1:3,c,i,e))), & math_inv33(crystallite_Fi(1:3,1:3,c,i,e))) crystallite_subdt(c,i,e) = crystallite_subStep(c,i,e) * crystallite_dt(c,i,e) crystallite_converged(c,i,e) = .false. endif enddo enddo enddo elementLooping3 !$OMP END PARALLEL DO !-------------------------------------------------------------------------------------------------- ! integrate --- requires fully defined state array (basic + dependent state) if (any(crystallite_todo)) call integrateState ! TODO: unroll into proper elementloop to avoid N^2 for single point evaluation where(.not. crystallite_converged .and. crystallite_subStep > num%subStepMinCryst) & ! do not try non-converged but fully cutbacked any further crystallite_todo = .true. ! TODO: again unroll this into proper elementloop to avoid N^2 for single point evaluation enddo cutbackLooping ! return whether converged or not crystallite_stress = .false. elementLooping5: do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) crystallite_stress(i,e) = all(crystallite_converged(:,i,e)) enddo enddo elementLooping5 end function crystallite_stress !-------------------------------------------------------------------------------------------------- !> @brief calculate tangent (dPdF) !-------------------------------------------------------------------------------------------------- subroutine crystallite_stressTangent integer :: & c, & !< counter in integration point component loop i, & !< counter in integration point loop e, & !< counter in element loop o, & p real(pReal), dimension(3,3) :: devNull, & invSubFp0,invSubFi0,invFp,invFi, & temp_33_1, temp_33_2, temp_33_3, temp_33_4 real(pReal), dimension(3,3,3,3) :: dSdFe, & dSdF, & dSdFi, & dLidS, & ! tangent in lattice configuration dLidFi, & dLpdS, & dLpdFi, & dFidS, & dFpinvdF, & rhs_3333, & lhs_3333, & temp_3333 real(pReal), dimension(9,9):: temp_99 logical :: error !$OMP PARALLEL DO PRIVATE(dSdF,dSdFe,dSdFi,dLpdS,dLpdFi,dFpinvdF,dLidS,dLidFi,dFidS,o,p, & !$OMP invSubFp0,invSubFi0,invFp,invFi, & !$OMP rhs_3333,lhs_3333,temp_99,temp_33_1,temp_33_2,temp_33_3,temp_33_4,temp_3333,error) elementLooping: do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do c = 1,homogenization_Ngrains(material_homogenizationAt(e)) call constitutive_SandItsTangents(devNull,dSdFe,dSdFi, & crystallite_Fe(1:3,1:3,c,i,e), & crystallite_Fi(1:3,1:3,c,i,e),c,i,e) call constitutive_LiAndItsTangents(devNull,dLidS,dLidFi, & crystallite_S (1:3,1:3,c,i,e), & crystallite_Fi(1:3,1:3,c,i,e), & c,i,e) invFp = math_inv33(crystallite_Fp(1:3,1:3,c,i,e)) invFi = math_inv33(crystallite_Fi(1:3,1:3,c,i,e)) invSubFp0 = math_inv33(crystallite_subFp0(1:3,1:3,c,i,e)) invSubFi0 = math_inv33(crystallite_subFi0(1:3,1:3,c,i,e)) if (sum(abs(dLidS)) < tol_math_check) then dFidS = 0.0_pReal else lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal do o=1,3; do p=1,3 lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) & + crystallite_subdt(c,i,e)*matmul(invSubFi0,dLidFi(1:3,1:3,o,p)) lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) & + invFi*invFi(p,o) rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) & - crystallite_subdt(c,i,e)*matmul(invSubFi0,dLidS(1:3,1:3,o,p)) enddo; enddo call math_invert(temp_99,error,math_3333to99(lhs_3333)) if (error) then call IO_warning(warning_ID=600,el=e,ip=i,g=c, & ext_msg='inversion error in analytic tangent calculation') dFidS = 0.0_pReal else dFidS = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333) endif dLidS = math_mul3333xx3333(dLidFi,dFidS) + dLidS endif call constitutive_LpAndItsTangents(devNull,dLpdS,dLpdFi, & crystallite_S (1:3,1:3,c,i,e), & crystallite_Fi(1:3,1:3,c,i,e),c,i,e) ! call constitutive law to calculate Lp tangent in lattice configuration dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS !-------------------------------------------------------------------------------------------------- ! calculate dSdF temp_33_1 = transpose(matmul(invFp,invFi)) temp_33_2 = matmul(crystallite_subF(1:3,1:3,c,i,e),invSubFp0) temp_33_3 = matmul(matmul(crystallite_subF(1:3,1:3,c,i,e),invFp), invSubFi0) do o=1,3; do p=1,3 rhs_3333(p,o,1:3,1:3) = matmul(dSdFe(p,o,1:3,1:3),temp_33_1) temp_3333(1:3,1:3,p,o) = matmul(matmul(temp_33_2,dLpdS(1:3,1:3,p,o)), invFi) & + matmul(temp_33_3,dLidS(1:3,1:3,p,o)) enddo; enddo lhs_3333 = crystallite_subdt(c,i,e)*math_mul3333xx3333(dSdFe,temp_3333) & + math_mul3333xx3333(dSdFi,dFidS) call math_invert(temp_99,error,math_identity2nd(9)+math_3333to99(lhs_3333)) if (error) then call IO_warning(warning_ID=600,el=e,ip=i,g=c, & ext_msg='inversion error in analytic tangent calculation') dSdF = rhs_3333 else dSdF = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333) endif !-------------------------------------------------------------------------------------------------- ! calculate dFpinvdF temp_3333 = math_mul3333xx3333(dLpdS,dSdF) do o=1,3; do p=1,3 dFpinvdF(1:3,1:3,p,o) = -crystallite_subdt(c,i,e) & * matmul(invSubFp0, matmul(temp_3333(1:3,1:3,p,o),invFi)) enddo; enddo !-------------------------------------------------------------------------------------------------- ! assemble dPdF temp_33_1 = matmul(crystallite_S(1:3,1:3,c,i,e),transpose(invFp)) temp_33_2 = matmul(invFp,temp_33_1) temp_33_3 = matmul(crystallite_subF(1:3,1:3,c,i,e),invFp) temp_33_4 = matmul(temp_33_3,crystallite_S(1:3,1:3,c,i,e)) crystallite_dPdF(1:3,1:3,1:3,1:3,c,i,e) = 0.0_pReal do p=1,3 crystallite_dPdF(p,1:3,p,1:3,c,i,e) = transpose(temp_33_2) enddo do o=1,3; do p=1,3 crystallite_dPdF(1:3,1:3,p,o,c,i,e) = crystallite_dPdF(1:3,1:3,p,o,c,i,e) & + matmul(matmul(crystallite_subF(1:3,1:3,c,i,e), & dFpinvdF(1:3,1:3,p,o)),temp_33_1) & + matmul(matmul(temp_33_3,dSdF(1:3,1:3,p,o)), & transpose(invFp)) & + matmul(temp_33_4,transpose(dFpinvdF(1:3,1:3,p,o))) enddo; enddo enddo; enddo enddo elementLooping !$OMP END PARALLEL DO end subroutine crystallite_stressTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates orientations !-------------------------------------------------------------------------------------------------- subroutine crystallite_orientations integer & c, & !< counter in integration point component loop i, & !< counter in integration point loop e !< counter in element loop !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do c = 1,homogenization_Ngrains(material_homogenizationAt(e)) call crystallite_orientation(c,i,e)%fromMatrix(transpose(math_rotationalPart(crystallite_Fe(1:3,1:3,c,i,e)))) enddo; enddo; enddo !$OMP END PARALLEL DO nonlocalPresent: if (any(plasticState%nonLocal)) then !