! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH ! ! This file is part of DAMASK, ! the Düsseldorf Advanced MAterial Simulation Kit. ! ! DAMASK is free software: you can redistribute it and/or modify ! it under the terms of the GNU General Public License as published by ! the Free Software Foundation, either version 3 of the License, or ! (at your option) any later version. ! ! DAMASK is distributed in the hope that it will be useful, ! but WITHOUT ANY WARRANTY; without even the implied warranty of ! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ! GNU General Public License for more details. ! ! You should have received a copy of the GNU General Public License ! along with DAMASK. If not, see . ! !-------------------------------------------------------------------------------------------------- ! $Id$ !-------------------------------------------------------------------------------------------------- !> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH !> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH !> @brief material subroutine for isotropic (J2) plasticity !> @details Isotropic (J2) Plasticity which resembles the phenopowerlaw plasticity without !! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an !! untextured polycrystal !-------------------------------------------------------------------------------------------------- module constitutive_j2 use prec, only: & pReal,& pInt use lattice, only: & LATTICE_undefined_ID implicit none private integer(pInt), dimension(:), allocatable, public, protected :: & constitutive_j2_sizeDotState, & !< number of dotStates constitutive_j2_sizeState, & !< total number of microstructural variables constitutive_j2_sizePostResults !< cumulative size of post results integer(pInt), dimension(:,:), allocatable, target, public :: & constitutive_j2_sizePostResult !< size of each post result output character(len=64), dimension(:,:), allocatable, target, public :: & constitutive_j2_output !< name of each post result output integer(kind(LATTICE_undefined_ID)), dimension(:), allocatable, public :: & constitutive_j2_structureID !< ID of the lattice structure integer(pInt), dimension(:), allocatable, private :: & constitutive_j2_Noutput !< number of outputs per instance real(pReal), dimension(:), allocatable, private :: & constitutive_j2_fTaylor, & !< Taylor factor constitutive_j2_tau0, & !< initial plastic stress constitutive_j2_gdot0, & !< reference velocity constitutive_j2_n, & !< Visco-plastic parameter !-------------------------------------------------------------------------------------------------- ! h0 as function of h0 = A + B log (gammadot) constitutive_j2_h0, & constitutive_j2_h0_slopeLnRate, & constitutive_j2_tausat, & !< final plastic stress constitutive_j2_a, & constitutive_j2_aTolResistance, & !-------------------------------------------------------------------------------------------------- ! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n)) constitutive_j2_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function constitutive_j2_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function constitutive_j2_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function constitutive_j2_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function real(pReal), dimension(:,:,:), allocatable, private :: & constitutive_j2_Cslip_66 enum, bind(c) enumerator :: undefined_ID, & flowstress_ID, & strainrate_ID end enum integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: & constitutive_j2_outputID !< ID of each post result output public :: & constitutive_j2_init, & constitutive_j2_stateInit, & constitutive_j2_aTolState, & constitutive_j2_homogenizedC, & constitutive_j2_LpAndItsTangent, & constitutive_j2_dotState, & constitutive_j2_postResults contains !-------------------------------------------------------------------------------------------------- !> @brief module initialization !> @details reads in material parameters, allocates arrays, and does sanity checks !