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) if (plasticState(material_phaseAt(1,e))%nonLocal) & call plastic_nonlocal_updateCompatibility(crystallite_orientation, & phase_plasticityInstance(material_phaseAt(i,e)),i,e) enddo; enddo !$OMP END PARALLEL DO endif nonlocalPresent end subroutine crystallite_orientations !-------------------------------------------------------------------------------------------------- !> @brief Map 2nd order tensor to reference config !-------------------------------------------------------------------------------------------------- function crystallite_push33ToRef(ipc,ip,el, tensor33) real(pReal), dimension(3,3) :: crystallite_push33ToRef real(pReal), dimension(3,3), intent(in) :: tensor33 real(pReal), dimension(3,3) :: T integer, intent(in):: & el, & ip, & ipc T = matmul(material_orientation0(ipc,ip,el)%asMatrix(), & ! ToDo: initial orientation correct? transpose(math_inv33(crystallite_subF(1:3,1:3,ipc,ip,el)))) crystallite_push33ToRef = matmul(transpose(T),matmul(tensor33,T)) end function crystallite_push33ToRef !-------------------------------------------------------------------------------------------------- !> @brief writes crystallite results to HDF5 output file !-------------------------------------------------------------------------------------------------- subroutine crystallite_results integer :: p,o real(pReal), allocatable, dimension(:,:,:) :: selected_tensors type(rotation), allocatable, dimension(:) :: selected_rotations character(len=pStringLen) :: group,structureLabel do p=1,size(config_name_phase) group = trim('current/constituent')//'/'//trim(config_name_phase(p))//'/generic' call results_closeGroup(results_addGroup(group)) do o = 1, size(output_constituent(p)%label) select case (output_constituent(p)%label(o)) case('f') selected_tensors = select_tensors(crystallite_partionedF,p) call results_writeDataset(group,selected_tensors,'F',& 'deformation gradient','1') case('fe') selected_tensors = select_tensors(crystallite_Fe,p) call results_writeDataset(group,selected_tensors,'Fe',& 'elastic deformation gradient','1') case('fp') selected_tensors = select_tensors(crystallite_Fp,p) call results_writeDataset(group,selected_tensors,'Fp',& 'plastic deformation gradient','1') case('fi') selected_tensors = select_tensors(crystallite_Fi,p) call results_writeDataset(group,selected_tensors,'Fi',& 'inelastic deformation gradient','1') case('lp') selected_tensors = select_tensors(crystallite_Lp,p) call results_writeDataset(group,selected_tensors,'Lp',& 'plastic velocity gradient','1/s') case('li') selected_tensors = select_tensors(crystallite_Li,p) call results_writeDataset(group,selected_tensors,'Li',& 'inelastic velocity gradient','1/s') case('p') selected_tensors = select_tensors(crystallite_P,p) call results_writeDataset(group,selected_tensors,'P',& 'First Piola-Kirchoff stress','Pa') case('s') selected_tensors = select_tensors(crystallite_S,p) call results_writeDataset(group,selected_tensors,'S',& 'Second Piola-Kirchoff stress','Pa') case('orientation') select case(lattice_structure(p)) case(lattice_ISO_ID) structureLabel = 'iso' case(lattice_FCC_ID) structureLabel = 'fcc' case(lattice_BCC_ID) structureLabel = 'bcc' case(lattice_BCT_ID) structureLabel = 'bct' case(lattice_HEX_ID) structureLabel = 'hex' case(lattice_ORT_ID) structureLabel = 'ort' end select selected_rotations = select_rotations(crystallite_orientation,p) call results_writeDataset(group,selected_rotations,'orientation',& 'crystal orientation as quaternion',structureLabel) end select enddo enddo contains !------------------------------------------------------------------------------------------------ !> @brief select tensors for output !------------------------------------------------------------------------------------------------ function select_tensors(dataset,instance) integer, intent(in) :: instance real(pReal), dimension(:,:,:,:,:), intent(in) :: dataset real(pReal), allocatable, dimension(:,:,:) :: select_tensors integer :: e,i,c,j allocate(select_tensors(3,3,count(material_phaseAt==instance)*discretization_nIP)) j=0 do e = 1, size(material_phaseAt,2) do i = 1, discretization_nIP do c = 1, size(material_phaseAt,1) !ToDo: this needs to be changed for varying Ngrains if (material_phaseAt(c,e) == instance) then j = j + 1 select_tensors(1:3,1:3,j) = dataset(1:3,1:3,c,i,e) endif enddo enddo enddo end function select_tensors !-------------------------------------------------------------------------------------------------- !> @brief select rotations for output !-------------------------------------------------------------------------------------------------- function select_rotations(dataset,instance) integer, intent(in) :: instance type(rotation), dimension(:,:,:), intent(in) :: dataset type(rotation), allocatable, dimension(:) :: select_rotations integer :: e,i,c,j allocate(select_rotations(count(material_phaseAt==instance)*homogenization_maxNgrains*discretization_nIP)) j=0 do e = 1, size(material_phaseAt,2) do i = 1, discretization_nIP do c = 1, size(material_phaseAt,1) !ToDo: this needs to be changed for varying Ngrains if (material_phaseAt(c,e) == instance) then j = j + 1 select_rotations(j) = dataset(c,i,e) endif enddo enddo enddo end function select_rotations end subroutine crystallite_results !-------------------------------------------------------------------------------------------------- !> @brief calculation of stress (P) with time integration based on a residuum in Lp and !> intermediate acceleration of the Newton-Raphson correction !-------------------------------------------------------------------------------------------------- logical function integrateStress(ipc,ip,el,timeFraction) integer, intent(in):: el, & ! element index ip, & ! integration point index ipc ! grain index real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep real(pReal), dimension(3,3):: F, & ! deformation gradient at end of timestep Fp_new, & ! plastic deformation gradient at end of timestep invFp_new, & ! inverse of Fp_new invFp_current, & ! inverse of Fp_current Lpguess, & ! current guess for plastic velocity gradient Lpguess_old, & ! known last good guess for plastic velocity gradient Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law residuumLp, & ! current residuum of plastic velocity gradient residuumLp_old, & ! last residuum of plastic velocity gradient deltaLp, & ! direction of next guess Fi_new, & ! gradient of intermediate deformation stages invFi_new, & invFi_current, & ! inverse of Fi_current Liguess, & ! current guess for intermediate velocity gradient Liguess_old, & ! known last good guess for intermediate velocity gradient Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law residuumLi, & ! current residuum of intermediate velocity gradient residuumLi_old, & ! last residuum of intermediate velocity gradient deltaLi, & ! direction of next guess Fe, & ! elastic deformation gradient Fe_new, & S, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration A, & B, & temp_33 real(pReal), dimension(9) :: temp_9 ! needed for matrix inversion by LAPACK integer, dimension(9) :: devNull_9 ! needed for matrix inversion by LAPACK real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for Newton-Raphson scheme) dRLi_dLi ! partial derivative of residuumI (Jacobian for Newton-Raphson scheme) real(pReal), dimension(3,3,3,3):: dS_dFe, & ! partial derivative of 2nd Piola-Kirchhoff stress dS_dFi, & dFe_dLp, & ! partial derivative of elastic deformation gradient dFe_dLi, & dFi_dLi, & dLp_dFi, & dLi_dFi, & dLp_dS, & dLi_dS real(pReal) steplengthLp, & steplengthLi, & dt, & ! time increment atol_Lp, & atol_Li, & devNull integer NiterationStressLp, & ! number of stress integrations NiterationStressLi, & ! number of inner stress integrations ierr, & ! error indicator for LAPACK o, & p, & jacoCounterLp, & jacoCounterLi ! counters to check for Jacobian update logical :: error external :: & dgesv integrateStress = .false. if (present(timeFraction)) then dt = crystallite_subdt(ipc,ip,el) * timeFraction F = crystallite_subF0(1:3,1:3,ipc,ip,el) & + (crystallite_subF(1:3,1:3,ipc,ip,el) - crystallite_subF0(1:3,1:3,ipc,ip,el)) * timeFraction else dt = crystallite_subdt(ipc,ip,el) F = crystallite_subF(1:3,1:3,ipc,ip,el) endif Lpguess = crystallite_Lp(1:3,1:3,ipc,ip,el) ! take as first guess Liguess = crystallite_Li(1:3,1:3,ipc,ip,el) ! take as first guess call math_invert33(invFp_current,devNull,error,crystallite_subFp0(1:3,1:3,ipc,ip,el)) if (error) return ! error call math_invert33(invFi_current,devNull,error,crystallite_subFi0(1:3,1:3,ipc,ip,el)) if (error) return ! error A = matmul(F,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp jacoCounterLi = 0 steplengthLi = 1.0_pReal residuumLi_old = 0.0_pReal Liguess_old = Liguess NiterationStressLi = 0 LiLoop: do NiterationStressLi = NiterationStressLi + 1 if (NiterationStressLi>num%nStress) return ! error invFi_new = matmul(invFi_current,math_I3 - dt*Liguess) Fi_new = math_inv33(invFi_new) jacoCounterLp = 0 steplengthLp = 1.0_pReal residuumLp_old = 0.0_pReal Lpguess_old = Lpguess NiterationStressLp = 0 LpLoop: do NiterationStressLp = NiterationStressLp + 1 if (NiterationStressLp>num%nStress) return ! error B = math_I3 - dt*Lpguess Fe = matmul(matmul(A,B), invFi_new) call constitutive_SandItsTangents(S, dS_dFe, dS_dFi, & Fe, Fi_new, ipc, ip, el) call constitutive_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, & S, Fi_new, ipc, ip, el) !* update current residuum and check for convergence of loop atol_Lp = max(num%rtol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error num%atol_crystalliteStress) ! minimum lower cutoff residuumLp = Lpguess - Lp_constitutive if (any(IEEE_is_NaN(residuumLp))) then return ! error elseif (norm2(residuumLp) < atol_Lp) then ! converged if below absolute tolerance exit LpLoop elseif (NiterationStressLp == 1 .or. norm2(residuumLp) < norm2(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)... residuumLp_old = residuumLp ! ...remember old values and... Lpguess_old = Lpguess steplengthLp = 1.0_pReal ! ...proceed with normal step length (calculate new search direction) else ! not converged and residuum not improved... steplengthLp = num%subStepSizeLp * steplengthLp ! ...try with smaller step length in same direction Lpguess = Lpguess_old & + deltaLp * stepLengthLp cycle LpLoop endif !* calculate Jacobian for correction term if (mod(jacoCounterLp, num%iJacoLpresiduum) == 0) then jacoCounterLp = jacoCounterLp + 1 do o=1,3; do p=1,3 dFe_dLp(o,1:3,p,1:3) = A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j) enddo; enddo dFe_dLp = - dt * dFe_dLp dRLp_dLp = math_identity2nd(9) & - math_3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dS,dS_dFe),dFe_dLp)) temp_9 = math_33to9(residuumLp) call dgesv(9,1,dRLp_dLp,9,devNull_9,temp_9,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp if (ierr /= 0) return ! error deltaLp = - math_9to33(temp_9) endif Lpguess = Lpguess & + deltaLp * steplengthLp enddo LpLoop call constitutive_LiAndItsTangents(Li_constitutive, dLi_dS, dLi_dFi, & S, Fi_new, ipc, ip, el) !* update current residuum and check for convergence of loop atol_Li = max(num%rtol_crystalliteStress * max(norm2(Liguess),norm2(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error num%atol_crystalliteStress) ! minimum lower cutoff residuumLi = Liguess - Li_constitutive if (any(IEEE_is_NaN(residuumLi))) then return ! error elseif (norm2(residuumLi) < atol_Li) then ! converged if below absolute tolerance exit LiLoop elseif (NiterationStressLi == 1 .or. norm2(residuumLi) < norm2(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)... residuumLi_old = residuumLi ! ...remember old values and... Liguess_old = Liguess steplengthLi = 1.0_pReal ! ...proceed with normal step length (calculate new search direction) else ! not converged and residuum not improved... steplengthLi = num%subStepSizeLi * steplengthLi ! ...try with smaller step length in same direction Liguess = Liguess_old & + deltaLi * steplengthLi cycle LiLoop endif !* calculate Jacobian for correction term if (mod(jacoCounterLi, num%iJacoLpresiduum) == 0) then jacoCounterLi = jacoCounterLi + 1 temp_33 = matmul(matmul(A,B),invFi_current) do o=1,3; do p=1,3 dFe_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j) dFi_dLi(1:3,o,1:3,p) = -dt*math_I3(o,p)*invFi_current enddo; enddo do o=1,3; do p=1,3 dFi_dLi(1:3,1:3,o,p) = matmul(matmul(Fi_new,dFi_dLi(1:3,1:3,o,p)),Fi_new) enddo; enddo dRLi_dLi = math_identity2nd(9) & - math_3333to99(math_mul3333xx3333(dLi_dS, math_mul3333xx3333(dS_dFe, dFe_dLi) & + math_mul3333xx3333(dS_dFi, dFi_dLi))) & - math_3333to99(math_mul3333xx3333(dLi_dFi, dFi_dLi)) temp_9 = math_33to9(residuumLi) call dgesv(9,1,dRLi_dLi,9,devNull_9,temp_9,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li if (ierr /= 0) return ! error deltaLi = - math_9to33(temp_9) endif Liguess = Liguess & + deltaLi * steplengthLi enddo LiLoop invFp_new = matmul(invFp_current,B) call math_invert33(Fp_new,devNull,error,invFp_new) if (error) return ! error Fp_new = Fp_new / math_det33(Fp_new)**(1.0_pReal/3.0_pReal) ! regularize Fe_new = matmul(matmul(F,invFp_new),invFi_new) integrateStress = .true. crystallite_P (1:3,1:3,ipc,ip,el) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new))) crystallite_S (1:3,1:3,ipc,ip,el) = S crystallite_Lp (1:3,1:3,ipc,ip,el) = Lpguess crystallite_Li (1:3,1:3,ipc,ip,el) = Liguess crystallite_Fp (1:3,1:3,ipc,ip,el) = Fp_new crystallite_Fi (1:3,1:3,ipc,ip,el) = Fi_new crystallite_Fe (1:3,1:3,ipc,ip,el) = Fe_new end function integrateStress !