-------------------------------------------------------------------------------------------------- subroutine constitutive_j2_init(fileUnit) use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment) use debug, only: & debug_level, & debug_constitutive, & debug_levelBasic use math, only: & math_Mandel3333to66, & math_Voigt66to3333 use IO, only: & IO_read, & IO_lc, & IO_getTag, & IO_isBlank, & IO_stringPos, & IO_stringValue, & IO_floatValue, & IO_error, & IO_timeStamp, & IO_EOF use material, only: & homogenization_maxNgrains, & phase_plasticity, & phase_plasticityInstance, & phase_Noutput, & PLASTICITY_J2_label, & PLASTICITY_J2_ID, & MATERIAL_partPhase use lattice implicit none integer(pInt), intent(in) :: fileUnit integer(pInt), parameter :: MAXNCHUNKS = 7_pInt integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions integer(pInt) :: section = 0_pInt, maxNinstance, i,o, mySize character(len=32) :: & structure = '' character(len=65536) :: & tag = '', & line = '' write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_J2_label//' init -+>>>' write(6,'(a)') ' $Id$' write(6,'(a15,a)') ' Current time: ',IO_timeStamp() #include "compilation_info.f90" maxNinstance = int(count(phase_plasticity == PLASTICITY_J2_ID),pInt) if (maxNinstance == 0_pInt) return if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) & write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance allocate(constitutive_j2_sizeDotState(maxNinstance), source=1_pInt) allocate(constitutive_j2_sizeState(maxNinstance), source=1_pInt) allocate(constitutive_j2_sizePostResults(maxNinstance), source=0_pInt) allocate(constitutive_j2_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt) allocate(constitutive_j2_output(maxval(phase_Noutput), maxNinstance)) constitutive_j2_output = '' allocate(constitutive_j2_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID) allocate(constitutive_j2_Noutput(maxNinstance), source=0_pInt) allocate(constitutive_j2_structureID(maxNinstance), source=LATTICE_undefined_ID) allocate(constitutive_j2_Cslip_66(6,6,maxNinstance), source=0.0_pReal) allocate(constitutive_j2_fTaylor(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_tau0(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_gdot0(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_n(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_h0(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_h0_slopeLnRate(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_tausat(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_a(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_aTolResistance(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_tausat_SinhFitA(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_tausat_SinhFitB(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_tausat_SinhFitC(maxNinstance), source=0.0_pReal) allocate(constitutive_j2_tausat_SinhFitD(maxNinstance), source=0.0_pReal) rewind(fileUnit) do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to line = IO_read(fileUnit) enddo do while (trim(line) /= IO_EOF) ! read through sections of phase part line = IO_read(fileUnit) if (IO_isBlank(line)) cycle ! skip empty lines if (IO_getTag(line,'<','>') /= '') then ! stop at next part line = IO_read(fileUnit, .true.) ! reset IO_read exit endif if (IO_getTag(line,'[',']') /= '') then ! next section section = section + 1_pInt ! advance section counter cycle ! skip to next line endif if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran if (phase_plasticity(section) == PLASTICITY_J2_ID) then ! one of my sections i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase positions = IO_stringPos(line,MAXNCHUNKS) tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key select case(tag) case ('plasticity','elasticity') case ('(output)') constitutive_j2_Noutput(i) = constitutive_j2_Noutput(i) + 1_pInt constitutive_j2_output(constitutive_j2_Noutput(i),i) = & IO_lc(IO_stringValue(line,positions,2_pInt)) select case(IO_lc(IO_stringValue(line,positions,2_pInt))) case ('flowstress') constitutive_j2_outputID(constitutive_j2_Noutput(i),i) = flowstress_ID case ('strainrate') constitutive_j2_outputID(constitutive_j2_Noutput(i),i) = strainrate_ID case default call IO_error(105_pInt,ext_msg=IO_stringValue(line,positions,2_pInt)//' ('//PLASTICITY_J2_label//')') end select case ('lattice_structure') structure = IO_lc(IO_stringValue(line,positions,2_pInt)) select case(structure(1:3)) case(LATTICE_iso_label) constitutive_j2_structureID(i) = LATTICE_iso_ID case(LATTICE_fcc_label) constitutive_j2_structureID(i) = LATTICE_fcc_ID