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, state with adaptive 1st order explicit Euler method !> using Fixed Point Iteration to adapt the stepsize !-------------------------------------------------------------------------------------------------- subroutine integrateStateFPI integer :: & NiterationState, & !< number of iterations in state loop e, & !< element index in element loop i, & !< integration point index in ip loop g, & !< grain index in grain loop p, & c, & s, & sizeDotState real(pReal) :: & zeta real(pReal), dimension(constitutive_plasticity_maxSizeDotState) :: & residuum_plastic ! residuum for plastic state real(pReal), dimension(constitutive_source_maxSizeDotState) :: & residuum_source ! residuum for source state logical :: & doneWithIntegration, & nonlocal_broken ! --+>> PREGUESS FOR STATE <<+-- call update_dotState(1.0_pReal) call update_state(1.0_pReal) NiterationState = 0 doneWithIntegration = .false. nonlocal_broken = .false. crystalliteLooping: do while (.not. doneWithIntegration .and. NiterationState < num%nState) NiterationState = NiterationState + 1 #ifdef DEBUG if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0) & write(6,'(a,i6)') '<< CRYST stateFPI >> state iteration ',NiterationState #endif ! store previousDotState and previousDotState2 !$OMP PARALLEL DO PRIVATE(p,c) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if(crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e) .and. & (.not. nonlocal_broken .or. crystallite_localPlasticity(g,i,e)) ) then p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) plasticState(p)%previousDotState2(:,c) = merge(plasticState(p)%previousDotState(:,c),& 0.0_pReal,& NiterationState > 1) plasticState(p)%previousDotState (:,c) = plasticState(p)%dotState(:,c) do s = 1, phase_Nsources(p) sourceState(p)%p(s)%previousDotState2(:,c) = merge(sourceState(p)%p(s)%previousDotState(:,c),& 0.0_pReal, & NiterationState > 1) sourceState(p)%p(s)%previousDotState (:,c) = sourceState(p)%p(s)%dotState(:,c) enddo call constitutive_dependentState(crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), & g, i, e) crystallite_todo(g,i,e) = integrateStress(g,i,e,1.0_pReal) if(.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) & nonlocal_broken = .true. endif enddo enddo enddo !$OMP END PARALLEL DO if(nonlocal_broken) & where(.not. crystallite_localPlasticity) crystallite_todo = .false. call update_dotState(1.0_pReal) !$OMP PARALLEL !$OMP DO PRIVATE(sizeDotState,residuum_plastic,residuum_source,zeta,p,c) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) sizeDotState = plasticState(p)%sizeDotState zeta = damper(plasticState(p)%dotState (:,c), & plasticState(p)%previousDotState (:,c), & plasticState(p)%previousDotState2(:,c)) residuum_plastic(1:SizeDotState) = plasticState(p)%state (1:sizeDotState,c) & - plasticState(p)%subState0(1:sizeDotState,c) & - ( plasticState(p)%dotState (:,c) * zeta & + plasticState(p)%previousDotState(:,c) * (1.0_pReal-zeta) & ) * crystallite_subdt(g,i,e) plasticState(p)%state(1:sizeDotState,c) = plasticState(p)%state(1:sizeDotState,c) & - residuum_plastic(1:sizeDotState) plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * zeta & + plasticState(p)%previousDotState(:,c) * (1.0_pReal - zeta) crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState), & plasticState(p)%state(1:sizeDotState,c), & plasticState(p)%atol(1:sizeDotState)) do s = 1, phase_Nsources(p) sizeDotState = sourceState(p)%p(s)%sizeDotState zeta = damper(sourceState(p)%p(s)%dotState (:,c), & sourceState(p)%p(s)%previousDotState (:,c), & sourceState(p)%p(s)%previousDotState2(:,c)) residuum_source(1:sizeDotState) = sourceState(p)%p(s)%state (1:sizeDotState,c) & - sourceState(p)%p(s)%subState0(1:sizeDotState,c) & - ( sourceState(p)%p(s)%dotState (:,c) * zeta & + sourceState(p)%p(s)%previousDotState(:,c) * (1.0_pReal - zeta) & ) * crystallite_subdt(g,i,e) sourceState(p)%p(s)%state(1:sizeDotState,c) = sourceState(p)%p(s)%state(1:sizeDotState,c) & - residuum_source(1:sizeDotState) sourceState(p)%p(s)%dotState(:,c) = sourceState(p)%p(s)%dotState(:,c) * zeta & + sourceState(p)%p(s)%previousDotState(:,c)* (1.0_pReal - zeta) crystallite_converged(g,i,e) = & crystallite_converged(g,i,e) .and. converged(residuum_source(1:sizeDotState), & sourceState(p)%p(s)%state(1:sizeDotState,c), & sourceState(p)%p(s)%atol(1:sizeDotState)) enddo endif enddo; enddo; enddo !$OMP ENDDO !$OMP DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) !$OMP FLUSH(crystallite_todo) if (crystallite_todo(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged and still alive... crystallite_todo(g,i,e) = stateJump(g,i,e) !$OMP FLUSH(crystallite_todo) if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken crystallite_converged(g,i,e) = .false. if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local... !$OMP CRITICAL (checkTodo) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped !$OMP END CRITICAL (checkTodo) endif endif endif enddo; enddo; enddo !$OMP ENDDO !$OMP END PARALLEL if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck ! --- CHECK IF DONE WITH INTEGRATION --- doneWithIntegration = .true. do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then doneWithIntegration = .false. exit endif enddo; enddo enddo enddo crystalliteLooping contains !-------------------------------------------------------------------------------------------------- !> @brief calculate the damping for correction of state and dot state !-------------------------------------------------------------------------------------------------- real(pReal) pure function damper(current,previous,previous2) real(pReal), dimension(:), intent(in) ::& current, previous, previous2 real(pReal) :: dot_prod12, dot_prod22 dot_prod12 = dot_product(current - previous, previous - previous2) dot_prod22 = dot_product(previous - previous2, previous - previous2) if ((dot_product(current,previous) < 0.0_pReal .or. dot_prod12 < 0.0_pReal) .and. dot_prod22 > 0.0_pReal) then damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22) else damper = 1.0_pReal endif end function damper end subroutine integrateStateFPI !