case(LATTICE_bcc_label) constitutive_j2_structureID(i) = LATTICE_bcc_ID case(LATTICE_hex_label) constitutive_j2_structureID(i) = LATTICE_hex_ID case(LATTICE_ort_label) constitutive_j2_structureID(i) = LATTICE_ort_ID end select case ('c11') constitutive_j2_Cslip_66(1,1,i) = IO_floatValue(line,positions,2_pInt) case ('c12') constitutive_j2_Cslip_66(1,2,i) = IO_floatValue(line,positions,2_pInt) case ('c13') constitutive_j2_Cslip_66(1,3,i) = IO_floatValue(line,positions,2_pInt) case ('c22') constitutive_j2_Cslip_66(2,2,i) = IO_floatValue(line,positions,2_pInt) case ('c23') constitutive_j2_Cslip_66(2,3,i) = IO_floatValue(line,positions,2_pInt) case ('c33') constitutive_j2_Cslip_66(3,3,i) = IO_floatValue(line,positions,2_pInt) case ('c44') constitutive_j2_Cslip_66(4,4,i) = IO_floatValue(line,positions,2_pInt) case ('c55') constitutive_j2_Cslip_66(5,5,i) = IO_floatValue(line,positions,2_pInt) case ('c66') constitutive_j2_Cslip_66(6,6,i) = IO_floatValue(line,positions,2_pInt) case ('tau0') constitutive_j2_tau0(i) = IO_floatValue(line,positions,2_pInt) if (constitutive_j2_tau0(i) < 0.0_pReal) & call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')') case ('gdot0') constitutive_j2_gdot0(i) = IO_floatValue(line,positions,2_pInt) if (constitutive_j2_gdot0(i) <= 0.0_pReal) & call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')') case ('n') constitutive_j2_n(i) = IO_floatValue(line,positions,2_pInt) if (constitutive_j2_n(i) <= 0.0_pReal) & call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')') case ('h0') constitutive_j2_h0(i) = IO_floatValue(line,positions,2_pInt) case ('h0_slope','slopelnrate') constitutive_j2_h0_slopeLnRate(i) = IO_floatValue(line,positions,2_pInt) case ('tausat') constitutive_j2_tausat(i) = IO_floatValue(line,positions,2_pInt) if (constitutive_j2_tausat(i) <= 0.0_pReal) & call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')') case ('tausat_sinhfita') constitutive_j2_tausat_SinhFitA(i) = IO_floatValue(line,positions,2_pInt) case ('tausat_sinhfitb') constitutive_j2_tausat_SinhFitB(i) = IO_floatValue(line,positions,2_pInt) case ('tausat_sinhfitc') constitutive_j2_tausat_SinhFitC(i) = IO_floatValue(line,positions,2_pInt) case ('tausat_sinhfitd') constitutive_j2_tausat_SinhFitD(i) = IO_floatValue(line,positions,2_pInt) case ('a', 'w0') constitutive_j2_a(i) = IO_floatValue(line,positions,2_pInt) if (constitutive_j2_a(i) <= 0.0_pReal) & call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')') case ('taylorfactor') constitutive_j2_fTaylor(i) = IO_floatValue(line,positions,2_pInt) if (constitutive_j2_fTaylor(i) <= 0.0_pReal) & call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')') case ('atol_resistance') constitutive_j2_aTolResistance(i) = IO_floatValue(line,positions,2_pInt) if (constitutive_j2_aTolResistance(i) <= 0.0_pReal) & call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')') case default call IO_error(210_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_J2_label//')') end select endif endif enddo instancesLoop: do i = 1_pInt,maxNinstance outputsLoop: do o = 1_pInt,constitutive_j2_Noutput(i) select case(constitutive_j2_outputID(o,i)) case(flowstress_ID,strainrate_ID) mySize = 1_pInt case default end select if (mySize > 0_pInt) then ! any meaningful output found constitutive_j2_sizePostResult(o,i) = mySize constitutive_j2_sizePostResults(i) = & constitutive_j2_sizePostResults(i) + mySize endif enddo outputsLoop constitutive_j2_Cslip_66(1:6,1:6,i) = & lattice_symmetrizeC66(constitutive_j2_structureID(i),constitutive_j2_Cslip_66(1:6,1:6,i)) constitutive_j2_Cslip_66(1:6,1:6,i) = & ! Literature data is Voigt, DAMASK uses Mandel math_Mandel3333to66(math_Voigt66to3333(constitutive_j2_Cslip_66(1:6,1:6,i))) enddo instancesLoop end subroutine constitutive_j2_init !-------------------------------------------------------------------------------------------------- !> @brief sets the initial microstructural state for a given instance of this plasticity !> @details initial microstructural state is set to the value specified by tau0 !-------------------------------------------------------------------------------------------------- pure function constitutive_j2_stateInit(matID) implicit none real(pReal), dimension(1) :: constitutive_j2_stateInit integer(pInt), intent(in) :: matID !