-------------------------------------------------------------------------------------------------- !> @brief integrate state with 1st order explicit Euler method !-------------------------------------------------------------------------------------------------- subroutine integrateStateEuler call update_dotState(1.0_pReal) call update_state(1.0_pReal) call update_deltaState call update_dependentState call update_stress(1.0_pReal) call setConvergenceFlag if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck end subroutine integrateStateEuler !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, state with 1st order Euler method with adaptive step size !-------------------------------------------------------------------------------------------------- subroutine integrateStateAdaptiveEuler integer :: & e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop p, & c, & s, & sizeDotState ! ToDo: MD: once all constitutives use allocate state, attach residuum arrays to the state in case of adaptive Euler real(pReal), dimension(constitutive_plasticity_maxSizeDotState, & homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: & residuum_plastic real(pReal), dimension(constitutive_source_maxSizeDotState,& maxval(phase_Nsources), & homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: & residuum_source !-------------------------------------------------------------------------------------------------- ! contribution to state and relative residui and from Euler integration call update_dotState(1.0_pReal) !$OMP PARALLEL DO PRIVATE(sizeDotState,p,c) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e)) then p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) sizeDotState = plasticState(p)%sizeDotState residuum_plastic(1:sizeDotState,g,i,e) = plasticState(p)%dotstate(1:sizeDotState,c) & * (- 0.5_pReal * crystallite_subdt(g,i,e)) plasticState(p)%state(1:sizeDotState,c) = & plasticState(p)%state(1:sizeDotState,c) + plasticState(p)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e) !ToDo: state, partitioned state? do s = 1, phase_Nsources(p) sizeDotState = sourceState(p)%p(s)%sizeDotState residuum_source(1:sizeDotState,s,g,i,e) = sourceState(p)%p(s)%dotstate(1:sizeDotState,c) & * (- 0.5_pReal * crystallite_subdt(g,i,e)) sourceState(p)%p(s)%state(1:sizeDotState,c) = & sourceState(p)%p(s)%state(1:sizeDotState,c) + sourceState(p)%p(s)%dotstate(1:sizeDotState,c) * crystallite_subdt(g,i,e) !ToDo: state, partitioned state? enddo endif enddo; enddo; enddo !$OMP END PARALLEL DO call update_deltaState call update_dependentState call update_stress(1.0_pReal) call update_dotState(1.0_pReal) !$OMP PARALLEL DO PRIVATE(sizeDotState,p,c) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e)) then p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) sizeDotState = plasticState(p)%sizeDotState residuum_plastic(1:sizeDotState,g,i,e) = residuum_plastic(1:sizeDotState,g,i,e) & + 0.5_pReal * plasticState(p)%dotState(:,c) * crystallite_subdt(g,i,e) crystallite_converged(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), & plasticState(p)%state(1:sizeDotState,c), & plasticState(p)%atol(1:sizeDotState)) do s = 1, phase_Nsources(p) sizeDotState = sourceState(p)%p(s)%sizeDotState residuum_source(1:sizeDotState,s,g,i,e) = & residuum_source(1:sizeDotState,s,g,i,e) + 0.5_pReal * sourceState(p)%p(s)%dotState(:,c) * crystallite_subdt(g,i,e) crystallite_converged(g,i,e) = & crystallite_converged(g,i,e) .and. converged(residuum_source(1:sizeDotState,s,g,i,e), & sourceState(p)%p(s)%state(1:sizeDotState,c), & sourceState(p)%p(s)%atol(1:sizeDotState)) enddo endif enddo; enddo; enddo !$OMP END PARALLEL DO if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck end subroutine integrateStateAdaptiveEuler !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, state with 4th order explicit Runge Kutta method ! ToDo: This is totally BROKEN: RK4dotState is never used!!! !-------------------------------------------------------------------------------------------------- subroutine integrateStateRK4 real(pReal), dimension(4), parameter :: & TIMESTEPFRACTION = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration real(pReal), dimension(4), parameter :: & WEIGHT = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal/6.0_pReal] ! weight of slope used for Runge Kutta integration (final weight divided by 6) integer :: e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop p, & ! phase loop c, & n, & s call update_dotState(1.0_pReal) do n = 1,4 !$OMP PARALLEL DO PRIVATE(p,c) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e)) then p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) plasticState(p)%RK4dotState(:,c) = WEIGHT(n)*plasticState(p)%dotState(:,c) & + merge(plasticState(p)%RK4dotState(:,c),0.0_pReal,n>1) do s = 1, phase_Nsources(p) sourceState(p)%p(s)%RK4dotState(:,c) = WEIGHT(n)*sourceState(p)%p(s)%dotState(:,c) & + merge(sourceState(p)%p(s)%RK4dotState(:,c),0.0_pReal,n>1) enddo endif enddo; enddo; enddo !$OMP END PARALLEL DO call update_state(TIMESTEPFRACTION(n)) call update_deltaState call update_dependentState call update_stress(TIMESTEPFRACTION(n)) ! --- dot state and RK dot state--- first3steps: if (n < 4) then call update_dotState(TIMESTEPFRACTION(n)) endif first3steps enddo call setConvergenceFlag if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck end subroutine integrateStateRK4 !-------------------------------------------------------------------------------------------------- !> @brief integrate stress, state with 5th order Runge-Kutta Cash-Karp method with !> adaptive step size (use 5th order solution to advance = "local extrapolation") !-------------------------------------------------------------------------------------------------- subroutine integrateStateRKCK45 real(pReal), dimension(5,5), parameter :: & A = reshape([& .2_pReal, .075_pReal, .3_pReal, -11.0_pReal/54.0_pReal, 1631.0_pReal/55296.0_pReal, & .0_pReal, .225_pReal, -.9_pReal, 2.5_pReal, 175.0_pReal/512.0_pReal, & .0_pReal, .0_pReal, 1.2_pReal, -70.0_pReal/27.0_pReal, 575.0_pReal/13824.0_pReal, & .0_pReal, .0_pReal, .0_pReal, 35.0_pReal/27.0_pReal, 44275.0_pReal/110592.0_pReal, & .0_pReal, .0_pReal, .0_pReal, .0_pReal, 253.0_pReal/4096.0_pReal], & [5,5], order=[2,1]) !< coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6) real(pReal), dimension(6), parameter :: & B = & [37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, & 125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], & !< coefficients in Butcher tableau (used for final integration and error estimate) DB = B - & [2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,& 13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 0.25_pReal] !< coefficients in Butcher tableau (used for final integration and error estimate) real(pReal), dimension(5), parameter :: & C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal] !< coefficients in Butcher tableau (fractions of original time step in stages 2 to 6) integer :: & e, & ! element index in element loop i, & ! integration point index in ip loop g, & ! grain index in grain loop stage, & ! stage index in integration stage loop n, & p, & cc, & s, & sizeDotState ! ToDo: MD: once all constitutives use allocate state, attach residuum arrays to the state in case of RKCK45 real(pReal), dimension(constitutive_plasticity_maxSizeDotState, & homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: & residuum_plastic ! relative residuum from evolution in microstructure real(pReal), dimension(constitutive_source_maxSizeDotState, & maxval(phase_Nsources), & homogenization_maxNgrains,discretization_nIP,discretization_nElem) :: & residuum_source ! relative residuum from evolution in microstructure call update_dotState(1.0_pReal) ! --- SECOND TO SIXTH RUNGE KUTTA STEP --- do stage = 1,5 ! --- state update --- !$OMP PARALLEL DO PRIVATE(p,cc) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e)) then p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e) plasticState(p)%RKCK45dotState(stage,:,cc) = plasticState(p)%dotState(:,cc) plasticState(p)%dotState(:,cc) = A(1,stage) * plasticState(p)%RKCK45dotState(1,:,cc) do s = 1, phase_Nsources(p) sourceState(p)%p(s)%RKCK45dotState(stage,:,cc) = sourceState(p)%p(s)%dotState(:,cc) sourceState(p)%p(s)%dotState(:,cc) = A(1,stage) * sourceState(p)%p(s)%RKCK45dotState(1,:,cc) enddo do n = 2, stage plasticState(p)%dotState(:,cc) = plasticState(p)%dotState(:,cc) & + A(n,stage) * plasticState(p)%RKCK45dotState(n,:,cc) do s = 1, phase_Nsources(p) sourceState(p)%p(s)%dotState(:,cc) = sourceState(p)%p(s)%dotState(:,cc) & + A(n,stage) * sourceState(p)%p(s)%RKCK45dotState(n,:,cc) enddo enddo endif enddo; enddo; enddo !$OMP END PARALLEL DO call update_state(1.0_pReal) !MD: 1.0 correct? call update_deltaState call update_dependentState call update_stress(C(stage)) call update_dotState(C(stage)) enddo !-------------------------------------------------------------------------------------------------- ! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE --- !$OMP PARALLEL DO PRIVATE(sizeDotState,p,cc) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e)) then p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e) sizeDotState = plasticState(p)%sizeDotState plasticState(p)%RKCK45dotState(6,:,cc) = plasticState (p)%dotState(:,cc) residuum_plastic(1:sizeDotState,g,i,e) = & matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) & ! why transpose? Better to transpose constant DB * crystallite_subdt(g,i,e) plasticState(p)%dotState(:,cc) = & matmul(transpose(plasticState(p)%RKCK45dotState(1:6,1:sizeDotState,cc)), B) ! why transpose? Better to transpose constant B do s = 1, phase_Nsources(p) sizeDotState = sourceState(p)%p(s)%sizeDotState sourceState(p)%p(s)%RKCK45dotState(6,:,cc) = sourceState(p)%p(s)%dotState(:,cc) residuum_source(1:sizeDotState,s,g,i,e) = & matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),DB) & * crystallite_subdt(g,i,e) sourceState(p)%p(s)%dotState(:,cc) = & matmul(transpose(sourceState(p)%p(s)%RKCK45dotState(1:6,1:sizeDotState,cc)),B) enddo endif enddo; enddo; enddo !$OMP END PARALLEL DO call update_state(1.0_pReal) ! --- relative residui and state convergence --- !$OMP PARALLEL DO PRIVATE(sizeDotState,p,cc) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e)) then p = material_phaseAt(g,e); cc = material_phaseMemberAt(g,i,e) sizeDotState = plasticState(p)%sizeDotState crystallite_todo(g,i,e) = converged(residuum_plastic(1:sizeDotState,g,i,e), & plasticState(p)%state(1:sizeDotState,cc), & plasticState(p)%atol(1:sizeDotState)) do s = 1, phase_Nsources(p) sizeDotState = sourceState(p)%p(s)%sizeDotState crystallite_todo(g,i,e) = & crystallite_todo(g,i,e) .and. converged(residuum_source(1:sizeDotState,s,g,i,e), & sourceState(p)%p(s)%state(1:sizeDotState,cc), & sourceState(p)%p(s)%atol(1:sizeDotState)) enddo endif enddo; enddo; enddo !$OMP END PARALLEL DO call update_deltaState call update_dependentState call update_stress(1.0_pReal) call setConvergenceFlag if (any(plasticState(:)%nonlocal)) call nonlocalConvergenceCheck end subroutine integrateStateRKCK45 !-------------------------------------------------------------------------------------------------- !> @brief sets convergence flag for nonlocal calculations !> @details one non-converged nonlocal sets all other nonlocals to non-converged to trigger cut back !-------------------------------------------------------------------------------------------------- subroutine nonlocalConvergenceCheck if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)... where( .not. crystallite_localPlasticity) crystallite_converged = .false. end subroutine nonlocalConvergenceCheck !-------------------------------------------------------------------------------------------------- !> @brief Sets convergence flag based on "todo": every point that survived the integration (todo is ! still .true. is considered as converged !> @details: For explicitEuler, RK4 and RKCK45, adaptive Euler and FPI have their on criteria !-------------------------------------------------------------------------------------------------- subroutine setConvergenceFlag integer :: & e, & !< element index in element loop i, & !< integration point index in ip loop g !< grain index in grain loop !OMP DO PARALLEL PRIVATE do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) crystallite_converged(g,i,e) = crystallite_todo(g,i,e) .or. crystallite_converged(g,i,e) ! if still "to do" then converged per definition enddo; enddo; enddo !OMP END DO PARALLEL end subroutine setConvergenceFlag !-------------------------------------------------------------------------------------------------- !