< number specifying the instance of the plasticity constitutive_j2_stateInit = constitutive_j2_tau0(matID) end function constitutive_j2_stateInit !-------------------------------------------------------------------------------------------------- !> @brief sets the relevant state values for a given instance of this plasticity !-------------------------------------------------------------------------------------------------- pure function constitutive_j2_aTolState(matID) implicit none integer(pInt), intent(in) :: matID !< number specifying the instance of the plasticity real(pReal), dimension(constitutive_j2_sizeState(matID)) :: & constitutive_j2_aTolState constitutive_j2_aTolState = constitutive_j2_aTolResistance(matID) end function constitutive_j2_aTolState !-------------------------------------------------------------------------------------------------- !> @brief returns the homogenized elasticity matrix !-------------------------------------------------------------------------------------------------- pure function constitutive_j2_homogenizedC(ipc,ip,el) use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains,& material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(6,6) :: & constitutive_j2_homogenizedC integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element constitutive_j2_homogenizedC = constitutive_j2_Cslip_66(1:6,1:6,& phase_plasticityInstance(material_phase(ipc,ip,el))) end function constitutive_j2_homogenizedC !-------------------------------------------------------------------------------------------------- !> @brief calculates plastic velocity gradient and its tangent !-------------------------------------------------------------------------------------------------- pure subroutine constitutive_j2_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,state,ipc,ip,el) use prec, only: & p_vec use math, only: & math_mul6x6, & math_Mandel6to33, & math_Plain3333to99, & math_deviatoric33, & math_mul33xx33 use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(3,3), intent(out) :: & Lp !< plastic velocity gradient real(pReal), dimension(9,9), intent(out) :: & dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(3,3) :: & Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor real(pReal), dimension(3,3,3,3) :: & dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor real(pReal) :: & gamma_dot, & !< strainrate norm_Tstar_dev, & !< euclidean norm of Tstar_dev squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev integer(pInt) :: & matID, & k, l, m, n matID = phase_plasticityInstance(material_phase(ipc,ip,el)) Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33) norm_Tstar_dev = sqrt(squarenorm_Tstar_dev) if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero Lp = 0.0_pReal dLp_dTstar99 = 0.0_pReal else gamma_dot = constitutive_j2_gdot0(matID) & * (sqrt(1.5_pReal) * norm_Tstar_dev & / constitutive_j2_fTaylor(matID) / state(ipc,ip,el)%p(1)) **constitutive_j2_n(matID) Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/constitutive_j2_fTaylor(matID) !-------------------------------------------------------------------------------------------------- ! Calculation of the tangent of Lp forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) & dLp_dTstar_3333(k,l,m,n) = (constitutive_j2_n(matID)-1.0_pReal) * & Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) & dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) & dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal dLp_dTstar99 = math_Plain3333to99(gamma_dot / constitutive_j2_fTaylor(matID) * & dLp_dTstar_3333 / norm_Tstar_dev) end if end subroutine constitutive_j2_LpAndItsTangent !-------------------------------------------------------------------------------------------------- !> @brief calculates the rate of change of microstructure !-------------------------------------------------------------------------------------------------- pure function constitutive_j2_dotState(Tstar_v,state,ipc,ip,el) use prec, only: & p_vec use math, only: & math_mul6x6 use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance implicit none real(pReal), dimension(1) :: & constitutive_j2_dotState real(pReal), dimension(6), intent(in):: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(6) :: & Tstar_dev_v !< deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal) :: & gamma_dot, & !< strainrate hardening, & !< hardening coefficient saturation, & !< saturation resistance norm_Tstar_dev !< euclidean norm of Tstar_dev integer(pInt) :: & matID matID = phase_plasticityInstance(material_phase(ipc,ip,el)) !-------------------------------------------------------------------------------------------------- ! norm of deviatoric part of 2nd Piola-Kirchhoff stress Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal Tstar_dev_v(4:6) = Tstar_v(4:6) norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v)) !-------------------------------------------------------------------------------------------------- ! strain rate gamma_dot = constitutive_j2_gdot0(matID) * ( sqrt(1.5_pReal) * norm_Tstar_dev & / &!----------------------------------------------------------------------------------- (constitutive_j2_fTaylor(matID) * state(ipc,ip,el)%p(1)) ) ** constitutive_j2_n(matID) !-------------------------------------------------------------------------------------------------- ! hardening coefficient if (abs(gamma_dot) > 1e-12_pReal) then if (constitutive_j2_tausat_SinhFitA(matID) == 0.0_pReal) then saturation = constitutive_j2_tausat(matID) else saturation = ( constitutive_j2_tausat(matID) & + ( log( ( gamma_dot / constitutive_j2_tausat_SinhFitA(matID)& )**(1.0_pReal / constitutive_j2_tausat_SinhFitD(matID))& + sqrt( ( gamma_dot / constitutive_j2_tausat_SinhFitA(matID) & )**(2.0_pReal / constitutive_j2_tausat_SinhFitD(matID)) & + 1.0_pReal ) & ) & ! asinh(K) = ln(K + sqrt(K^2 +1)) )**(1.0_pReal / constitutive_j2_tausat_SinhFitC(matID)) & / ( constitutive_j2_tausat_SinhFitB(matID) & * (gamma_dot / constitutive_j2_gdot0(matID))**(1.0_pReal / constitutive_j2_n(matID)) & ) & ) endif hardening = ( constitutive_j2_h0(matID) + constitutive_j2_h0_slopeLnRate(matID) * log(gamma_dot) ) & * abs( 1.0_pReal - state(ipc,ip,el)%p(1)/saturation )**constitutive_j2_a(matID) & * sign(1.0_pReal, 1.0_pReal - state(ipc,ip,el)%p(1)/saturation) else hardening = 0.0_pReal endif constitutive_j2_dotState = hardening * gamma_dot end function constitutive_j2_dotState !-------------------------------------------------------------------------------------------------- !> @brief return array of constitutive results !-------------------------------------------------------------------------------------------------- pure function constitutive_j2_postResults(Tstar_v,state,ipc,ip,el) use prec, only: & p_vec use math, only: & math_mul6x6 use mesh, only: & mesh_NcpElems, & mesh_maxNips use material, only: & homogenization_maxNgrains, & material_phase, & phase_plasticityInstance, & phase_Noutput implicit none real(pReal), dimension(6), intent(in) :: & Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation integer(pInt), intent(in) :: & ipc, & !< component-ID of integration point ip, & !< integration point el !< element type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: & state !< microstructure state real(pReal), dimension(constitutive_j2_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: & constitutive_j2_postResults real(pReal), dimension(6) :: & Tstar_dev_v ! deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation real(pReal) :: & norm_Tstar_dev ! euclidean norm of Tstar_dev integer(pInt) :: & matID, & o, & c matID = phase_plasticityInstance(material_phase(ipc,ip,el)) !-------------------------------------------------------------------------------------------------- ! calculate deviatoric part of 2nd Piola-Kirchhoff stress and its norm Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal Tstar_dev_v(4:6) = Tstar_v(4:6) norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v)) c = 0_pInt constitutive_j2_postResults = 0.0_pReal outputsLoop: do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el)) select case(constitutive_j2_outputID(o,matID)) case (flowstress_ID) constitutive_j2_postResults(c+1_pInt) = state(ipc,ip,el)%p(1) c = c + 1_pInt case (strainrate_ID) constitutive_j2_postResults(c+1_pInt) = & constitutive_j2_gdot0(matID) * ( sqrt(1.5_pReal) * norm_Tstar_dev & / &!---------------------------------------------------------------------------------- (constitutive_j2_fTaylor(matID) * state(ipc,ip,el)%p(1)) ) ** constitutive_j2_n(matID) c = c + 1_pInt end select enddo outputsLoop end function constitutive_j2_postResults end module constitutive_j2