> @brief determines whether a point is converged !-------------------------------------------------------------------------------------------------- logical pure function converged(residuum,state,atol) real(pReal), intent(in), dimension(:) ::& residuum, state, atol real(pReal) :: & rTol rTol = num%rTol_crystalliteState converged = all(abs(residuum) <= max(atol, rtol*abs(state))) end function converged !-------------------------------------------------------------------------------------------------- !> @brief Standard forwarding of state as state = state0 + dotState * (delta t) comment seems wrong! !-------------------------------------------------------------------------------------------------- subroutine update_stress(timeFraction) real(pReal), intent(in) :: & timeFraction integer :: & e, & !< element index in element loop i, & !< integration point index in ip loop g logical :: & nonlocal_broken nonlocal_broken = .false. !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e) .and. & (.not. nonlocal_broken .or. crystallite_localPlasticity(g,i,e)) ) then crystallite_todo(g,i,e) = integrateStress(g,i,e,timeFraction) if (.not. (crystallite_todo(g,i,e) .or. crystallite_localPlasticity(g,i,e))) & nonlocal_broken = .true. endif enddo; enddo; enddo !$OMP END PARALLEL DO if(nonlocal_broken) & where(.not. crystallite_localPlasticity) crystallite_todo = .false. end subroutine update_stress !-------------------------------------------------------------------------------------------------- !> @brief tbd !-------------------------------------------------------------------------------------------------- subroutine update_dependentState integer :: e, & ! element index in element loop i, & ! integration point index in ip loop g ! grain index in grain loop !$OMP PARALLEL DO do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) & call constitutive_dependentState(crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fp(1:3,1:3,g,i,e), & g, i, e) enddo; enddo; enddo !$OMP END PARALLEL DO end subroutine update_dependentState !-------------------------------------------------------------------------------------------------- !> @brief Standard forwarding of state as state = state0 + dotState * (delta t) !-------------------------------------------------------------------------------------------------- subroutine update_state(timeFraction) real(pReal), intent(in) :: & timeFraction integer :: & e, & !< element index in element loop i, & !< integration point index in ip loop g, & !< grain index in grain loop p, & c, & s, & mySize !$OMP PARALLEL DO PRIVATE(mySize,p,c) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) mySize = plasticState(p)%sizeDotState plasticState(p)%state(1:mySize,c) = plasticState(p)%subState0(1:mySize,c) & + plasticState(p)%dotState (1:mySize,c) & * crystallite_subdt(g,i,e) * timeFraction do s = 1, phase_Nsources(p) mySize = sourceState(p)%p(s)%sizeDotState sourceState(p)%p(s)%state(1:mySize,c) = sourceState(p)%p(s)%subState0(1:mySize,c) & + sourceState(p)%p(s)%dotState (1:mySize,c) & * crystallite_subdt(g,i,e) * timeFraction enddo endif enddo; enddo; enddo !$OMP END PARALLEL DO end subroutine update_state !-------------------------------------------------------------------------------------------------- !> @brief triggers calculation of all new rates !> if NaN occurs, crystallite_todo is set to FALSE. Any NaN in a nonlocal propagates to all others !-------------------------------------------------------------------------------------------------- subroutine update_dotState(timeFraction) real(pReal), intent(in) :: & timeFraction integer :: & e, & !< element index in element loop i, & !< integration point index in ip loop g, & !< grain index in grain loop p, & c, & s logical :: & NaN, & nonlocalStop nonlocalStop = .false. !$OMP PARALLEL DO PRIVATE (p,c,NaN) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) !$OMP FLUSH(nonlocalStop) if ((crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) .and. .not. nonlocalStop) then call constitutive_collectDotState(crystallite_S(1:3,1:3,g,i,e), & crystallite_partionedF0, & crystallite_Fi(1:3,1:3,g,i,e), & crystallite_partionedFp0, & crystallite_subdt(g,i,e)*timeFraction, g,i,e) p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) NaN = any(IEEE_is_NaN(plasticState(p)%dotState(:,c))) do s = 1, phase_Nsources(p) NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(s)%dotState(:,c))) enddo if (NaN) then crystallite_todo(g,i,e) = .false. ! this one done (and broken) if (.not. crystallite_localPlasticity(g,i,e)) nonlocalStop = .True. endif endif enddo; enddo; enddo !$OMP END PARALLEL DO if (nonlocalStop) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity end subroutine update_DotState subroutine update_deltaState integer :: & e, & !< element index in element loop i, & !< integration point index in ip loop g, & !< grain index in grain loop p, & mySize, & myOffset, & c, & s logical :: & NaN, & nonlocalStop nonlocalStop = .false. !$OMP PARALLEL DO PRIVATE(p,c,myOffset,mySize,NaN) do e = FEsolving_execElem(1),FEsolving_execElem(2) do i = FEsolving_execIP(1),FEsolving_execIP(2) do g = 1,homogenization_Ngrains(material_homogenizationAt(e)) !$OMP FLUSH(nonlocalStop) if ((crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) .and. .not. nonlocalStop) then call constitutive_collectDeltaState(crystallite_S(1:3,1:3,g,i,e), & crystallite_Fe(1:3,1:3,g,i,e), & crystallite_Fi(1:3,1:3,g,i,e), & g,i,e) p = material_phaseAt(g,e); c = material_phaseMemberAt(g,i,e) myOffset = plasticState(p)%offsetDeltaState mySize = plasticState(p)%sizeDeltaState NaN = any(IEEE_is_NaN(plasticState(p)%deltaState(1:mySize,c))) if (.not. NaN) then plasticState(p)%state(myOffset + 1: myOffset + mySize,c) = & plasticState(p)%state(myOffset + 1: myOffset + mySize,c) + plasticState(p)%deltaState(1:mySize,c) do s = 1, phase_Nsources(p) myOffset = sourceState(p)%p(s)%offsetDeltaState mySize = sourceState(p)%p(s)%sizeDeltaState NaN = NaN .or. any(IEEE_is_NaN(sourceState(p)%p(s)%deltaState(1:mySize,c))) if (.not. NaN) then sourceState(p)%p(s)%state(myOffset + 1:myOffset + mySize,c) = & sourceState(p)%p(s)%state(myOffset + 1:myOffset + mySize,c) + sourceState(p)%p(s)%deltaState(1:mySize,c) endif enddo endif crystallite_todo(g,i,e) = .not. NaN if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken crystallite_converged(g,i,e) = .false. if (.not. crystallite_localPlasticity(g,i,e)) nonlocalStop = .true. endif endif enddo; enddo; enddo !$OMP END PARALLEL DO if (nonlocalStop) crystallite_todo = crystallite_todo .and. crystallite_localPlasticity end subroutine update_deltaState !-------------------------------------------------------------------------------------------------- !> @brief calculates a jump in the state according to the current state and the current stress !> returns true, if state jump was successfull or not needed. false indicates NaN in delta state !-------------------------------------------------------------------------------------------------- logical function stateJump(ipc,ip,el) integer, intent(in):: & el, & ! element index ip, & ! integration point index ipc ! grain index integer :: & c, & p, & mySource, & myOffset, & mySize c = material_phaseMemberAt(ipc,ip,el) p = material_phaseAt(ipc,el) call constitutive_collectDeltaState(crystallite_S(1:3,1:3,ipc,ip,el), & crystallite_Fe(1:3,1:3,ipc,ip,el), & crystallite_Fi(1:3,1:3,ipc,ip,el), & ipc,ip,el) myOffset = plasticState(p)%offsetDeltaState mySize = plasticState(p)%sizeDeltaState if( any(IEEE_is_NaN(plasticState(p)%deltaState(1:mySize,c)))) then ! NaN occured in deltaState stateJump = .false. return endif plasticState(p)%state(myOffset + 1:myOffset + mySize,c) = & plasticState(p)%state(myOffset + 1:myOffset + mySize,c) + plasticState(p)%deltaState(1:mySize,c) do mySource = 1, phase_Nsources(p) myOffset = sourceState(p)%p(mySource)%offsetDeltaState mySize = sourceState(p)%p(mySource)%sizeDeltaState if (any(IEEE_is_NaN(sourceState(p)%p(mySource)%deltaState(1:mySize,c)))) then ! NaN occured in deltaState stateJump = .false. return endif sourceState(p)%p(mySource)%state(myOffset + 1: myOffset + mySize,c) = & sourceState(p)%p(mySource)%state(myOffset + 1: myOffset + mySize,c) + sourceState(p)%p(mySource)%deltaState(1:mySize,c) enddo #ifdef DEBUG if (any(dNeq0(plasticState(p)%deltaState(1:mySize,c))) & .and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0 & .and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) & .or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0)) then write(6,'(a,i8,1x,i2,1x,i3, /)') '<< CRYST >> update state at el ip ipc ',el,ip,ipc write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> deltaState', plasticState(p)%deltaState(1:mySize,c) write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', & plasticState(p)%state(myOffset + 1 : & myOffset + mySize,c) endif #endif stateJump = .true. end function stateJump !-------------------------------------------------------------------------------------------------- !> @brief Write current restart information (Field and constitutive data) to file. ! ToDo: Merge data into one file for MPI, move state to constitutive and homogenization, respectively !-------------------------------------------------------------------------------------------------- subroutine crystallite_restartWrite integer :: i integer(HID_T) :: fileHandle, groupHandle character(len=pStringLen) :: fileName, datasetName write(6,'(a)') ' writing field and constitutive data required for restart to file';flush(6) write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5' fileHandle = HDF5_openFile(fileName,'a') call HDF5_write(fileHandle,crystallite_partionedF,'F') call HDF5_write(fileHandle,crystallite_Fp, 'Fp') call HDF5_write(fileHandle,crystallite_Fi, 'Fi') call HDF5_write(fileHandle,crystallite_Lp, 'Lp') call HDF5_write(fileHandle,crystallite_Li, 'Li') call HDF5_write(fileHandle,crystallite_S, 'S') groupHandle = HDF5_addGroup(fileHandle,'constituent') do i = 1,size(phase_plasticity) write(datasetName,'(i0,a)') i,'_omega_plastic' call HDF5_write(groupHandle,plasticState(i)%state,datasetName) enddo call HDF5_closeGroup(groupHandle) groupHandle = HDF5_addGroup(fileHandle,'materialpoint') do i = 1, material_Nhomogenization write(datasetName,'(i0,a)') i,'_omega_homogenization' call HDF5_write(groupHandle,homogState(i)%state,datasetName) enddo call HDF5_closeGroup(groupHandle) call HDF5_closeFile(fileHandle) end subroutine crystallite_restartWrite !-------------------------------------------------------------------------------------------------- !> @brief Read data for restart ! ToDo: Merge data into one file for MPI, move state to constitutive and homogenization, respectively !-------------------------------------------------------------------------------------------------- subroutine crystallite_restartRead integer :: i integer(HID_T) :: fileHandle, groupHandle character(len=pStringLen) :: fileName, datasetName write(6,'(/,a,i0,a)') ' reading restart information of increment from file' write(fileName,'(a,i0,a)') trim(getSolverJobName())//'_',worldrank,'.hdf5' fileHandle = HDF5_openFile(fileName) call HDF5_read(fileHandle,crystallite_F0, 'F') call HDF5_read(fileHandle,crystallite_Fp0,'Fp') call HDF5_read(fileHandle,crystallite_Fi0,'Fi') call HDF5_read(fileHandle,crystallite_Lp0,'Lp') call HDF5_read(fileHandle,crystallite_Li0,'Li') call HDF5_read(fileHandle,crystallite_S0, 'S') groupHandle = HDF5_openGroup(fileHandle,'constituent') do i = 1,size(phase_plasticity) write(datasetName,'(i0,a)') i,'_omega_plastic' call HDF5_read(groupHandle,plasticState(i)%state0,datasetName) enddo call HDF5_closeGroup(groupHandle) groupHandle = HDF5_openGroup(fileHandle,'materialpoint') do i = 1, material_Nhomogenization write(datasetName,'(i0,a)') i,'_omega_homogenization' call HDF5_read(groupHandle,homogState(i)%state0,datasetName) enddo call HDF5_closeGroup(groupHandle) call HDF5_closeFile(fileHandle) end subroutine crystallite_restartRead !-------------------------------------------------------------------------------------------------- !> @brief Forward data after successful increment. ! ToDo: Any guessing for the current states possible? !-------------------------------------------------------------------------------------------------- subroutine crystallite_forward integer :: i, j crystallite_F0 = crystallite_partionedF crystallite_Fp0 = crystallite_Fp crystallite_Lp0 = crystallite_Lp crystallite_Fi0 = crystallite_Fi crystallite_Li0 = crystallite_Li crystallite_S0 = crystallite_S do i = 1, size(plasticState) plasticState(i)%state0 = plasticState(i)%state enddo do i = 1, size(sourceState) do j = 1,phase_Nsources(i) sourceState(i)%p(j)%state0 = sourceState(i)%p(j)%state enddo; enddo do i = 1, material_Nhomogenization homogState (i)%state0 = homogState (i)%state thermalState(i)%state0 = thermalState(i)%state damageState (i)%state0 = damageState (i)%state enddo end subroutine crystallite_forward end module crystallite